Skip to main content
Log in

The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden

  • Published:
Facies Aims and scope Submit manuscript

Summary

Micritic limestone-marl alternations make up the major part of the Silurian strata on Gotland (Sweden). Their position on the stable Baltic Shield protected them from deep burial and tectonic stress and allowed the preservation of early stages of burial diagenesis, including lithification. In the micritic limestones certain characteristics have been preserved (e.g., pitted microspar crystals, sharp boundaries between microspar and components, lack of deformation phenomena) that offer insights into their formation. We suppose the formation of these micritic limestones and limestone-marl alternations to be based on a rhythmic diagenesis within an aragonite solution zone (ASZ) close below the sediment surface. The micritic limestones are the product of a poikilotopic cementation of carbonate muds which consisted of varying portions of aragonitic, calcitic and terrigenous matter. Their microspar crystals show the primary size and shape of the cements lithifying the original carbonate mud. Dissolution of aragonite in the marls provided the carbonate for the lithification of the limestones. By cementation, the limestone beds evaded further compaction. The marls, which already underwent a volume decrease by aragonite depletion, lacked cement and became more and more compacted due to increasing sedimentary overburden. Although field observations show that primary differences in material influence the development of limestone-marl alternations they are not required for their formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, G. C. (1976): Coral encrusted concretions: a key to recognition of a ‘shale on shale’ erosion surface.—Lethaia9, 293–302, 9 Figs., Oslo

    Google Scholar 

  • Bathurst, R. G. C. (1970): Problems of lithification in carbonate muds.—Geologist’s Association Proceedings81, 429–440, London

    Google Scholar 

  • — (1975): Carbonate Sediments and their Diagenesis.—Developments in Sedimentology 2nd ed., 658p., 359 Figs., 24 Tables, Amsterdam (Elsevier)

    Google Scholar 

  • Bathurst, R. G. C. (1980): Lithification of carbonate sediments. —Science Progress66, 451–471, 3 Figs., Oxford

    Google Scholar 

  • — (1987): Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction.—Sedimentology34, 749–778, 28 Figs., 1 Table, Oxford

    Article  Google Scholar 

  • — (1991): Pressure-dissolution and limestone bedding: the influence of stratified cementation.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy. —450–463, 6 Figs., Berlin (Springer)

    Google Scholar 

  • — (1993): Microfabrics in carbonate diagenesis: a critical look at forty years in research.—In:Rezak, R. &Lavoie, D. L. (eds.): Carbonate Microfabrics.—3–14, New York (Springer)

    Google Scholar 

  • Beiersdorf, H. &Knitter, H. (1986): Diagenetic layering and lamination.—Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg60, 267–273, 5 Figs., Hamburg

    Google Scholar 

  • Byers, C. W. &Stasko, L. E. (1978): Trace fossils and sedimentologic interpretation-McGregor Member of Platteville Formation (Ordovician) of Wisconsin.—Journal of Sedimentary Petrology48, 1303–1309, 5 Figs., Tulsa

    Google Scholar 

  • Canfield, D. E. &Raiswell, R. (1991): Carbonate precipitation and dissolution—its relevance to fossil preservation.—In:Allison, A. &Briggs, D. E. G. (eds.): Taphonomy—Releasing the Data Locked in the Fossil Record.—411–453, 11 Figs., 2 Tables, New York (Plenum Press)

    Google Scholar 

  • Coniglio, M. &James, M. (1985): Calcified algae as sediment contributors to early Paleozoic limestones: evidence from deep-water sediments of the Cow Head Group, Western Newfoundland.—Journal of Sedimentary Petrology55/5, 746–754, 11 Figs., Tulsa

    Google Scholar 

  • Dee, G. T. (1986): Patterns produced by precipitation at a moving reaction front.—Physical Review Letters57/3, 275–278, 4 Figs., 1 Table, New York

    Article  Google Scholar 

  • Dix, G. R. &Mullins, H. T. (1988): Rapid burial diagenesis of deep-water carbonates: Exuma Sound, Bahamas.—Geology16, 680–683, 3 Figs., Boulder

    Article  Google Scholar 

  • Dunham, R. J. (1962): Classification of carbonate rocks according to depositional texture.—American Association of Petroleum Geologists Memoir1, 108–121, 7 Pls., 1 Table, Tulsa

    Google Scholar 

  • Ebhardt, G. (1968): Experimental compaction of carbonate sediments.—In:Müller, G. &Friedman, G. M. (eds.): Recent Developments in Carbonate Sedimentology.—58–65, 8 Figs., 1 Table, Berlin (Springer)

