Skip to main content
Log in

Lean Body Mass as a Predictor of Drug Dosage

Implications for Drug Therapy

  • Review Article
  • Clinical Pharmacokinetic Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

There is mounting evidence to suggest that lean body mass (LBM) may be a better predictor of drug dosage than either total bodyweight (TBW) or body surface area (BSA), although the rationale for this is not clear.

LBM, which is similar but not identical to fat-free mass, can be determined by many different methods. A simple equation based on TBW and height, or determination by bioelectrical impedance are probably the most suitable for use in drug disposition studies. Volume of distribution of relatively hydrophilic drugs correlates very well with LBM, with correlation coefficients of up to 0.9. LBM can be used to accurately predict the loading dose required for these drugs to attain a target peak plasma concentration. For lipophilic drugs, volume of distribution correlates better with TBW than with LBM.

Investigation of the relationship between renal drug clearance and LBM has received little attention, probably because creatinine clearance is a useful and readily available marker of renal function. However, limited data suggest that creatinine clearance and LBM together may account for more variability in renal clearance than creatinine clearance alone. For many drugs eliminated predominantly by the liver, there is a good correlation between systemic clearance and LBM. Such a correlation could be due to a correlation between systemic clearance and liver size or liver blood flow, which has been demonstrated for a few drugs, and a correlation between LBM and liver size and blood flow. The presence of a relationship between LBM and organ size and blood flow has, however, not been investigated to date.

A good correlation between drug clearance and LBM indicates that LBM may be an accurate predictor of maintenance dosage, especially in obese patients, in whom there is a large discrepancy between LBM and TBW. BSA is an accurate predictor of drug dosage in infants and children, but whether LBM is superior to BSA in this population remains to be determined. In most studies in adults in which dosage based on LBM has been evaluated prospectively, LBM has been shown to be superior to other measures of body size as a predictor of drug dosage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarons L, Vbžeh S, Wenk M, Weiss PH, Follath F. Population pharmacokinetics of tobramycin. British Journal of Clinical Pharmacology 28: 305–314, 1989

    Article  PubMed  CAS  Google Scholar 

  • Abernethy DR, Greenblatt DJ. Pharmacokinetics of drugs in obesity. Clinical Pharmacokinetics 7: 108–124, 1982

    Article  PubMed  CAS  Google Scholar 

  • Abernethy DR, Greenblatt DJ. Drug disposition on obese humans an update. Clinical Pharmacokinetics 11: 199–213, 1986

    Article  PubMed  CAS  Google Scholar 

  • Abramowsky CF, Swinehart GL. The nephropathy of cystic fibrosis: a human model of chronic nephrotoxicity. Human Pathology 13: 924–939, 1982

    Article  Google Scholar 

  • Akers R, Buskirk ER. An underwater weighing system utilising ‘force cube’ transducers. Journal of Applied Physiology 26: 649–652, 1969

    PubMed  CAS  Google Scholar 

  • Bach B, Hansen JM, Kampmann JP, Rasmussen SN, Skovsted L. Disposition of antipyrine and phenytoin correlated with age and liver volume in man. Clinical Pharmacokinetics 6: 389–396, 1981

    Article  PubMed  CAS  Google Scholar 

  • Baecke JAH, Burema T, Deurenberg P. Body fatness, relative weight and frame size in young adults. British Journal of Nutrition 84: 1–6, 1982

    Article  Google Scholar 

  • Bauer LA, Edwards WAD, Delliner EP, Simonowitz DA. Influence of weight on aminoglycoside pharmacokinetics in normal weight and morbidly obese patients. European Journal of Clinical Pharmacology 24: 643–647, 1983

    Article  PubMed  CAS  Google Scholar 

  • Beemer GH, Bjorksten AR, Crankshaw DP. Effect of body build on the clearance of atracurium: Implication for drug dosing. Anesthesia and Analgesia 76: 1296–1303, 1993

    PubMed  CAS  Google Scholar 

  • Beemer GH, Bjorksten AR, Crankshaw DP. Pharmacokinetics of atracurium during continuous infusion. British Journal of Anaesthesia 65: 669–674, 1990

    Google Scholar 

  • Behnke AR. Quantitative assessment of body build. Journal of Applied Physiology 16: 960–968, 1961

