Skip to main content
Log in

Prevention of Transplant Rejection

Current Treatment Guidelines and Future Developments

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

In the past 2 decades, progressive improvements in the results of organ transplantation as a therapeutic strategy for patients with end-stage organ disease have been achieved due to greater insight into the immunobiology of graft rejection and better measures for surgical and medical management. It is now known that T cells play a central role in the specific immune response of acute allograft rejection. Strategies to prevent T cell activation or effector function are thus all potentially useful for immunosuppression.

Standard immunosuppressive therapy in renal transplantation consists of baseline therapy to prevent rejection and short courses of high-dose corticosteroids or monoclonal or polyclonal antibodies as treatment of ongoing rejection episodes. Triple-drug therapy with the combination of cyclosporin, corticosteroids and azathioprine is now the most frequently used immunosuppressive drug regimen in cadaveric kidney recipients.

The continuing search for more selective and specific agents has become, in the past decade, one of the priorities for transplant medicine. Some of these compounds are now entering routine clinical practice: among them are tacrolimus (which has a mechanism of action similar to that of cyclosporin), mycophenolate mofetil and mizoribine (which selectively inhibit the enzyme inosine monophosphate dehydrogenase, the rate-limiting enzyme for de novo purine synthesis during cell division), and sirolimus (rapamycin) [which acts on and inhibits kinase homologues required for cell-cycle progression in response to growth factors, like interleukin-2 (IL-2)]. Other new pharmacological strategies and innovative approaches to organ transplantation are also under development. Application of this technology will offer enormous potential not only for the investigation of mechanisms and mediators of graft rejection but also for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colvin R. Cellular and molecular mechanisms of allograft rejection. Annu Rev Med 1990; 41: 361–75

    PubMed  CAS  Google Scholar 

  2. Sayegh M, Watschinger B, Carpenter C. Mechanisms of T cell recognition of alloantigen: role of peptides. Transplantation 1994; 57: 1295–302

    PubMed  CAS  Google Scholar 

  3. Steinman R, Young J. Signals arising from antigen-presenting cells. Curr Opin Immunol 1991; 3: 361–72

    PubMed  CAS  Google Scholar 

  4. Schwartz R. Acquisition of immunologic self-tolerance. Cell 1989; 57: 1073–81

    PubMed  CAS  Google Scholar 

  5. June C, Ledbetter J, Linsley P, et al. Role of the CD28 receptor in T-cell activation. Immunol Today 1990; 11: 211–6

    PubMed  CAS  Google Scholar 

  6. Hitchings GH, Elion GB. The role of antimetabolites in immunosuppression and transplantation. Acc Chem Res 1969; 2: 202–12

    CAS  Google Scholar 

  7. Elion GB. The pharmacology of azathioprine. Ann N Y Acad Sci 1993; 685: 401–7

    CAS  Google Scholar 

  8. St Georgiev V. Enzymes of the purine metabolism: inhibition and therapeutic potential. Ann N Y Acad Sci 1993; 685: 207–16

    CAS  Google Scholar 

  9. Mitchell BS, Dayton JS, Turka LA, et al. IMP dehydrogenase inhibitors as immunomodulators. Ann N Y Acad Sci 1993; 685: 217–24

    PubMed  CAS  Google Scholar 

  10. de Mattos AM, Olyaei AJ, Bennett WM. Pharmacology of immunosuppressive medications used in renal diseases and transplantation. Am J Kidney Dis 1996; 28: 631–67

    PubMed  Google Scholar 

  11. Hitchings GH, Elion GB. Chemical immunosuppression of the immune response. Pharmacol Rev 1963; 15: 365–401

    PubMed  CAS  Google Scholar 

  12. McGeown MG, Kennedy JA, Loughridge WG, et al. One hundred kidney transplants in the Belfast City Hospital. Lancet 1977; II: 648–51

    Google Scholar 

  13. Papadakis J, Brown CB, Cameron JS, et al. High versus ‘low’ dose corticosteroids in recipients of cadaveric kidneys: prospective controlled trial. BMJ 1983; 286: 1097–100

    PubMed  CAS  Google Scholar 

  14. Salaman JR, Griffin PJA, Price K. A controlled clinical trial of low-dose prednisolone in renal transplantation. Transplant Proc 1982; 14: 103–6

    Google Scholar 

  15. Chan L, French ME, Beare J, et al. Prospective trial of high-dose versus low dose prednisone in renal transplant patients. Transplant Proc 1980; 12: 323–6

    PubMed  CAS  Google Scholar 

  16. Chan L, French ME, Oliver DO, et al. High and low dose prednisone. Transplant Proc 1981; 13: 336–8

    PubMed  CAS  Google Scholar 

  17. Calne RY, White DJ, Thuru S, et al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet 1978; II: 1323–7

    Google Scholar 

  18. Calne R, Rolles K, White D, et al. Cyclosporin A initially as the only immunosuppressant in 36 recipients of cadaveric organs: 32 kidneys, 2 pancreas, and 2 livers. Lancet 1979; II: 1033–6

    Google Scholar 

  19. Calne R, White D. The use of cyclosporin A in clinical organ grafting. Ann Surg 1982; 196: 330–7

    PubMed  CAS  Google Scholar 

  20. Starzl T, Klintmalm G, Weil RI, et al. Cyclosporin A and steroid therapy in sixty-six cadaver kidney recipients. Surg Gynecol Obstet 1981; 153: 486–94

    PubMed  CAS  Google Scholar 

  21. Rosenthal J, Hakala T, Iwatsuki S, et al. Cadaveric renal transplantation under cyclosporine-steroid therapy. Surg Gynecol Obstet 1983; 157: 309–15

    PubMed  CAS  Google Scholar 

  22. Simmons R, Canafax D, Strand M. Management and prevention of cyclosporine nephrotoxicity after renal transplantation: use of low dose of cyclosporine, azathioprine, and prednisone. Transplant Proc 1985; 17: 266–75

    PubMed  CAS  Google Scholar 

  23. First M, Alexander J, Wodhwa N. The use of low doses of cyclosporine, azathioprine and prednisone in renal transplantation. Transplant Proc 1986; 18: 132–5

    PubMed  CAS  Google Scholar 

  24. Collaborative Transplant Study. Newsletter 4 1992 Nov

  25. Simmons RL, Canafax DM, Strand M, et al. Management and prevention of cyclosporine nephrotoxicity after renal transplantation: use of low doses of cyclosporine, azathioprine, and prednisone. Transplant Proc 1985; 17 Suppl. 1: 266–75

    PubMed  CAS  Google Scholar 

  26. Linder R, Lindholm A, Restifo A, et al. Long-term renal allograft function under maintenance immunosuppression with cyclosporine A or azathioprine. Transplant Int 1991; 4: 166–72

    CAS  Google Scholar 

  27. Perico N, Remuzzi G. Cyclosporine-induced renal dysfunction in experimental animals and humans. Transplant Rev 1991; 5: 63–80

    Google Scholar 

  28. Myers BD, Ross J, Newton L, et al. Cyclosporine-associated chronic nephropathy. N Engl J Med 1984; 311: 699–705

    PubMed  CAS  Google Scholar 

  29. Lowson DH, Lovatt GE, Gurton CS, et al. Adverse effects of azathioprine. Adverse Drug React Acute Poisoning Rev 1984; 3: 161–71

    Google Scholar 

  30. Penn I. The changing pattern of posttransplant malignancies. Transplant Proc 1991; 23: 1101–3

    PubMed  CAS  Google Scholar 

  31. Hricik DE, O’Toole MA, Schulak JA, et al. Steroid-free immunosuppression in cyclosporine-treated renal transplant recipients: a meta-analysis. J Am Soc Nephrol 1993; 4: 1300–5

    PubMed  CAS  Google Scholar 

  32. Kupin W, Venkat KK, Heung K, et al. Complete replacement of methylprednisolone by azathioprine in cyclosporine-treated primary cadaveric renal transplant recipients. Transplantation 1988; 45: 53–5

    PubMed  CAS  Google Scholar 

  33. Hricik DE, Lautman J, Bartucci MR, et al. Variable effects of steroid withdrawal on blood pressure reduction in cyclosporine-treated renal transplant recipients. Transplantation 1992; 53: 1232–5

    PubMed  CAS  Google Scholar 

  34. Pirsch JD, Armburst MJ, Knechtle SJ, et al. Effect of steroid withdrawal on hypertension and cholesterol levels in living related recipients. Transplant Proc 1991; 23: 1363–4

    PubMed  CAS  Google Scholar 

  35. Hricik DE, Bartucci MR, Mayes JT, et al. The effects of steroid withdrawal on the lipoprotein profiles of cyclosporine-treated kidney and kidney-pancreas transplant recipients. Transplantation 1992; 54: 868–71