    Google Scholar 

  • Eder, W. (1982): Diagenetic redistribution of carbonate, a process in forming limestone-marl alternations (Devonian and Carboniferous, Rheinisches Schiefergebirge, W. Germany). —In:Einsele, G. &Seilacher, A. (eds.): Cyclic and Event Stratification.—98–112, 12 Figs., Berlin (Springer)

    Google Scholar 

  • Einsele, G. (1982a): General remarks about the nature, occurrence and recognition of cyclic sequences (periodites).—In:Einsele, G. &Seilacher, A. (eds.): Cyclic and Event Stratification. —3–7, 1 Fig., Berlin (Springer)

    Google Scholar 

  • — (1982b): Limestone-marl cycles (periodites): diagnosis, significance, causes—a review.—In:Einsele, G. &Seilacher, A. (eds.): Cyclic and Event Stratification.—8–53, 14 Figs., 2 Tables, Berlin (Springer)

    Google Scholar 

  • Einsele, G. &Ricken, W. (1991): Limestone-marl alternations—an overview.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy.—23–47, 10 Figs., 1 Table, Berlin (Springer)

    Google Scholar 

  • Einsele, G., Ricken, W. &Seilacher, A. (1991): Cycles and events in stratigraphy—basic concepts and terms.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy.—1–19, 8 Figs. Berlin (Springer)

    Google Scholar 

  • Enos, P. &Sawatsky, L. H. (1981): Pore networks in Holocene carbonate sediments.—Journal of Sedimentary Petrology51(3), 961–985, 20 Figs., 4 Tables, Tulsa

    Google Scholar 

  • Fischer, A. G., Honjo, S. &Garrison, R. E. (1967): Electron Micrographs of Limestones and their Nannofossils, 141 p. 94 Figs., Princeton (Univ. Press)

    Google Scholar 

  • Flügel, E. (1967): Elektronenmikroskopische Untersuchungen an mikritischen Kalken.—Geologische Rundschau56, 341–358, 2 Pls., 2 Figs., 1 Table, Stuttgart

    Article  Google Scholar 

  • Folk, R. L. (1959): Practical petrographic classification of limestones.—American Association of Petroleum Geologists Bulletin43/1, 1–38, 41 Figs., 2 Tables, Tulsa

    Google Scholar 

  • Folk, R. L. (1965): Some aspects of recrystallization in ancient limestones. —In:Pray, L.C. & Murray, R.C. (eds.): Dolomitization and limestone diagenesis.—SEPM Special Publication13, 14–48, 14 Figs., 7 Tables, Tulsa

  • — (1974): The natural history of crystalline calcium carbonate: effect of magnesium content and salinity.—Journal of Sedimentary Petrology44/1, 40–53, 9 Figs., 1 Table, Tulsa

    Google Scholar 

  • Friedman, G. M. (1964): Early diagenesis and lithification in carbonate sediments.—Journal of Sedimentary Petrology34/4, 777–813, 53 Figs., Tulsa

    Google Scholar 

  • — (1975): The making and unmaking of limestones or the downs and ups of porosity.—Journal of Sedimentary Petrology45/2, 379–398, 22 Figs., 1 Table, Tulsa

    Google Scholar 

  • Frykman, P. (1989): Carbonate ramp facies of the Klinteberg Formation, Wenlock-Ludlow transition on Gotland, Sweden. —Sveriges Geologiska Undersökning Serie C820, 1–79, Stockholm

    Google Scholar 

  • Gartner, S. (1977): Nannofossils and biostratigraphy: an overview. —Earth-Science Reviews13, 227–250, 3 Figs., Amsterdam

    Article  Google Scholar 

  • Ginsburg, R. N. (1957): Early diagenesis and lithification of shallow-water carbonate sediments in South Florida.—SEPM Special Publication13, 80–99, 18 Figs., Tulsa

    Google Scholar 

  • Gründel, J. &Rösler, H. J. (1963): Zur Entstehung der oberdevonischen Kalkknollengesteine Thüringens.—Geologie12, 1009–1038, 23 Figs., 5 Tables, Berlin

    Google Scholar 

  • Hallam, A. (1964): Origin of the limestone-shale rhythm in the Blue Lias of England: a composite theory.—Journal of Geology72, 157–169, 6 Figs., 1 Table, Chicago

    Article  Google Scholar 

  • — (1986): Origin of minor limestone-shale cycles: climatically induced or diagenetic?—Geology14, 609–612, 4 Figs., Boulder