    PubMed  CAS  Google Scholar 

  • Behnke AR. Anthropometric evaluation of body composition throughout life. Annals of the New York Academy of Sciences 110: 450–464, 1963

    Article  PubMed  CAS  Google Scholar 

  • Behnke AR, Osserman EF, Welham WC. Lean Body Mass. Archives of Internal Medicine 91: 585–601, 1953

    Article  PubMed  CAS  Google Scholar 

  • Besunder JB, Reed MD, Blumer JL. Principles of drug biodisposition in the neonate: a critical evaluation of the pharmacokinetic-pharmacodynamic interface (Part I). Clinical Pharmacokinetics 14: 189–216, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Besunder JB, Reed MD, Blumer JL. Principles of drug biodisposition in the neonate: a critical evaluation of the pharmacokinetic-pharmacodynamic interface (Part II). Clinical Pharmacokinetics 14: 216–286, 1988b

    Google Scholar 

  • Borkan GA, Gerzof SG, Robbins AH, Hults DE, Silbert CK, et al. Assessment of abdominal fat content by computed tomography. American Journal of Clinical Nutrition 36: 172–177, 1982

    PubMed  CAS  Google Scholar 

  • Braganza JM. Cystic fibrosis: a casualty of ‘detoxification’? Medical Hypotheses 20: 233–243, 1986

    Article  PubMed  CAS  Google Scholar 

  • Browne JL, Patel RA, Huffman CS, Hussey BK. Comparison of pharmacokinetic procedure for dosing lithium based on analysis of prediction error. Drug Intelligence and Clinical Pharmacy 22: 227–231, 1988

    PubMed  CAS  Google Scholar 

  • Burton ME, Brater DC, Chen PS, Day RB, Huber PJ, et al. A Bayesian feedback method of aminoglycoside dosing. Clinical Pharmacology and Therapeutics 37: 349–357, 1985

    Article  PubMed  CAS  Google Scholar 

  • Calloway NO, Foley CF, Lagerbloom P. Uncertainties in geriatric data. II. Organ size. Journal of the American Geriatrics Society 13: 20–29, 1965

    PubMed  CAS  Google Scholar 

  • Caraco Y, Zylber-Katz E, Berry EM, Levy M. Significant weight reduction in obese subjects enhances carbamazepine elimination. Clinical Pharmacology and Therapeutics 51: 510–506, 1992

    Google Scholar 

  • Cary J, Hein K, Dell R. Theophylline disposition in adolescents with asthma. Therapeutic Drug Monitoring 13: 309–313, 1991

    Article  PubMed  CAS  Google Scholar 

  • Cheymol G. Clinical pharmacokinetics of drugs in obesity. An update. Clinical Pharmacokinetics 25: 103–114, 1993

    Article  PubMed  CAS  Google Scholar 

  • Cheymol G, Bernheim C, Besson J, Dry J, Portet R. Study of urinary excretion of butobarbitone in man in relation to the percentage of ideal bodyweight. British Journal of Clinical Pharmacology 7: 303–309, 1979

    Article  PubMed  CAS  Google Scholar 

  • Cockroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41, 1972

    Article  Google Scholar 

  • Cohn SH, Vartsky D, Yasumura S, Sawitsky A, Zanzi I, et al. Compartmental body composition based on total-body nitrogen, potassium, and calcium. American Journal of Physiology 239: E524–E530, 1980

    PubMed  CAS  Google Scholar 

  • Craig M, Haddad H, Shwachman H. The pathological changes in the liver in cystic fibrosis of the pancreas. American Journal of Diseases of Children 93: 357–369, 1957

    CAS  Google Scholar 

  • Crankshaw DP, Allt-Graham J. ED50 Values for thiopentone, methohexital, propanidid and alfathesin: a clinical experiment. Anaesthesia and Intensive Care 6: 36–43, 1978

    PubMed  CAS  Google Scholar 

  • Crankshaw DP, Beemer GH. How should we administer intravenous anaesthetic drugs. Baillière’s Clinical Anaesthesiology 5: 327–351, 1991

    Article  Google Scholar 

  • Crankshaw DP, Boyd MD, Bjorksten AR. Plasma drug efflux — a new approach to optimization of drug infusion for constant blood concentration of thiopental and methohexital. Anesthesiology 67: 32–41, 1987