    PubMed  CAS  Google Scholar 

  36. Hricik DE, Bartucci MR, Moir EJ, et al. Effects of steroid withdrawal on posttransplant diabetes mellitus in cyclosporine-treated renal transplant recipients. Transplantation 1991; 51: 374–7

    PubMed  CAS  Google Scholar 

  37. Albert FW, Schmidt U. Cyclosporine therapy with or without steroids in cadaveric kidney transplantation — a prospective randomized one-center study. Transplant Proc 1987; 17: 2669–70

    Google Scholar 

  38. Johnson RWG, Mallick NP, Bakran A, et al. Cadaver renal transplantation without maintenance steroids. Transplant Proc 1989; 21: 1581–2

    PubMed  CAS  Google Scholar 

  39. Sinclair NR, for the Canadian Multicentre Transplant Study Group. Low-dose steroid therapy in cyclosporine-treated renal transplant recipients with well-functioning grafts. Can Med Assoc J 1992; 147: 645–55

    CAS  Google Scholar 

  40. Opelz G. Effect of the maintenance immunosuppressive drug regimen on kidney transplant outcome. Transplantation 1994; 58: 443–6

    PubMed  CAS  Google Scholar 

  41. Ratcliffe PJ, Dudley CRK, Higgins RM, et al. Randomised controlled trial of steroid withdrawal in renal transplant recipients receiving triple immunosuppression. Lancet 1996; 348: 643–8

    PubMed  CAS  Google Scholar 

  42. Hricik DE, Whalen CC, Lautman J, et al. Withdrawal of steroid after renal transplantation — clinical predictors of outcome. Transplantation 1992; 53: 41–5

    PubMed  CAS  Google Scholar 

  43. Cristinelli L, Brunori G, Setti G, et al. Withdrawal of methylprednisolone at the sixth month in renal transplant recipients treated with cyclosporine. Transplant Proc 1987; 19: 2021–3

    PubMed  CAS  Google Scholar 

  44. Mason J. Cyclosporines past, present, and future. Transplant Proc 1992; 24 Suppl. 4: 61–3

    PubMed  CAS  Google Scholar 

  45. Kahan B. Cyclosporine. N Engl J Med 1989; 321: 1725–38

    PubMed  CAS  Google Scholar 

  46. Canadian Multicentre Transplant Study Group. A randomized clinical trial of cyclosporine in cadaveric renal transplantation. N Engl J Med 1986; 314: 1219–25

    Google Scholar 

  47. Starzl T, Klintmalm G, Porte K, et al. Liver transplantation with use of cyclosporine A and prednisone. N Engl J Med 1981; 305: 266–9

    PubMed  CAS  Google Scholar 

  48. Macoviak J, Oyer P, Stinson E, et al. Four-year experience with cyclosporine for heart and heart-lung transplantation. Transplant Proc 1985; 17 Suppl. 2: 97–101

    Google Scholar 

  49. Traeger J, Dubernard J, Pozza G. Influence of immunosuppressive therapy on the endocrine function of segmental pancreatic allografts. Transplant Proc 1983; 15: 1326–8

    Google Scholar 

  50. Feutren G, Querin S, Chatenoud L, et al. The effects of cyclosporine in twelve patients with severe systemic lupus. In: Schindler R. editor. Cyclosporine in autoimmune diseases. New York: Springer-Verlag, 1985: 366–72

    Google Scholar 

  51. Schreiber S. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 1991; 251: 283–7

    PubMed  CAS  Google Scholar 

  52. Fruman D, Burakoff S, Bierer B. Immunophilins in protein folding and immunosuppression. FASEB J 1994; 8: 391–400

    PubMed  CAS  Google Scholar 

  53. Liu J, Farmer J, Lane W, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FK506-FKBP complexes. Cell 1991; 66: 807–15

    PubMed  CAS  Google Scholar 

  54. Fruman D, Klee C, Bierer B, et al. Calcineurin phosphatase in T lymphocytes is inhibited by FK506 and cyclosporine A. Proc Natl Acad Sci USA 1992; 89: 3686–90

    PubMed  CAS  Google Scholar 

  55. Klintmalm G, Sawe J, Ringden O, et al. Cyclosporine plasma levels in renal transplant patients: association with renal toxicity and allograft rejection. Transplantation 1985; 39: 132–7

    PubMed  CAS  Google Scholar 

  56. Lindholm A, Kahan B. Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther 1993; 54: 205–18

    PubMed  CAS  Google Scholar 

  57. Burke J, Pirsch J, Ramos E, et al. Long-term efficacy and safety of cyclosporine in renal transplant recipients. N Engl J Med 1994; 331: 358–63

    PubMed  Google Scholar 

  58. Grevel J, Welsh M, Kahan B. Cyclosporine monitoring in renal transplantation: area under the curve monitoring is superior to trough level monitoring. Ther Drug Monit 1989; 11: 246–89

    PubMed  CAS  Google Scholar 

  59. Kivisto K. A review of assay methods for cyclosporin: clinical implications. Clin Pharmacokinet 1992; 23: 173–90

    PubMed  CAS  Google Scholar 

  60. Kahan B, Shaw L, Holt D, et al. Consensus document: Hawk’s Cay meeting on therapeutic drug monitoring of cyclosporine. Clin Chem 1990; 36: 1510–6

    PubMed  CAS  Google Scholar 

  61. Shaw L. Advances in cyclosporine pharmacology, measurement, and therapeutic monitoring. Clin Chem 1989; 35: 1299–308

    PubMed  CAS  Google Scholar 

  62. Perna A, Gotti E, de Bernardis E, et al. A logistic-regression model provides novel guidelines to maximize the anti-acute rejection properties of cyclosporine with a minimum of toxicity. J Am Soc Nephrol 1996; 7: 786–91

    PubMed  CAS  Google Scholar 

  63. Basadonna G, Matas A, Gillingham K, et al. Early versus late acute renal allograft rejection: impact on chronic rejection. Transplantation 1993; 55: 993–5

    PubMed  CAS  Google Scholar 

  64. Salomon D, Brunson M, Vansickler J, et al. A retrospective analysis of late renal graft function: correlation with mean cyclosporine levels and lack of evidence for chronic cyclosporine toxicity. Transplant Proc 1991; 23: 1018–9

    PubMed  CAS  Google Scholar 

  65. Nankivell B, Hibbins M, Chapman J. Diagnostic utility of whole blood cyclosporine measurements in renal transplantation using triple therapy. Transplantation 1994; 58: 989–96

    PubMed  CAS  Google Scholar 

  66. Gaspari F, Ruggenenti P, Torre L, et al. Failure to predict cyclosporine area under the curve using a limited sampling strategy. Kidney Int 1993; 44: 436–9

    PubMed  CAS  Google Scholar 

  67. Holt D, Mueller E, Kovarik J, et al. The pharmacokinetics of Sandimmun Neoral: a new oral formulation of cyclosporine. Transplant Proc 1994; 25: 2935–9

    Google Scholar 

  68. Kovarik J, Mueller E, Johnston A, et al. Bioequivalence of soft gelatin capsules and oral solution of a new cyclosporine formulation. Pharmacotherapy 1993; 13: 613–7

    PubMed  CAS  Google Scholar 

  69. The Canadian Neoral Study Group. A randomized prospective multicentre pharmacoepidemiologic study of Neoral (cyclosporine microemulsion) in stable renal graft recipients [abstract]. American Society Transplant Physicians: 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 170

  70. Amante A, Lindholm A, Welsh M, et al. Cyclosporine pharmacokinetic risk factors for acute rejection episodes in renal transplantation [abstract]. American Society of Transplant Physicians: 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 118

  71. Gaspari F, Anedda MF, Signorini O, et al. Prediction of cyclosporine area under the curve using a three point sampling strategy after Neoral administration. J Am Soc Nephrol 1997; 8: 647–52

    PubMed  CAS  Google Scholar 

  72. Serafinowicz A, Gaciong Z, Baczkowska T, et al. Limited sampling strategy to estimate exposure to CsA in renal allograft recipients (RARs) treated with Sandimmun-Neoral (NEO) [abstract]. 2nd International Conference on New Trends in Clinical and Experimental Immunosuppression; 1996 Feb 13–16; Geneva, 59

  73. Foradori A, Martinez L, Eldberg A, et al. Preliminary pharmacokinetic evaluation of a new galenic formulation of oral cyclosporine A: Neoral. Transplant Proc 1995; 27: 1813–4

    PubMed  CAS  Google Scholar 

  74. Mueller EA, Kovarik JM, van Bree JB, et al. Pharmacokinetics and tolerability of a microemulsion formulation of cyclosporine in renal allograft recipients — a concentration-controlled comparison with the commercial formulation. Transplantation 1994; 57: 1178–82