    Article  Google Scholar 

  • Halley, R. B. (1987): Burial diagenesis of carbonate rocks.— Colorado School of Mines Quarterly82, 1–15, 16 Figs., Golden

    Google Scholar 

  • Harland, B., Armstrong, L. L., Cox, A. V., Craig, L. E., Smith, A. G. &Smith, D. G. (1990): A geologic time scale.—263p., Cambridge (Univ. Press)

    Google Scholar 

  • Hede, J. E. (1921): Gottlands Silurstratigrafi.—Sveriges Geologiska Undersökning Serie C305, 1–100, 12 Figs., Stockholm

    Google Scholar 

  • Hede, J. E. (1960): The Silurian of Gotland.—In:Regnéll, G. & Hede, J. E. (eds.): The Lower Paleozoic of Scania.—44–87, 2 Figs., International Geological Congress, Guide to excursions A22 and C17

  • Henningsmoen, G. (1974): A comment. Origin of limestone nodules in the Lower Palaeozoic of the Oslo Region.—Norsk Geologisk Tidsskrift54, 401–412, 3 Figs., Oslo

    Google Scholar 

  • Honjo, S. (1969): Study of fine grained carbonate matrix: sedimentation and diagenesis of ‘micrite’.—Paleontological Society of Japan Special Paper14, 67–82, 2 Tables, Tokyo

    Google Scholar 

  • Illies, H. (1949): Über die erdgeschichtliche Bedeutung der Konkretionen.—Zeitschrift der Deutschen Geologischen Gesellschaft101, 95–98, Hannover

    Google Scholar 

  • Jacob, K. H., Dietrich, S. &Krug, H.-J. (1994): Self-organization of mineral fabrics.—In:Kruhl, J. H. (ed.): Fractals and Dynamic Systems in Geoscience.—259–268, 6 Figs., Berlin (Springer)

    Google Scholar 

  • Jeppsson, L., Viira, V. &Männik, P. (1994): Silurian conodont-based correlations between Gotland (Sweden) and Saaremaa (Estonia).—Geological Magazine131/2, 201–218, 5 Figs., London

    Google Scholar 

  • Jones, B., Oldershaw, A. E. &Narbonne, G. M. (1979): Nature and origin of rubbly limestone in the Upper Silurian Read Bay Formation of Arctic Canada.—Sedimentary Geology24, 227–252, 1 Pl., 12 Figs., 1 Table, Amsterdam

    Article  Google Scholar 

  • Kennedy, W. J. &Klinger, W. J. (1972): Hiatus concretions and hardgrounds horizons in the Cretaceous of Zululand (South Africa).—Palaeontology15/4, 539–549, 3 Pls., 3 Figs.

    Google Scholar 

  • Kent, E. (1936): The formation of the hydraulic limestones of the Lower Lias.—Geological Magazine73, 476–478, 2 Figs., London

    Article  Google Scholar 

  • Lasemi, Z. &Sandberg, P. A. (1983): Recognition of original mineralogy in micrites (abstract).—American Association of Petroleum Geologists Bulletin67, 499–500, Tulsa

    Google Scholar 

  • — & — (1984): Transformation of aragonite-dominated lime muds to microcrystalline limestones.—Geology12, 420–423, 1 Fig., Boulder

    Article  Google Scholar 

  • Lasemi, Z. &Sandberg, P. A. (1993): Microfabric and compositional clues to dominant mud mineralogy of micrite precursors.—In:Rezak, R. &Lavoie, D. L. (eds.) Carbonate Microfabrics.—173–185, 6 Figs., 2 Tables, New York (Springer)

    Google Scholar 

  • Lasemi, Z., Sandberg, P. A. &Boardman, M. R. (1990): New microtextural criterion for differentiation of compaction and early cementation in fine-grained limestones.—Geology18, 370–373, 2 Figs., Boulder

    Article  Google Scholar 

  • Laufeld, S. &Bassett, M. G. (1981): Gotland: the anatomy of a Silurian carbonate platform.—Episodes2, 23–27, 10 Figs., Ottawa

    Google Scholar 

  • Laufeld, S. &Jeppsson, L. (1976): Silification and bentonites in the Silurian of Gotland.—Geologiska Föreningens i Stockholm Förhandlingar98, 31–44, 4 Figs., Stockholm

    Google Scholar 

  • Lindström, M. (1979): Diagenesis of Lower Ordovician hardgrounds in Sweden.—Geologica et Palaeontologica13, 9–30, 3 Pls., 5 Figs., Marburg