    Article  PubMed  CAS  Google Scholar 

  • Crankshaw DP, Edwards NE, Blackman GL, Boyd MD, Chan HNJ, et al. Evaluation of infusion regimens for thiopentone as a primary anaesthetic agent. European Journal of Clinical Pharmacology 28: 543–522, 1985

    Article  PubMed  CAS  Google Scholar 

  • Crankshaw DP, Morgan DJ, Beemer GH, Karasawa F. Preprogrammed infusion of alfentanil to constant arterial plasma concentration. Anesthesia and Analgesia 76: 556–561, 1993

    Article  PubMed  CAS  Google Scholar 

  • Dawling S, Crome P. Clinical pharmacokinetic considerations in the elderly. Clinical Pharmacokinetics 17: 236–263, 1989

    Article  PubMed  CAS  Google Scholar 

  • Dettli LC. Drug dosage in patients with renal disease. Clinical Pharmacology and Therapeutics 16: 274–280, 1974

    PubMed  CAS  Google Scholar 

  • Devine BJ. Gentamicin therapy. Drug Intelligence and Clinical Pharmacy 8: 650–655, 1974

    Google Scholar 

  • Dionne RE, Bauer LA, Gibson GA, Griffen WO, Blouin RA. Estimating creatinine clearance in morbidly obese patients. American Journal of Hospital Pharmacy 38: 841–844, 1981

    PubMed  CAS  Google Scholar 

  • Durnin JVGA, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition 32: 77–97, 1974

    Article  PubMed  CAS  Google Scholar 

  • Edelman LS, Liebman J. Anatomy of body water and electrolytes. American Journal of Medicine 27: 256–277, 1959

    Article  PubMed  CAS  Google Scholar 

  • Ellis EF, Koysooko R, Levy G. Pharmacokinetics of theophylline in children with asthma. Pediatrics 58: 542–547, 1976

    PubMed  CAS  Google Scholar 

  • Evans WE, Relling MV, DeGraaf S, Rodman JH, Pieper JA, et al. Hepatic drug clearance in children: studies with indocyanine green as a model substrate. Journal of Pharmaceutical Sciences 78: 452–456, 1989

    Article  PubMed  CAS  Google Scholar 

  • Fondacaro JD, Heubi JE, Kellog FW. International bile acid malabsorption in cystic fibrosis: a primary mucosal cell defect. Pediatric Research 16: 494–498, 1982

    Article  PubMed  CAS  Google Scholar 

  • Forbes GB, Welle SL. Lean body mass in obesity. International Journal of Obesity 7: 99–107, 1983

    PubMed  CAS  Google Scholar 

  • Gardner MJ, Jusko WJ. Effect of age and sex on theophylline clearance in young subjects. Pediatric Pharmacology 2: 157–169, 1982

    PubMed  CAS  Google Scholar 

  • Grasela TH, Sheiner LB. Population pharmacokinetics of procainamide from routine clinical data. Clinical Pharmacokinetics 9: 545–554, 1984

    Article  PubMed  CAS  Google Scholar 

  • Grasela TH, Sheiner LB, Rambeck B, Boenigk HE, Dunlop A, et al. Steady-state pharmacokinetics of phenytoin from routinely collected patient data. Clinical Pharmacokinetics 8: 355–364, 1983

    Article  PubMed  CAS  Google Scholar 

  • Grygiel JJ, Ward H, Ogborne M, Goldin A, Birkett DJ. Relationships between plasma theophylline clearance, liver volume and body-weight in children and adults. European Journal of Clinical Pharmacology 24: 529–532, 1983

    Article  PubMed  CAS  Google Scholar 

  • Hallynck T, Soep HH, Dettli L. Influence of age and renal disease on aminoglycoside dosage. Journal of Antimicrobial Chemotherapy 8,Suppl A: 1–9, 1981a

    PubMed  Google Scholar 

  • Hallynck T, Soep HH, Thomis J, Boelaert J, Daneeis R, et al. Prediction of creatinine clearance from serum creatinine concentration based on lean body mass. Clinical Pharmacology and Therapeutics 30: 414–421, 1981b