    PubMed  CAS  Google Scholar 

  75. Steinmuller D, Dougherty J, Coutee J, et al. The effect of conversion from Sandimmun to Neoral on glomerular filtration rate in stable renal transplant recipients [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30: Barcelona, 283

  76. Ricart MJ, Andreu J, Oppenheimer F, et al. Acute renal failure after renal transplantation under various immunosuppressive regimens. Transplant Proc 1988; 20: 36–7

    PubMed  CAS  Google Scholar 

  77. Carpenter BJ, Rosenthal JT, Taylor RJ. The impact of acute tubular necrosis on graft outcome in patients receiving cyclosporine. Transplant Proc 1985; 17: 1282–3

    Google Scholar 

  78. Canafax DM, Torres A, Fryd DS, et al. The effects of delayed function on recipients of cadaver renal allografts. Transplantation 1986; 41: 177–81

    PubMed  CAS  Google Scholar 

  79. Cho SI, Zalneraitis BP, Franklin C. The influence of acute tubular necrosis on kidney transplant survival. Transplant Proc 1985; 17: 16–7

    Google Scholar 

  80. Weimar W, Hendriks GFJ, Wenting GJ, et al. Prophylactic antilymphocyte globulin and HLA-DR matching reduce the incidence of rejection after cadaveric kidney transplantation. Transplant Proc 1987; 19: 3612–3

    PubMed  CAS  Google Scholar 

  81. Sommer BG, Henry M, Ferguson RM. Sequential antilymphoblast globulin and cyclosporine for renal transplantation. Transplantation 1987; 43: 85–90

    PubMed  CAS  Google Scholar 

  82. Kupin WL, Venkatachalam KK, Oh HK, et al. Sequential use of Minnesota antilymphoblast globulin and cyclosporine in cadaveric renal transplantation. Transplantation 1985; 40: 601–4

    PubMed  CAS  Google Scholar 

  83. Freis D, Hiesse C, Charpentier B, et al. Optimal results in cadaveric renal transplantation with low-dose cyclosporine and steroids combined with prophylactic anti-lymphocyte globulin. Transplant Proc 1988; 20 Suppl. 6: 23–5

    Google Scholar 

  84. Hiesse C, Fries D, Charpentier B, et al. Optimal results in cadaver-donor renal transplantation using prophylactic ALG, cyclosporine, and prednisone. Transplant Proc 1987; 19: 3670–1

    PubMed  CAS  Google Scholar 

  85. Nestor ZT, Rocher LL, Merion RM, et al. Peri-operative antilymphoblast globulin (ALG) and delayed initiation of cyclosporine (CsA) diminishes the requirement for prolonged dialysis therapy after renal transplantation. Transplant Proc 1989; 21: 1556–7

    PubMed  CAS  Google Scholar 

  86. Gaston RS, Hudson SL, Deierhoi MH, et al. Improved survival of primary cadaveric renal allografts in blacks with quadruple immunosuppression. Transplantation 1992; 53: 103–9

    PubMed  CAS  Google Scholar 

  87. Stratta RJ, D’Alessandro AM, Armbrust MJ, et al. Sequential antilymphocyte globulin/cyclosporine immunosuppression in cadaveric renal transplantation. Transplantation 1989; 47: 96–102

    PubMed  CAS  Google Scholar 

  88. Norman D, Shield C, Barry J, et al. Early use of OKT3 monoclonal antibody in renal transplantation to prevent rejection. Am J Kidney Dis 1988; 9: 107–10

    Google Scholar 

  89. Norman D, Kahana L, Stuart FJ, et al. A randomized clinical trial of induction therapy with OKT3 in kidney transplantation. Transplantation 1993; 55: 44–50

    PubMed  CAS  Google Scholar 

  90. Canadian Multicentre Transplant Study Group. A randomized clinical trial of cyclosporine in cadaveric renal transplantation. N Engl J Med 1986; 314: 1219–25

    Google Scholar 

  91. Belitsky P, MacDonald AS, Cohen AD, et al. Comparison of antilymphocyte globulin and continuous IV cyclosporine A as induction immunosuppression for cadaver kidney transplants: a prospective randomized study. Transplant Proc 1991; 23: 999–1000

    PubMed  CAS  Google Scholar 

  92. Johnson CP, Simmons RL, Sutherland DER, et al. Arandomized trial comparing cyclosprorine with antilymphoblast-globulinazathioprine for renal allograft recipients. Transplantation 1988; 45: 380–5

    PubMed  CAS  Google Scholar 

  93. Michael HJ, Francos GC, Burke JF, et al. A comparison of the effects of cyclosporine versus antilymphocyte globulin on delayed graft function in cadaver renal transplant recipients. Transplantation 1989; 48: 805–8

    PubMed  CAS  Google Scholar 

  94. Slakey DP, Johnson CP, Callaluce RD, et al. A prospective randomized comparison of quadruple versus triple therapy for first cadaver transplants with immediate function. Transplantation 1993; 56: 827–31

    PubMed  CAS  Google Scholar 

  95. Abouna GM, Al-Abdullah IH, Kelly-Sullivan D, et al. Randomized clinical trial of antithymocyte globulin induction in renal transplantation comparing a fixed daily dose with adjustment according to T cell monitoring. Transplantation 1995; 59: 1564–8

    PubMed  CAS  Google Scholar 

  96. Kung P, Goldstein G, Reinherz EL, et al. Monoclonal antibodies defining human T cell surface antigens. Science 1979; 206: 347–9

    PubMed  CAS  Google Scholar 

  97. Chang TW, Kung PC, Gingras SP, et al. Does OKT3 monoclonal antibody react with an antigen-recognition structure on human T cells? Proc Natl Acad Sci USA 1981; 78: 1805–8

    PubMed  CAS  Google Scholar 

  98. van der Elsen P, Shepley BA, Borst J, et al. Isolation of cDNA clones encoding the 20K T3 glycoprotein of human T-cell receptor complex. Nature 1984; 312: 413–8

    PubMed  Google Scholar 

  99. Todd PA, Brogden RN. Muromonab CD3: a review of its pharmacology and therapeutic potential. Drugs 1989; 37: 871–99

    PubMed  CAS  Google Scholar 

  100. Hanto DW, Jendrisak MD, So SKS, et al. Induction immunosuppression with antilymphocyte globulin or OKT3 in cadaver kidney transplantation. Transplantation 1994; 57: 377–84

    PubMed  CAS  Google Scholar 

  101. Cohen DJ, Benevenisty AI, Cianci J, et al. OKT3 prophylaxis in cadaveric kidney transplant recipients with delayed graft function. Am J Kidney Dis 1989; 14 Suppl. 2: 19–27

    PubMed  CAS  Google Scholar 

  102. Grino JM, Castelao AM, Seron D, et al. Antilymphocyte globulin OKT3 induction therapy in cadaveric kidney transplantation: a prospective randomized study. Am J Kidney Dis 1992; 20: 603–10

    PubMed  CAS  Google Scholar 

  103. Swinnen JL, Costanzo Nordin MR, Fisher SG, et al. Increased incidence of lymphoproliferative disorders after immunosuppression with the monoclonal OKT3 in cardiac transplant recipients. N Engl J Med 1990; 323: 1723–8

    PubMed  CAS  Google Scholar 

  104. Peterson PK, Balfour HH, Fryd DS, et al. Fever in renal transplant recipients: causes, prognostic significance and changing patterns at the University of Minnesota Hospital. Am J Med 1981; 71: 345–51

    PubMed  CAS  Google Scholar 

  105. Rao KV, Kasiske BL, Bloom PM. Acute graft rejection in the late survivors of renal transplantation: clinical and histological observations in the second decade. Transplantation 1989; 47: 290–2

    PubMed  CAS  Google Scholar 

  106. Kincaid-Smith P, McKenzie IF, Morris PJ, et al. Biopsy features of early acute rejection in cadaveric renal grafts. Transplant Proc 1969; 1: 287–9

    PubMed  CAS  Google Scholar 

  107. Waltzer WC, Miller F, Arnold A, et al. Value of percutaneous core needle biopsy in the differential diagnosis of renal transplant dysfunction. J Urol 1987; 137: 1117–21

    PubMed  CAS  Google Scholar 

  108. Tanaka H, Kuroda A, Marusawa H, et al. Structure of FK506: a novel immunosuppressant isolated from streptomyces. J Am Chem Soc 1987; 109: 5031–3

    CAS  Google Scholar 

  109. Venkataramanan R, Jain A, Warty V, et al. Pharmacokinetics of FK506 in transplant patients. Transplant Proc 1991; 23: 2736–40

