Skip to main content
Log in

On the Way Towards High Efficiency Thin Film Silicon Solar Cells by the “Micromorph” Concept

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Recently the authors have demonstrated that compensated or “midgap” intrinsic hydrogenated microcrystalline silicon (μc-Si:H), as deposited by the Very High Frequency Glow Discharge (VHF-GD) technique, can be used as active layer in p-i-n solar cells. Compared to amorphous silicon (a-Si:H), μc-Si:H was found to have a significantly lower energy bandgap ofaround 1 eV. The combination of both materials (two absorbers with different gap energies) leads to a “real” tandem cell structure, which was called the “micromorph” cell. Micromorph cells can make better use of the sun's spectrum in contrast to conventional double-stacked a-Si:H / a-Si:H tandems.

The present study will show that the compensation technique (involving boron “microdoping”) used sofar for obtaining midgap μc-Si:H can be replaced by the application of a gas purifier. The use of this gas purifier has a beneficial influence on the transport properties of undoped intrinsic μc-Si:H. By this procedure, increased cell efficiencies in both, single microcrystalline silicon p-i-n as well as micromorph cells could be obtained. In the first case 7.7 % stable, and in the second case 13.1% initial efficiency could be achieved under AMI.5 conditions. Preliminary light-soaking experiments performed on the tandem cells indicate that microcrystalline silicon could contribute to an enhancement of the stable efficiency performance. Micromorph cell manufacturing is fully compatible to a-Si:H technology; however, its deposition rate is still too low. With further increase of the rate, a similar cost reduction potential like in a-Si:H technology can be extrapolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Curtins, N. Wyrsch, A. Shah, Electron. Lett. 23, (1987), p. 228.

    Article  Google Scholar 

  2. R. Flückiger, J. Meier, H. Keppner, M. Götz, A. Shah, Proc. 23rd IEEE PVSC (1993), p. 839.

    Google Scholar 

  3. H. Keppner, U. Kroll, J. Meier, A. Shah, Solid State Phenomena 44–46, (1995), pp. 97–126.

    Article  Google Scholar 

  4. F. Finger, P. Hapke, M. Luysberg, R. Carius, H. Wagner, Appl. Phys. Lett. 65, (1994), p. 2588.

    Article  CAS  Google Scholar 

  5. R. Flückiger, J. Meier, G. Crovini, F. Demichelis, F. Giorgis, C. F. Pirri, E. Tresso, J. Pohl, V. Rigato, S. Zandolin, F. Caccavale, Mat. Res. Soc. Symp. Proc. 358, (1995), p. 751.

    Article  Google Scholar 

  6. S. Grebner, F. Wang, and R. Schwarz, Mat. Res. Soc. Symp. Proc. 283, (1992), p.513.

    Article  Google Scholar 

  7. F. Wang, H.N. Liu, Y.L. He, A. Schweiger, R. Schwarz, J. Non-Cryst. Solids 137&138, (1991), p. 511.

    Article  Google Scholar 

  8. G. Willeke, thesis (1983), Univ. of Dundee.

  9. C. Wang, G. Lucowsky, 21th IEEE (1990), p. 1614; and M.J. Williams, C. Wang, G. Lucovsky, J. Non-Cryst. Solids 137&138, (1991), p. 737.

    Google Scholar 

  10. P. Torres, H. Keppner, R. Flückiger, J. Meier, A. Shah, H. Kiess, Proc. 12th EC PVSEC (1994), p. 705.

    Google Scholar 

  11. H. Keppner, P. Torres, R. Flückiger, J. Meier, A. Shah, C. Fortmann, P. Fath, G. Willeke, K. Happle, H. Kiess, Solar Energy Materials and Solar Cells 34, (1994), p. 201.

    Article  CAS  Google Scholar 

  12. R. Flückiger, J. Meier, M. Goetz, A. Shah, J. Appl. Phys. 77, (1995), p. 712.

    Article  Google Scholar 

  13. J. Meier, R. Flückiger, H. Keppner, A. Shah, Appl. Phys. Lett. 65, (1994), p. 860.

    Article  CAS  Google Scholar 

  14. J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, A. Shah, Proc. 1st WCPEC (1994), p. 409.

    Google Scholar 

  15. J. Meier, R. Flückiger, H. Keppner, M. Götz, A. Shah, Proc. 12th EC PVSEC (1994), p. 1237.

    Google Scholar 

  16. J. Meier, S. Dubail, J.A. Anna Selvan, N. Pellaton Vaucher, R. Platz, C. Hof, R. Flückiger, U. Kroll, N. Wyrsch, P. Torres, H. Keppner, A. Shah, K.D. Ufert, Proc. 13th Europ., (Nice 1995), p. 1445.