    Google Scholar 

  • Martinsson, A. (1967): The succession and correlation of ostracode faunas in the Silurian of Gotland.—Geologiska Föreningens i Stockholm Förhandlingar89, 350–386, 2 Figs., Stockholm

    Google Scholar 

  • Möller, N.K. &Kvingan, K. (1988): The genesis of nodular limestones in the Ordovician and Silurian of the Oslo Region. —Sedimentology35, 405–420, 8 Figs., 1 Table, Oxford

    Article  Google Scholar 

  • Moshier, S. O. (1989): Microporosity in micritic limestones: a review.—Sedimentary Geology63, 191–213, 15 Figs., Amsterdam

    Article  Google Scholar 

  • Munnecke, A. & Servais, T.: Scanning electron microscopy of polished, slightly etched rock surfaces: a method to observe palynomorphsin situ.—5 Pls., 3 Figs., submitted to Palynology, Dallas

  • Noble, J. A. &Howells, K. D. M. (1974): Early marine lithification of the nodular limestones in the Silurian of New Brunswick. —Sedimentology21, 597–609, 5 Figs., 1 Table, Oxford

    Article  Google Scholar 

  • Ortoleva, P. (1994): Geochemical Self-Organization.—Oxford Monographs on Geology and Geophysics23, 411 p., 205 Figs., Oxford

  • Ortoleva, P., Dewers, T. &Sauer, B. (1993): Modeling diagenetic bedding, stylolites, concretions and other mechanochemical structures.—In:Rezak, R. &Lavoie, D. L. (eds.): Carbonate Microfabrics.—291–300, 6 Figs., New York (Springer)

    Google Scholar 

  • Pray, L. C. (1960): Compaction in calcilutites (abstract).— Bulletin of the Geological Society of America71, 1946, Boulder

    Google Scholar 

  • Raiswell, R. (1987): Non-steady state microbiological diagenesis and the origin of concretions and nodular limestones.—In:Marshall, J. D. (ed): Diagenesis of Sedimentary Sequences. —Geological Society Special Publication36, 41–54, 6 Figs., London

  • — (1988a): Chemical model for the origin of limestone-shale cycles by anaerobic methane oxidation.—Geology16, 641–644, 2 Figs., 1 Table, Boulder

    Article  Google Scholar 

  • — (1988b): Evidence for surface reaction-controlled growth of carbonate concretions in shales.—Sedimentology35, 571–575, 2 Figs., Oxford

    Article  Google Scholar 

  • Ricken, W. (1986): Diagenetic bedding—a model for marllimestone alternations.—Lecture Notes in Earth Sciences6, 1–210, 94 Figs., 19 Tables, Berlin

    Article  Google Scholar 

  • — (1992): A volume and mass approach to carbonate diagenesis: the role of compaction and cementation.—In:Wolf, K. H. &Chilingarian, G. V. (eds.): Diagenesis, III.—291–316, 10 Figs., Amsterdam (Elsevier)

    Google Scholar 

  • Ricken, W. &Eder, W. (1991): Diagenetic modification of calcareous beds—an overview.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy.— 430–449, 11 Figs., Berlin (Springer)

    Google Scholar 

  • Sandberg, P. A. (1983): An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy.—Nature305/1, 19–22, 6 Figs., London

    Article  Google Scholar 

  • Scholle, A. & Halley, R. B. (1985): Burial diagenesis: out of sight, out of mind!—In:Schneiderman, N. & Harris, M. (eds.): Carbonate Cements.—SEPM Special Publication36, 309–334, 11 Figs., Tulsa

  • Seibold, E. (1952): Chemische Untersuchungen zur Bankung im unteren Malm Schwabens.—Neues Jahrbuch Geologie und Paläontologie Abhandlungen95/3, 337–370, 11 Figs., 2 Tables, Stuttgart

    Google Scholar 

  • — (1962): Kalk-Konkretionen und karbonatisch gebundenes Magnesium.—Geochimica et Cosmochimica Acta26, 899–909, 8 Figs., 1 Table, London

    Article  Google Scholar 

  • Semper, M. (1917): Schichtung und Bankung.—Geologische Rundschau7, 53–56, Stuttgart

    Article  Google Scholar 

  • Shinn, E. A., Halley, R. B., Hudson, J. H. &Lidz, B. H. (1977): Limestone compaction: an enigna.—Geology5, 21–24, 5 Figs., Boulder

    Article  Google Scholar 

  • Sorby, H. C. (1879): The structure and origin of limestones. Anniversary address of the President.—Quarterly Journal of the Geological Society of London35, 56–95, 11 Figs., 2 Tables, London