    PubMed  CAS  Google Scholar 

  110. Yoshimura N, Oka T. FK506, a new immunosuppressive agent: a review. J Immunol Immunopharmacol 1990; 10: 32–6

    CAS  Google Scholar 

  111. Northrop JP, Ho SN, Chen L, et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 1994; 369: 497–502

    PubMed  CAS  Google Scholar 

  112. Todo S, Fung JJ, Tzakis AJ, et al. One hundred ten consecutive primary orthotopic liver transplants under FK506 in adults. Transplant Proc 1991; 23: 1397–1402

    PubMed  CAS  Google Scholar 

  113. Fung J, Abu-Elmagd K, Jain A, et al. A randomized trial of primary liver transplantation under immunosuppression with FK506 vs cyclosporine. Transplant Proc 1991; 23: 2977–83

    PubMed  CAS  Google Scholar 

  114. US Multicenter FK506 Liver Study Group. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression in liver transplantation. N Engl J Med 1994; 331: 1110–5

    Google Scholar 

  115. European FK506 Multicentre Liver Study Group. Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. Lancet 1994; 344: 423–8

    Google Scholar 

  116. Starzl TE, Donner A, Eliasziw M, et al. Randomised trialomania? The multicentre liver transplant trials of tacrolimus. Lancet 1995; 346: 1346–50

    PubMed  CAS  Google Scholar 

  117. Steinmuller DR. FK506 and organ transplantation. Austin (TX): RG Landes Co., 1994

    Google Scholar 

  118. van Hooff J. The European prospective randomised trial comparing tacrolimus and cyclosporin in the prevention of renal allograft rejection [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 45

  119. FK506 US Kidney Transplant Multicenter Study Group. FK506 in kidney transplantation: results of the U.S. randomized, comparative, phase III study [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 45

  120. Mathew A, Talbot D, Minford E, et al. Reversal of steroid-resistant rejection in renal allograft recipients using FK506. Transplantation 1995; 60: 1182–4

    PubMed  CAS  Google Scholar 

  121. Woodle ES, Thistlethwaite Jr JR, Gordon JH, et al. A prospective, multicenter trial of FK 506 (tacrolimus) therapy for refractory acute renal allograft rejection [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 46

  122. Jordan ML, Naraghi R, Shapiro R, et al. Tacrolimus rescue therapy for renal allograft rejection — five year experience [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 46

  123. Jordan ML, Naraghi R, Shapiro R, et al. Tacrolimus rescue therapy for renal allograft rejection — five years experience. Transplantation 1997; 63: 223–8

    PubMed  CAS  Google Scholar 

  124. Wang SC, Morel PA, Wang Q, et al. A dual mechanism of immunosupppression by FK506: differential suppression of IL-4 and IL-10 levels in T helper 2 cells. Transplantation 1993; 56: 978–85

    PubMed  CAS  Google Scholar 

  125. Gjertson DW, Cecka JM, Terasaki PI. The relative effects of FK506 and cyclosporine on short- and long-term kidney graft survival. Transplantation 1995; 60: 1384–8

    PubMed  CAS  Google Scholar 

  126. Wang T, Donahoe P, Zervos A. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP12. Science 1994; 265: 674–6

    PubMed  CAS  Google Scholar 

  127. Franklin T, Cook J. The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem J 1969; 113: 515–24

    PubMed  CAS  Google Scholar 

  128. Allison AC, Eugui EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immunol Rev 1993; 136: 5–28

    PubMed  CAS  Google Scholar 

  129. Platz KP, Sollinger HW, Hullert DA, et al. RS-61443: a new, potent immunosuppressive agent. Transplantation 1991; 51: 27–31

    PubMed  CAS  Google Scholar 

  130. Allison A, Eugui E. Mycophenolate mofetil, a rationally designed immunosuppressive drug. Clin Transplant 1993; 7: 96–112

    Google Scholar 

  131. Sollinger H. Mycophenolate mophetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60: 225–32

    PubMed  CAS  Google Scholar 

  132. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet 1995; 345: 1321–5

    Google Scholar 

  133. Halloran P. A pooled analysis of three randomized double-blind clinical studies in prevention of rejection with mycophenolate mofetil in renal allograft recipients (the 1-year analysis) [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May; Dallas (TX), 166

  134. Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation 1996; 61: 1029–37

    Google Scholar 

  135. Kirklin JK, Bourge RC, Naftel DC, et al. Treatment of recurrent heart rejection with mycophenolate mofetil (RS-61443): initial clinical experience. J Heart Lung Transplant 1994; 13: 444–50

    PubMed  CAS  Google Scholar 

  136. Taylor DO, Ensley D, Olsen SL, et al. Mycophenolate mofetil (RS-61443): preclinical, clinical, and three-year experience in heart transplantation. J Heart Lung Transplant 1994; 13: 571–82

    PubMed  CAS  Google Scholar 

  137. Shaffer D, Madras P, Sayhoun A, et al. Mycophenolate Mofetil eliminates the rationale for antilymphocyte induction therapy in non-haploidentical living donor kidney transplants. [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 176

  138. Morris R, Hoyt E, Murphy M, et al. Mycophenolic acid morpholinoethylester (RS-61443) is a new immunosuppressant that prevents and halts heart allograft rejection by selective inhibition of T- and B-cell purine synthesis. Transplant Proc 1990; 22: 1659–62

    PubMed  CAS  Google Scholar 

  139. Platz K, Sollinger H, Hullett D, et al. RS-61443 — a new, potent immunosuppressive agent. Transplantation 1991; 51: 27–35

    PubMed  CAS  Google Scholar 

  140. Sollinger H, Beizer F, Deierhoi M, et al. RS-61443 (mycophenolate mofetil): a multicenter study for refractory kidney transplant rejection. Ann Surg 1992; 216: 513–8

    PubMed  CAS  Google Scholar 

  141. Mycophenolate Mofetil Renal Refractory Rejection Study Group. Mycophenolate mofetil for the treatment of refractory, acute, cellular renal transplant rejection. Transplantation 1996; 61: 722–9

    Google Scholar 

  142. Mizuno K, Tsujino M, Takada M, et al. Studies on bredinin: I. Isolation, characterization and biological properties. J Anti-biot Tokyo, 1974; 27: 775–82

    CAS  Google Scholar 

  143. Sakaguchi K, Tsujino M, Hayashi M, et al. Mode of action of bredinin with guanylic acid on L5178Y mouse leukemia cells. J Antibiot Tokyo 1976; 29: 1320–7

    PubMed  CAS  Google Scholar 

  144. Turka LA, Dayton J, Sinclair G, et al. Guanine ribonucleotide depletion inhibits T cell activation. Mechanism of action of the immunosuppressive drug mizoribine. J Clin Invest 1991; 87: 940–8

    PubMed  CAS  Google Scholar 

  145. Uchida H, Yokota K, Akiyama N, et al. Effectiveness of a new drug, bredinin, on canine kidney allotransplant survival. Transplant Proc 1979; 11: 865–70

    PubMed  CAS  Google Scholar 

  146. Kokado Y, Ishibashi M, Jiang H, et al. Low-dose cyclosporin mizoribine and prednisolone in renal transplantation: a new triple-drug therapy. Clin Transplant 1990; 4: 191–7

    Google Scholar 

  147. Mita K, Akiyama N, Nagao T, et al. Advantages of mizoribine over azathioprine in combination therapy with cyclosporine for renal transplantation. Transplant Proc 1990; 22: 1679–81

    PubMed  CAS  Google Scholar 

  148. Sonda K, Takahashi K, Tanabe K, et al. Clinical pharmacokinetic study of mizoribine in renal transplantation patients. Transplant Proc 1996; 28: 3643–8

    PubMed  CAS  Google Scholar 

  149. Teraoka S, Toma H, Nihei H, et al. Current status of renal replacement therapy in Japan. Am J Kidney Dis 1995; 25: 151–64

    PubMed  CAS  Google Scholar 

  150. Gruber SA, Erdmann GR, Burke BA, et al. Mizoribine pharmacokinetics and pharmacodynamics in a canine renal allograft model of local immunosuppression. Transplantation 1992; 53: 12–9

    PubMed  CAS  Google Scholar 

  151. Vezina G, Kudelski A, Sehgal S. Rapamycin (AY-22,989), a new antifungal antibiotic: I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28: 721–6

    CAS  Google Scholar 

  152. Sigal NH, Dumont FJ. Cyclosporin A, FK-506, and rapamycin: pharmacologic probes of lymphocyte signal transduction. Ann Rev Immunol 1992; 10: 519–60

    CAS  Google Scholar 

  153. Camardo JS, Scarola JA, Maida BT. Rapamycin (sirolimus, rapamune). Curr Opin Nephrol Hypertens 1995; 4: 482–7

    PubMed  Google Scholar 

  154. Morris R. Rapamycins: antifungal, antitumor, antiproliferative, and immunosuppressive macrolides. Transplant Rev 1992; 6: 39–87