    Google Scholar 

  17. N. Beck, J. Meier, J. Fric, Z. Remes, A. Poruba, R. Fliickiger, J. Pohl, A. Shah, M. Vanecek, 16th ICAS (Kobe 1995), to be published in J. Non-Cryst. Solids.

    Google Scholar 

  18. M.A. Green, M. J. Keevers, Progress in Photovoltaics: Research and Applications 3, (1995), p. 189.

    Article  CAS  Google Scholar 

  19. R. Flückiger, J. Meier, A. Shah, A. Catana, M. Brunei, H.V. Nguyen, R.W. Collins, R. Carius, Mat. Res. Soc. Symp. Proc. 336, (1994), p. 511.

    Article  Google Scholar 

  20. U. Kroll, J. Meier, H. Keppner, A. Shah, S.D. Littlewood, I.E. Kelly, P. Giannoulès, J. Vac. Sci. Technol. A 13, (1995), p. 2742.

    Article  CAS  Google Scholar 

  21. U. Kroll, J. Meier, H. Keppner, A. Shah, S.D. Littlewood, I.E. Kelly, P. Giannoulès, Mat. Res. Soc. Symp. Proc. 377, (1995), p. 39.

    Article  CAS  Google Scholar 

  22. J.A. Anna Selvan, H. Keppner, M. Götz, A. Shah, this conference.

  23. P. van den Berg, H. Calwer, P. Marklsdorfer, R. Meckes, F. W. Schulze, K.-D. Ufert, H. Vogt, Solar Energy Materials and Solar Cells 31, (1993), p. 253.

    Article  Google Scholar 

  24. R. Platz, D. Fischer, C. Hof, S. Dubail, U. Kroll, J. Meier, A. Shah, this conference.

  25. D. Fischer, A. Shah, Appl. Phys. Lett. 65, (1994), p. 986.

    Article  CAS  Google Scholar 

  26. P. Torres et al., to be submitted to Appl. Phys. Lett.

  27. M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, (1977), p. 3556.

    Article  CAS  Google Scholar 

  28. G. Lucovsky, R.J. Nemanich, J.C. Knights, Phys. Rev. B 19, (1979), p. 2064.

    Article  CAS  Google Scholar 

  29. H. Wagner, W. Beyer, Solid State Commun. 48, (1983), p. 587.

    Google Scholar 

  30. Y.J. Chabal, E.E. Chaban, S.B. Christman, J. Electron Spectr. and Rel. Phenom. 29, (1983), p. 35.

    Article  CAS  Google Scholar 

  31. Y.J. Chabal, Phys. Rev. Lett. 50, (1983), p. 1850.

    Article  CAS  Google Scholar 

  32. T. Satoh, A. Hiraki, Jpn. J. Appl. Phys. 24, (1985), p. L491.

    Article  Google Scholar 

  33. U. Kroll, J. Meier, A. Shah, S. Mikhailov, J. Weber, submitted to J. Appl. Phys.

  34. F. Finger, K. Prasad, S. Dubail, A. Shah, X.-M. Tang, J. Weber, W. Beyer, Mat. Res. Soc. Symp. Proc. 219, (1991), p. 383.

    Article  CAS  Google Scholar 

  35. N. Wyrsch, M. Goerlitzer, N. Beck, J. Meier, A. Shah, this conference.

  36. T. Baba, T. Matsuyama, S. Tsuge, K. Wakisaka, S. Tsuda, Proc. 13th Europ. PVSEC, (Nice 1995), p. 1708.

    Google Scholar 

  37. J. Yang, X. Xu, S. Guha, Mat. Res. Soc. Symp. Proc. 336, (1994), p. 687.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Swiss Federal Research Grant EF-REN (93)032.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, J., Torres, P., Platz, R. et al. On the Way Towards High Efficiency Thin Film Silicon Solar Cells by the “Micromorph” Concept. MRS Online Proceedings Library 420, 3–14 (1996). https://doi.org/10.1557/PROC-420-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-420-3

Navigation