    Google Scholar 

  • Stehli, F. G. &Hower, J. (1961): Mineralogy and early diagenesis of carbonate sediments.—Journal of Sedimentary Petrology31/3, 358–371, 11 Figs., 4 Tables, Tulsa

    Google Scholar 

  • Steinen, R. (1978): On the diagenesis of lime mud: scanning electron microscopic observations of subsurface material from Barbados, W.I.—Journal of Sedimentary Petrology48/4, 1139–1148, 7 Figs., Tulsa

    Google Scholar 

  • Steinen, R. (1982): SEM observations on the replacement of Bahaman aragonitic mud by calcite.—Geology10, 471–475, 3 Figs., Boulder

    Article  Google Scholar 

  • Sujkowski, Z. L. (1958): Diagenesis.—American Association of Petroleum Geologists Bulletin42/11, 2692–2717, 1 Table, Tulsa

    Google Scholar 

  • Sundquist, B. (1982): Wackestone petrography and bipolar orientation of cephalopods as indicators of littoral sedimentation in the Ludlovian of Gotland.—Geologiska Föreningens i Stockholm Förhandlingar104, 81–90, 6 Figs., 1 Table, Stockholm

    Google Scholar 

  • Tappan, H. &Loeblich, A. R. Jr. (1973): Evolution of the oceanic plankton.—Earth-Science Reviews9, 207–240, 9 Figs., Amsterdam

    Article  Google Scholar 

  • Terzaghi, R. D. (1940): Compaction of lime mud as a cause of secundary structure.—Journal of Sedimentary Petrology10/2, 78–90, 5 Figs., 2 Tables, Tulsa

    Google Scholar 

  • Towe, K. M. &Hemleben, C. (1976): Diagenesis of magnesian calcite: evidence from miliolacean foraminifera.—Geology4, 337–339, 1 Fig., Boulder

    Article  Google Scholar 

  • Voigt, E. (1968): Über Hiatus-Konkretionen (dargestellt an Beispielen aus dem Lias).—Geologische Rundschau58, 281–296, 8 Figs., Stuttgart

    Article  Google Scholar 

  • Walter, L. M. (1985): Relative reactivity of skeletal carbonates during dissolution: implications for diagenesis.—In:Schneidermann, N. & Harris, M. (eds.): Carbonate Cements. —SEPM Special Publication36, 3–16, 6 Figs., 5 Tables, Tulsa

  • Walther, M. (1982): A contribution to the origin of limestoneshale sequences.—In:Einsele, G. &Seilacher, A. (eds.): Cyclic and Event Stratification.—113–120, 2 Figs., Berlin (Springer)

    Google Scholar 

  • Walther, M. (1983): Diagenese gebankter Karbonate im Unter-Karbon Nordwest-Irlands.—76p., 12 Pls., 28 Figs., 13 Tables, Doctoral Dissertation Universität Göttingen, Göttingen

  • Watts, N. R. (1981): Sedimentology and diagenesis of the Högklint reefs and their associated sediments, Lower Silurian, Gotland, Sweden.—407p., Doctoral Dissertation University Cardiff (Wales) Cardiff

  • Weber, P. (1969): Bildung und Regelung von Kalkknollengefügen im Oberdevon des Rheinischen Schiefergebirges.—Fortschritte in der Geologie von Rheinland und Westfalen17, 81–94, 7 Figs., Krefeld

    Google Scholar 

  • Weller, J. M. (1959): Compaction of sediments.—American Association of Petroleum Geologists Bulletin43/2, 273–311, 16 Figs., 1 Table, Tulsa

    Google Scholar 

  • Wepfer, E. (1926): Die Auslaugungs-Diagenese, ihre Wirkung auf Gestein und Fossilinhalt.—Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilagen-Band, Abteilung B, Geologie und PaläontologieLIV, 17–94, 9 Figs., Stuttgart

    Google Scholar 

  • Winland, H. D. (1968): The role of high Mg calcite in the preservation of micrite envelopes and textural features of aragonite sediments.—Journal of Sedimentary Petrology38/4, 1320–1325, 7 Figs., Tulsa

    Google Scholar 

  • Zankl, H. (1969): Structural and textural evidence of early lithification in fine-grained carbonate rocks.—Sedimentology12, 241–256, 7 Figs., Amsterdam

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munnecke, A., Samtleben, C. The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies 34, 159–176 (1996). https://doi.org/10.1007/BF02546162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546162

Keywords

Navigation