    Google Scholar 

  155. Cardenas ME, Zhu D, Heitman J. Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Curr Opin Nephrol Hypertens 1995; 4: 472–7

    PubMed  CAS  Google Scholar 

  156. Granger DK, Cromwell JW, Chen SC, et al. Prolongation of renal allograft survival in a large animal model by oral rapamycin monotherapy. Transplantation 1995; 59: 183–6

    PubMed  CAS  Google Scholar 

  157. Kahan B, Katz S, Jordan S, et al. Sirolimus permits rapid corticosteroid withdrawal from a cyclosporine-based regimen in renal transplantation [abstract]. American Society of Transplant Physicians. 15th Annual Meeting; 1996 May: Dallas (TX), 165

  158. Brattstrom C, Sawe J, Tyden G, et al. Two randomized, double-blind, placebo-controlled studies to determine safety, tolerance and pharmacokinetics of ascending single doses of orally administered Sirolimus (rapamycin) in stable renal transplant recipients and healthy male volunteers [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 76

  159. Kahan BD, Pescovitz M, Julian B, et al. Multi-center phase II trial of Sirolimus (SRL) in renal transplantation: six-months results [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 75

  160. Neylan JF, Pescovitz MD, Julian BA, et al. Multi-center phase II trial of Sirolimus in renal transplantation: Immunosuppressive requirements for black patients [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 75

  161. Vanrenterghem Y, Pescovitz MD, Kahan BD, et al. Infectious complications in the multi-center phase II trial of Sirolimus and Cyclosporine in renal transplantation [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 77

  162. Murgia MG, Jordan S, Kahan BD. The side effect profile of sirolimus: a phase I study in quiescent cyclosporine-prednisone-treated renal transplant patients. Kidney Int 1996; 49: 209–16

    PubMed  CAS  Google Scholar 

  163. Kahan BD, Katz SM, Jordan SM, et al. Sirolimus permits rapid corticosteroid withdrawal from a cyclosporine-based regimen in renal transplantation [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 76

  164. Morris R, Cao W, Huang X, et al. Studies in experimental models of chronic rejection: use of rapamycin (sirolimus) and isoxazole derivatives (leflunomide and its analogue) for the suppression of graft vascular disease and obliterative bronchiolitis. Transplant Proc 1995; 27: 2068–9

    PubMed  CAS  Google Scholar 

  165. Wasowska B, Hancock W, Onodera K, et al. Rapamycin plus cyclosporin A — a novel regimen to prevent chronic allograft rejection in sensitized hosts [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30: Dallas (TX), 120

  166. Platt J, LeBien T, Michael A. Interstitial mononuclear cell populations in renal graft rejection: identification by monoclonal antibodies in tissue sections. J Exp Med 1982; 155: 17–30

    PubMed  CAS  Google Scholar 

  167. Hall B, Bishop G, Farnsworth A, et al. Identification of the cellular subpopulations infiltrating rejection cadaver renal allografts: preponderance of the T4 subset of T cells. Transplantation 1984; 37: 564–70

    PubMed  CAS  Google Scholar 

  168. Pober J, Cotran R. The role of endothelial cells in inflammation. Transplantation 1990; 50: 537–44

    PubMed  CAS  Google Scholar 

  169. Heemann U, Tullius S, Kupiec-Weglinski J, et al. Early events in acute allograft rejection: leukocyte/endothelial cell interactions. Clin Transplantation 1993; 7: 82–9

    Google Scholar 

  170. van Seventer G, Shimizu Y, Shaw S. Roles of multiple accessory molecules in T-cell activation. Curr Opin Immunol 1991; 3: 294–303

    PubMed  Google Scholar 

  171. Springer T. Adhesion receptors of the immune system. Nature 1990; 346: 425–34

    PubMed  CAS  Google Scholar 

  172. Isobe M, Yagita H, Okumura K, et al. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 1992; 255: 1125–7

    PubMed  CAS  Google Scholar 

  173. Cosimi A, Conti D, Delmonico F, et al. In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts. J Immunol 1990; 144: 4604–12

    PubMed  CAS  Google Scholar 

  174. Haug C, Colvin R, Delmonico F, et al. A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. Transplantation 1993; 55: 766–73

    PubMed  CAS  Google Scholar 

  175. Katz S, Phan T, Bennett C, et al. Perioperative treatment with ICAM-1 antisense oligonucleotide in pancreatic islet transplantation [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 159

  176. Katz S, Browne B, Phan T, et al. ICAM-1/LFA-1 blockade improves islet allograft survival and function [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 201

  177. Katz S, Browne B, Phan T, et al. ICAM-1/LFA-1 blockade improves islet allograft survival and function [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 158

  178. Stepkowski S, Wang M, Amante A, et al. Antisense intracellular adhesion molecule-1 (ICAM-1) oligodeoxynucleotide blocks allograft rejection in rat and monkey models [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 112

  179. Stepkowski S. Antisense intracellular adhesion molecule-1 (ICAM-1) oligodeoxynucleotide blocks allograft rejection in rat and monkey models [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30: Dallas (TX), 172

  180. Kato Y, Yamataka A, Yagita H, et al. Specific acceptance of fetal bowel allograft in mice after combined treatment with anti-intercellular adhesion molecule-1 and leukocyte function-associated antigen-1 antibodies. Ann Surg 1996; 223: 94–100

    PubMed  CAS  Google Scholar 

  181. Kawauchi M, Isobe M, Nakajima J, et al. Prolongation of allograft survival with anti-LFA-1-b monoclonal antibody. A primate heart transplantation study [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May; Dallas (TX), 211

  182. Hourmant M, Le Mauff B, Le Meur Y, et al. Administration of an anti-CD11a monoclonal antibody in recipients of kidney transplantation: a pilot study. Transplantation 1994; 58: 377–80

    PubMed  CAS  Google Scholar 

  183. Hibberd AD, Grochowicz PM, Clark D, et al. Castanospermine an oligosaccharide processing inhibitor reduces membrane expression of adhesion molecules and prolongs heart allograft survival in rats [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 62

  184. Miller G, Hochman P, Meier W, et al. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J Exp Med 1993; 178: 211–22

    PubMed  CAS  Google Scholar 

  185. Kaplon R, Hochman P, Michler R, et al. Short course single agent therapy with an LFA-3-IgG1 fusion protein prolongs primate cardiac allograft survival. Transplantation 1996; 61: 356–63

    PubMed  CAS  Google Scholar 

  186. Nizet Y, Xu L, Bazin H, et al. Immunosuppression and CD2 down-modulation by a rat anti-human CD2 mAb [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 478

  187. Biddeson W, Shaw S. Possible involvement of the OKT4 molecule in T-cell recognition of class II HLA antigens. Diagn Immunol 1983; 1: 112–6

    Google Scholar 

  188. Wood K, Pearson T, Darby C, et al. CD4: a potential target molecule for immunosuppressive therapy and tolerance induction. Transplant Rev 1991; 5: 150–64

    Google Scholar 

  189. Reinherz E, Kung P, Goldstein G, et al. Separation of functional subsets of human T cells by a monoclonal antibody. Proc Natl Acad Sci USA 1979; 76: 4061–5

    PubMed  CAS  Google Scholar 

  190. Wilde D, Marrack P, Kappler J, et al. Evidence implicating L3T4 in class II MHC antigen reactivity: monoclonal antibody GK1.5 (anti L3T4a) blocks class II MHC antigen specific proliferation, release of lymphokines and binding by cloned murine helper T lymphocyte lines. J Immunol 1983; 131: 2178–83

    PubMed  CAS  Google Scholar 

  191. Doyle C, Strominger J. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 1987; 330: 256–9

    PubMed  CAS  Google Scholar 

  192. Bank I, Chess L. Perturbation of the T4 molecule transmits a negative signal to T cells. J Exp Med 1985; 162: 1294–1303

    PubMed  CAS  Google Scholar 

  193. Saizawa K, Rojo J, Janeway CJ. Evidence for physical association of CD4 and CD3: T-cell receptor. Nature 1987; 328: 260–3

    PubMed  CAS  Google Scholar 

  194. Woodcock J, Wofsy D, Eriksson E, et al. Rejection of skin grafts and generation of cytotoxic T cells by mice depleted of L3T4+ cells. Transplantation 1986; 42: 636–42

    PubMed  CAS  Google Scholar 

  195. Madsen J, Peugh W, Wood K, et al. The effect of anti-L3T4 monoclonal antibody treatment on first-set rejection of murine cardiac allografts. Transplantation 1987; 44: 849–52

    PubMed  CAS  Google Scholar 

  196. Cosimi A, Burton R, Kung P, et al. Evaluation in primate renal allograft recipients of monoclonal antibody to human T-cell subclasses. Transplant Proc 1981; 13: 499–503

    PubMed  CAS  Google Scholar 

  197. Jonker M, Neuhaus P, Zucker C, et al. OKT4 and OKT4A antibody treatment as immunosuppression for kidney transplantation in rhesus monkeys. Transplantation 1985; 39: 247–53

    PubMed  CAS  Google Scholar 

  198. Herbert J, Roser B. Strategies of monoclonal antibody therapy that induce permanent tolerance of organ transplants [abstract]. Transplantation 1988; 46: 128A

    Google Scholar 

  199. Cobbold S, Jayesuriya A, Prospeno T, et al. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 1984; 312: 548–51

    PubMed  CAS  Google Scholar 

  200. Qin S, Wise M, Cobbold S, et al. Induction of tolerance in peripheral T cells with monoclonal antibodies. Eur J Immunol 1990; 20: 2737–45

    PubMed  CAS  Google Scholar 

  201. Darby C, Morris P, Wood K. Evidence that long-term cardiac allograft survival induced by anti-CD4 monoclonal antibody does not require depletion of CD4+ T cells. Transplantation 1992; 54: 483–90

    PubMed  CAS  Google Scholar 

  202. Lehmann M, Sternkopf F, Metz F, et al. Induction of long-term survival of rat skin allografts by a novel, highly efficient anti-CD4 monoclonal antibody. Transplantation 1992; 54: 959–62

    PubMed  CAS  Google Scholar 

  203. Trowbridge I, Thomas M. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol 1994; 12: 85–116

    PubMed  CAS  Google Scholar 

  204. Lazarovits A, Poppema S, Zhang Z, et al. Prevention and reversal of renal allograft rejection by antibody against CD45RB. Nature 1996; 380: 717–20

    PubMed  CAS  Google Scholar 

  205. Linsley P, Ledbetter J. The role of CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993; 11: 191–212

    PubMed  CAS  Google Scholar 

  206. Aruffo A, Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci USA 1987; 84: 8573–7

    PubMed  CAS  Google Scholar 

  207. Gross J, Callas E, Allison J. Identification and distribution of the costimulatory receptor CD28 in the mouse. J Immunol 1992; 144: 380–8

    Google Scholar 

  208. Linsley P, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991; 174: 561–9

    PubMed  CAS  Google Scholar 

  209. June C, Bluestone J, Nadler L, et al. The B7 and CD28 receptor families. Immunol Today 1994; 15: 321–31

    PubMed  CAS  Google Scholar 

  210. Linsley P, Clarck E, Ledbetter J. T cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci USA 1990; 87: 5031–5

    PubMed  CAS  Google Scholar 

  211. Shaw S, Ginther-Luce G, Quinones R, et al. Two antigen-independent adhesion pathways used by cytotoxic T-cell clones. Nature 1986; 323: 262–4

    PubMed  CAS  Google Scholar 

  212. Kuchroo V, Das D, Brown J, et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 development pathways: application to autoimmune disease therapy. Cell 1995; 80: 707–18

    PubMed  CAS  Google Scholar 

  213. Shahinian A, Pfeffer K, Lee K, et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 1993; 261: 609–12

    PubMed  CAS  Google Scholar 

  214. Green J, Noel P, Sperling A, et al. Absence of B7-dependent responses in CD28-deficient mice. Immunity 1994; 1: 501–8

    PubMed  CAS  Google Scholar 

  215. Waterhouse P, Penninger J, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 1995; 270: 932–3

    Google Scholar 

  216. Su B, Jacinto E, Hibi M, et al. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 1994; 77: 727–36

    PubMed  Google Scholar 

  217. Lenschow D, Zeng Y, Thistlethwaite J, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992; 257: 789–92

    PubMed  CAS  Google Scholar 

  218. Turka L, Linsley P, Lin H, et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992; 89: 11102–5

    PubMed  CAS  Google Scholar 

  219. Linsley P, Wallace P, Johnson J, et al. Immunosuppression in vivo by a soluble form on the CTLA-4 T-cell activation antigen. Science 1992; 257: 792–5

    PubMed  CAS  Google Scholar 

  220. Perico N, Imberti O, Bontempelli M, et al. Toward novel anti-rejection strategies: in vivo immunosuppressive properties of CTLA4Ig. Kidney Int 1995; 47: 241–6

    PubMed  CAS  Google Scholar 

  221. Lenschow DJ, Zeng Y, Thistlethwaite JR, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992; 257: 789–92

    PubMed  CAS  Google Scholar 

  222. Lin H, Boiling SF, Linsley PS, et al. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J Exp Med 1993; 178: 1801–6

    PubMed  CAS  Google Scholar 

  223. Pearson TC, Alexander DZ, Winn KJ, et al. Transplantation tolerance induced by CTLA4Ig. Transplantation 1994; 57: 1701–6

    PubMed  CAS  Google Scholar 

  224. Sayegh MS, Akalin E, Hancock WW, et al. CD28-B7 blockade after allogenic challenge in vivo inhibits Th1 cytokines but spares Th2. J Exp Med 1995; 181: 1869–74

    PubMed  CAS  Google Scholar 

  225. Greenstein SM, Sun S, Schenchne RS, et al. Immunomodulation with intrathymic injection of donor splenocytes followed by CTLA4Ig therapy prolongs small intestinal allograft survival. Transplant Proc 1997; 29: 1065–6

    PubMed  CAS  Google Scholar 

  226. Steurer W, Nickerson P, Steiger J, et al. Pretreatment of islet cell allografts with CTLA4/Fc is able to induce long-term graft acceptance in mice [abstract]. J Am Soc Nephrol 1994; 5: 990

    Google Scholar 

  227. Sayegh M, Turka L. T cell costimulatory pathways: promising novel targets for immunosuppression and tolerance induction. J Am Soc Nephrol 1995; 6: 1143–50

    PubMed  CAS  Google Scholar 

  228. Volk H, Graser M, Risch K, et al. Synergism of CTLA4-Ig and anti-CD4 monoclonal antibody treatment in rat transplant models [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 240

  229. Sayegh M, Akalin E, Hancock W, et al. Blocking the CD28-B7 costimulatory T cell activation pathway with CTLA4Ig prevents chronic rejection in the Lew to F344 vascularized rat cardiac allograft model. J Clin Invest 1994; 5: 990–5

    Google Scholar 

  230. Hale D, Gottschalk R, Fukuzaki T, et al. Prolongation of skin allografts survival in mice treated with CTLA-4Ig in combination with rapamycin, cyclosporine or ALS/BM [abstract]. XVI International Congress of the Transplantation Society. 1996 Aug 25–30; Barcelona, 477

  231. Alexander D, Pearson T, Ritchie S, et al. An analysis of costimulatory pathways in alloimmune responses [abstract]. In: American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 118

  232. Verburg R, Chandraker A, Vella J, et al. Differential effects of CTLA4Ig versus a mutant form of CTLA4Ig which binds only B7-1 on the alloimmune responses in vitro and in vivo [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 118

  233. Larsen C, Alexander D, Hollenbaugh D, et al. CD40-gp39 interactions play a critical role during allograft rejection. Transplantation 1996; 61: 4–9

    PubMed  CAS  Google Scholar 

  234. Foy TM, Durie FH, Noelle RJ. The expansive role of CD40 and its ligand, gp39, in immunity. Sem Immunol 1994; 6: 259–66

    CAS  Google Scholar 

  235. Parker DC, Greiner DL, Phillips NE. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc Natl Acad Sci USA 1995; 92: 9560–4

    PubMed  CAS  Google Scholar 

  236. Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381: 434–8

    PubMed  CAS  Google Scholar 

  237. Caux C, Massacrier C, Vandervliet B, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med 1994; 180: 1263–72

    PubMed  CAS  Google Scholar 

  238. Grewal IS, Flavell RA. A central role of CD40 ligand in the regulation of CD4+ T-cell responses. Immunol Today 1996; 17: 410–4

    PubMed  CAS  Google Scholar 

  239. Morikawa M, Shorthouse R, Suto M, et al. A novel inhibitor of NF-kB and AP-1 transcription factors in T cells suppresses host vs graft alloreactivity in vivo [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 172

  240. Heaney M, Golde D. Soluble cytokine receptors. Blood 1996; 87: 847–57

    PubMed  CAS  Google Scholar 

  241. Piccotti J, Bishop D. IL-12 receptor antagonism induces differential IFNG production by CD4+ and CD8+ T cells [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 129

  242. Kupiec-Weglinski J, Diamanstein T, Tilney N. Interleukin 2 receptor-targeted therapy — rationale and applications in organ transplantation. Transplantation 1988; 46: 785–92

    PubMed  CAS  Google Scholar 

  243. Carl S, Wiesel M, Daniel V, et al. Rescue therapy with interleukin-2 receptor antibody in high risk kidney transplant patients: a 3 year follow-up study [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 194

  244. Neuhaus P, Bechstein W, Blumhardt G, et al. Comparison of quadruple immunosuppression after liver transplantation with ATG or IL-2 receptor antibody. Transplantation 1993; 55: 1320–7

    PubMed  CAS  Google Scholar 

  245. Amlot P, Rawlings E, Fernando O, et al. Prolonged action of a chimeric interleukin-2 receptor (CD25) monoclonal antibody used in cadaveric renal transplantation. Transplantation 1995; 60: 748–56

    PubMed  CAS  Google Scholar 

  246. Bartlett R, Dimitrijevic M, Zielinski T, et al. Leflunomide (HWA 486), a novel immunomodulating compound for the treatment of auto immune disorders and reactions leading to transplantation rejection. Agents Actions 1991; 32: 10–21

    PubMed  CAS  Google Scholar 

  247. Cao W, Kao P, Aoki Y, et al. Induction of TGFb1 and reduction of IL-2 production: a novel mechanism of action of the immunosuppressive drug, leflunomide [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 441

  248. Chong A, Finnegan A, Jiang X, et al. Leflunomide, a novel immunosuppressive agent: the mechanism of inhibition of T cell proliferation. Transplantation 1993; 55: 1361–6

    PubMed  CAS  Google Scholar 

  249. Kuchle C, Thoenes G, Langer K, et al. Prevention of kidney and skin graft rejection in rats by leflunomide, a new immunomodulating agent. Transplant Proc 1991; 23: 1083–6

    PubMed  CAS  Google Scholar 

  250. D’Silva M, Candinas D, Achilleos O, et al. The immunomodulatory effect of leflunomide in rat cardiac allotransplantation. Transplantation 1995; 60: 430–7

    PubMed  Google Scholar 

  251. Williams J, Xiao F, Foster P, et al. Leflunomide in experimental transplantation — control of rejection and alloantibody production, reversal of acute rejection, and interaction with cyclosporine. Transplantation 1994; 57: 1223–31

    PubMed  CAS  Google Scholar 

  252. McChesney L, Xiao F, Sankary H, et al. An evaluation of leflunomide in the canine renal transplantation model. Transplantation 1994; 57: 1717–22

    PubMed  CAS  Google Scholar 

  253. Xiao F, Chong A, Foster P. Leflunomide on acute rejection in hamster to rat cardiac xenografts [abstract]. 2nd International Congress on Xenotransplantation; 1993 Jun 10–13; Cambridge, 160

  254. Wright JR, Kearns H, MacDonald AS. Leflunomide prolongs fish-to-mouse islet xenograft survival in BALB/C mice [abstract]. 2nd International Congress on Xenotransplantation; 1993 Jun 10–13; Cambridge, 146

  255. Ulrichs K, Kaitschick J, Bartlett R, et al. Suppression of natural xenophile antibodies with the novel immunomodulating drug leflunomide. Transplant Proc 1992; 24: 718–9

    PubMed  CAS  Google Scholar 

  256. Shen J, Xiao F, Liu W, et al. Reversal and stabilization of chronic cardiac allograft rejection in rats by leflunomide and cyclosporine [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 522

  257. Chen SF, Ruben RL, Dexter DL. Mechanism of action of the novel anticancer agent 6-fluoro-2-(2′-fluoro-l, 1x′-biphenyl-4-y1)-3-methyl-4-quinoline carboxylic acid sodium salt (NSC 368390): inhibition of de novo pyrimidine nucleotide biosynthesis. Cancer Res 1986; 46: 5014–8

    PubMed  CAS  Google Scholar 

  258. Lakaschus G, Loffer M. Differential susceptibility of dihydro-orotate dehydrogenase/oxidase to brequinar sodium (NSD 368390) in vitro. Biochem Pharm 1992; 43: 1025–30

    PubMed  CAS  Google Scholar 

  259. Cramer DV, Chapman FA, Jaffee BD, et al. The effect of a new immunosuppressive drug, brequinar sodium, on heart, liver, and kidney allograft rejection in the rat. Transplantation 1992; 53: 303–8

    PubMed  CAS  Google Scholar 

  260. Takeuchi T, Iinuma H, Kunimoto S, et al. A new antitumor antibiotic, spergualin: isolation and antitumor activity. J Antibiot (Tokyo) 1981; 34: 1619–21

    CAS  Google Scholar 

  261. Makino M, Fujiwara M, Watanabe H, et al. Immunosuppressive activities of deoxyspergualin: II. The effects on the antibody responses. Immunopharmacology 1987; 14: 115–22

    PubMed  CAS  Google Scholar 

  262. Fujii H, Takada T, Nemoto K, et al. In vitro immunosuppressive properties of spergualins to murine T cell response. J Antibiot (Tokyo) 1989; 42: 788–94

    CAS  Google Scholar 

  263. Nadler S, Tepper M, Schacter B, et al. Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Science 1992; 258: 484–6

    PubMed  CAS  Google Scholar 

  264. Ito S, Ueno M, Arakawa M, et al. Therapeutic effect of 15-deoxyspergualin on the progression of lupus nephritis in MLR mice: I. Immunopathological analyses. Clin Exp Immunol 1990; 81: 446–53

    PubMed  CAS  Google Scholar 

  265. Mochizuki M, Kawashima H. Effects of FK506, 15-deoxyspergualin, and cyclosporine on experimental autoimmune uveoretinitis in the rat. Autoimmunity 1990; 8: 37–41

    PubMed  CAS  Google Scholar 

  266. Schorlemmer H, Seiler F. 15-Deoxyspergualin (15-DOS) for therapy in an animal model of multiple sclerosis (MS): disease modifying activity on acute and chronic relapsing experimental allergic encephalomyelitis (EAE). Agents Actions 1991; 34: 156–60

    PubMed  CAS  Google Scholar 

  267. Suzuki S, Kanashiro M, Watanabe H, et al. Therapeutic effect of 15-deoxyspergualin on acute graft rejection detected by 31P nuclear magnetic resonance spectography and its effect on rat heart transplantation. Transplantation 1988; 46: 669–72

    PubMed  CAS  Google Scholar 

  268. Kato H, Ohkochi N, Orii T, et al. Effectiveness of 15-deoxyspergualin on steroid resistant acute rejection in living related liver transplantation [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 186

  269. Davis M, Bjorkman P. T cell receptor genes and T-cell recognition. Nature 1988; 334: 395–402

    PubMed  CAS  Google Scholar 

  270. Bjorkman P, Saper M, Samraoui B, et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–12

    PubMed  CAS  Google Scholar 

  271. Bjorkman P, Saper M, Samraoui B, et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987; 329: 512–8

    PubMed  CAS  Google Scholar 

  272. Chen W, McCluskey J, Rodda S, et al. Changes at peptide residues buried in the major histocompatibility complex class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition. J Exp Med 1993; 177: 869–73

    PubMed  CAS  Google Scholar 

  273. Schumacher T, Heemels M, Neefjes J, et al. Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell 1990; 62: 563–7

    PubMed  CAS  Google Scholar 

  274. Moretta L, Ciccone E, Moretta A, et al. Allorecognition by NK cells: non-self or no self? Immunol Today 1992; 13: 300–6

    PubMed  CAS  Google Scholar 

  275. Parham P, Clayberger C, Zorn S, et al. Inhibition of alloreactive cytotoxic T lymphocytes by peptides from the a2 domain of HLA-A2. Nature 1987; 325: 625–8

    PubMed  CAS  Google Scholar 

  276. Clayberger C, Parham P, Rothbard J, et al. HLA-A2 peptides can regulate cytolysis by human allogeneic T lymphocytes. Nature 1987; 330: 763–5

    PubMed  CAS  Google Scholar 

  277. Olson C, Williams L, McLaughin T, et al. Creation of H-2 class I epitopes using synthetic peptides recognition by alloreactive cytotoxic T lymphocytes. Proc Natl Acad Sci USA 1989; 86: 1031–5

    PubMed  CAS  Google Scholar 

  278. Schneck J, Maloy W, Coligan J, et al. Inhibition of an allospecific T cell hybridoma by soluble class I proteins and peptides: estimation of the affinity of a T cell receptor for MHC. Cell 1989; 56: 47–55

    PubMed  CAS  Google Scholar 

  279. Zavazava N, Hausmann R, Muller-Richholtz W. Inhibition of anti-HLA-B7 alloreactive CTL by affinity-purified soluble HLA. Transplantation 1991; 51: 838–42

    PubMed  CAS  Google Scholar 

  280. Clayberger C, Lyu S, Pouletty P, et al. Peptides corresponding to T-cell receptor-HLA contact regions inhibit class I-restricted immune response. Transplant Proc 1993; 25: 477–8

    PubMed  CAS  Google Scholar 

  281. Nisco S, Vriens P, Hoyt G, et al. Induction of allograft tolerance by an HLA class I derived peptide and cyclosporine A. J Immunol 1994; 152: 3786–92

    PubMed  CAS  Google Scholar 

  282. Moretta A, Vitale M, Bottino C, et al. P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displying different specificities. J Exp Med 1993; 178: 597–604

    PubMed  CAS  Google Scholar 

  283. Cuturi M-C, Josien R, Douillard P, et al. Prolongation of allogeneic heart graft survival in rats by administration of a peptide (a.a. 75–84) from the al helix of the first domain of HLA-B7 01. Transplantation 1995; 59: 661–9

    PubMed  CAS  Google Scholar 

  284. Buelow R, Veyron P, Clayberger C, et al. Prolongation of skin allograft survival in mice following administration of allotrap. Transplantation 1995; 59: 455–60

    PubMed  CAS  Google Scholar 

  285. Meuer S, Hodgdon J, Hussey R, et al. Antigen-like effects of monoclonal antibodies directed at receptors on human T cell clones. J Exp Med 1983; 158: 988–93

    PubMed  CAS  Google Scholar 

  286. Smith C, Williams G, Kingston R, et al. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 1989; 337: 181–4

    PubMed  CAS  Google Scholar 

  287. Thatte U, Dahanukar S. Apoptosis: clinical relevance and pharmacological manipulation. Drugs 1997 Oct; 54(4): 511–32

    PubMed  CAS  Google Scholar 

  288. Bursch W, Kleine L, Tenniswood M. The biochemistry of cell death by apoptosis. Biochem Cell Biol 1990; 68: 1071–4

    PubMed  CAS  Google Scholar 

  289. Kawabe Y, Ochi A. Programmed cell death and extrathymic reduction of Vb8+CD4+ T cells in mice tolerant to Staphylococcus aureus enterotoxin B. Nature 1991; 349: 245–8

    PubMed  CAS  Google Scholar 

  290. Russell J, White C, Loh D, et al. Receptor-stimulated death pathway is opened by antigen in mature T cells. Proc Natl Acad Sci USA 1991; 88: 2151–5

    PubMed  CAS  Google Scholar 

  291. Ucker D, Meyers S, Obermiller P. Activation-driven T cell death: II. Quantitative differences alone distinguish stimuli triggering nontransformed T cell proliferation or death. J Immunol 1992; 149: 1583–92

    PubMed  CAS  Google Scholar 

  292. Wesselborg S, Janssen O, Kabelitz D. Induction of activation-driven death (apoptosis) in activated but not resting peripheral blood T cells. J Immunol 1993; 150: 4338–45

    PubMed  CAS  Google Scholar 

  293. Fujita T, Yoneta M, Hirose R. Simple compounds, 2-alkyl-2-amino-1,3,-propanediols, have potent immunosuppressive activity. Bioorg Med Chem 1995; 5: 847–52

    CAS  Google Scholar 

  294. Adachi K, Kohara T, Nakano N. Design, synthesis, and structure-activity relationship of 2-substituted-2-amino-1,3-propanediols: discovery of a novel immunosuppressant, FTY720. Bioorg Med Chem 1995; 5: 853–8

    CAS  Google Scholar 

  295. Suzuki S, Enosawa S, Kakefuda T, et al. A novel immunosuppressant, FTY720, with a unique mechanism of action, induces long-term graft acceptance in rat and dog allotransplantation. Transplantation 1996; 61: 200–5

    PubMed  CAS  Google Scholar 

  296. Lynch D, Ramsdell F, Alderson M. Fas and FasL in the homeostatic regulation of immune responses. Immunol Today 1995; 16: 569–74

    PubMed  CAS  Google Scholar 

  297. Miyawaki T, Uehara T, Nibu R, et al. Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood. J Immunol 1992; 149: 3753–8

    PubMed  CAS  Google Scholar 

  298. Klas C, Debatin K-M, Jonker RR, et al. Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol 1993; 5: 625–30

    PubMed  CAS  Google Scholar 

  299. Owen-Schaub L, Yonehara S, Crump WI, et al. DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell Immunol 1992; 140: 197–205

    PubMed  CAS  Google Scholar 

  300. Lau H, Yu M, Fontana A, et al. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 1996; 273: 109–12

    PubMed  CAS  Google Scholar 

  301. Csete ME, Drazan KE, Van Bree M, et al. Adenovirus-mediated gene transfer in the transplant setting. Transplantation 1994; 57: 1502–7

    PubMed  CAS  Google Scholar 

  302. Shaked A, Csete ME, Drazan KE. Adenovirus-mediated gene transfer in the transplant setting. Transplantation 1994; 57: 1508–11

    PubMed  CAS  Google Scholar 

  303. Chen SJ, Wilson JM, Muller DWM. Adenovirus-mediated gene transfer of soluble vascular cell adhesion molecule to porcine interposition vein grafts. Circulation 1994; 89: 1922–8

    PubMed  CAS  Google Scholar 

  304. Guzman RJ, Lemarchand P, Crystal RG, et al. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 1993; 73: 1202–7

    PubMed  CAS  Google Scholar 

  305. Drazan KE, Wu L, Shen XD, et al. Adenovirus-mediated gene transfer in the transplant setting. Transplantation 1995; 59: 670–3

    PubMed  CAS  Google Scholar 

  306. Wang J, Ma Y, Knechtle SJ. Adenovirus-mediated gene transfer into rat cardiac allografts. Transplantation 1996; 61: 1726–9

    PubMed  CAS  Google Scholar 

  307. Miller N, Vile R. Targeted vectors for gene therapy. FASEB J 1995; 9: 190–9

    PubMed  CAS  Google Scholar 

  308. Curiel DT, Wagner E, Cotten M, et al. High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum Gene Ther 1992; 3: 147–54

    PubMed  CAS  Google Scholar 

  309. Michael SI, Huang CH, Romer MU, et al. Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway. J Biol Chem 1993; 268: 6866–9

    PubMed  CAS  Google Scholar 

  310. Zeigler ST, Kerby JD, Curiel DT, et al. Molecular conjugate-mediated gene transfer into isolated human kidneys. Transplantation 1996; 61: 812–7

    PubMed  CAS  Google Scholar 

  311. Qin L, Chavin KD, Ding Y, et al. Multiple vectors effectively achieve gene transfer in a murine cardiac transplantation model. Transplantation 1995; 59: 809–16

    PubMed  CAS  Google Scholar 

  312. Qin L, Ding Y, Robson N, et al. Adenovirus-mediated gene transfer of viral interleukin 10 inhibits the immune response to both alloantigen and adenoviral antigen [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 110

  313. Gordillo G, Xia D, Bergese S, et al. IL-4 gene therapy in murine cardiac graft recipients [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 426

  314. Olthoff K, Gelman A, Shen X, et al. Alloimmune inhibition mediated by local modulation of liver grafts with adenoviral vector encoding CTLA4Ig [abstract]. American Society of Transplant Physicians 15th Annual Meeting; 1996 May 26–30; Dallas (TX), 173

  315. Olthoff K, Shen X-D, Gelman A, et al. Adenovirus-mediated gene transfer of CTLA4Ig to liver allografts results in prolonged survival and local T cell anergy [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 83

  316. Shaked A, Olthoff K, Chen X-D, et al. Tolerance to a second donor-matched allograft following local immune modulation using transfer of sequences encoding CTLA4Ig [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 71

  317. Karlsson S, Correll PH, Xu L. Gene transfer and bone marrow transplantation with special reference to Gaucher’s disease. Bone Marrow Transplant 1993; 11 Suppl. 1: 124–7

    PubMed  Google Scholar 

  318. Golsorkhi AA, Min JK, Shaked A, et al. Prolongation of islet allograft survival by vector-mediated gene transfer of TGF-b and IL-10 [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 375

  319. Deng S, Ketchum RJ, Kucher T, et al. Adenovirus transfection of canine islet xenografts with immunosuppressive cytokine genes abrogates primary non-function and prolongs graft survival [abstract]. XVI International Congress of the Transplantation Society. 1996 Aug 25–30; Barcelona, 378

  320. Negita M, Hayashi S, Yokoyama I, et al. Protective effect of human Superoxide dismutase cDNA transfection in the prevention of cold preservation injury [abstract]. XVI International Congress of the Transplantation Society; 1996 Aug 25–30; Barcelona, 496

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Remuzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perico, N., Remuzzi, G. Prevention of Transplant Rejection. Drugs 54, 533–570 (1997). https://doi.org/10.2165/00003495-199754040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199754040-00003

Keywords

Navigation