    Article  PubMed  CAS  Google Scholar 

  • Hallynck TH, Soep HH, Thomis JA, Boelaert J, Daneeis R, et al. Should clearance be normalised to body surface or to lean body mass. British Journal of Clinical Pharmacology 11: 523–526, 1981c

    Article  PubMed  CAS  Google Scholar 

  • Hallynck TH, Soep HH, Thomis JA, Boelaert J, Daneeis R, et al. Lean body mass and amikacin dosage. Journal of Antimicrobial Chemotherapy 6: 286–288, 1980

    Article  PubMed  CAS  Google Scholar 

  • Haymes EM, Lundegren HM, Loomis JL, Buskirk ER. Validity of the ultrasound technique as a method of measuring subcutaneous adipose tissue. Annals of Human Biology 3: 245–251, 1976

    Article  PubMed  CAS  Google Scholar 

  • Homer TD, Stanski DR. The effect of increasing age on thiopental disposition and anesthetic requirement. Anesthesiology 62: 714–724, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hull JH, Sarubbi FA. Gentamicin serum concentrations: pharmacokinetic predictions. Annals of Internal Medicine 85: 183–189, 1976

    PubMed  CAS  Google Scholar 

  • Hultcrantz R, Mengarelli S, Strandvik B. Morphological findings in the liver of children with cystic fibrosis: a light and electron microscopical study. Hepatology 6: 881–889, 1986

    Article  PubMed  CAS  Google Scholar 

  • Hume R. Prediction of lean body mass from height and weight. Journal of Clinical Pathology 19: 389–391, 1966

    Article  PubMed  CAS  Google Scholar 

  • Hyneck ML, Johnson MH, Wagner JG, Williams GW. Comparison of methods for estimating digoxin dosing regimens. American Journal of Hospital Pharmacy 38: 69–73, 1981

    PubMed  CAS  Google Scholar 

  • Isles AF, Spino M, Tabachnik E, Levison H, Thiessen JJ, et al. Theophylline disposition in cystic fibrosis. American Reviews of Respiratory Diseases 127: 417–421, 1983

    CAS  Google Scholar 

  • James WPT. Research on obesity. Her Majesty’s Stationery Office, London, 1976

    Google Scholar 

  • Jermain DM, Crismon ML, Martin ES. Population pharmacokinetics of lithium. Clinical Pharmacy 10: 376–381, 1991

    PubMed  CAS  Google Scholar 

  • Knoppert DC, Spino M, Beck R, Thiessen JJ, MacLeod S. Cystic fibrosis: enhanced theophylline metabolism may be linked to the disease. Clinical Pharmacology and Therapeutics 44: 254–264, 1988

    Article  PubMed  CAS  Google Scholar 

  • Lake KD, Peterson CD. A simplified dosing method for initiating vancomycin therapy. Pharmacotherapy 5: 340–344, 1985

    PubMed  CAS  Google Scholar 

  • Larsen GL, Barron RJ, Landay RA, Cotton EK, Gonzales MA, et al. Intravenous aminophylline in patients with cystic fibrous: pharmacokinetics and effect on pulmonary function. American Journal of Diseases of Children 134: 1143–1147, 1980

    PubMed  CAS  Google Scholar 

  • Leeder JS, Spino M, Isles AF, Tesoro AM, Gold R, et al. Ceftazidime disposition in acute and stable cystic fibrosis. Clinical Pharmacology and Therapeutics 36: 355–362, 1984

    Article  PubMed  CAS  Google Scholar 

  • Leslie K, Crankshaw DP. Potency of propofol for loss of consciousness after a single dose. British Journal of Anaesthesia 64: 734–736, 1990

    Article  PubMed  CAS  Google Scholar 

  • Linday LA, Greenblatt DJ, Warren MP, Harmatz JS, DeCresce R, et al. Changes in salivary antipyrine pharmacokinetics during adolescence, correlated with age, hormonal levels and Tanner stage. Developmental Pharmacology and Therapeutics 4: 194–202, 1991

    Google Scholar 

  • Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GL Assessment of fat-free mass using bioelectrical impedance measurements of the human body. American Journal of Clinical Nutrition 41: 810–817, 1985

    PubMed  CAS  Google Scholar 

  • Madden T, Sunderland M, Santana VM, Rodman JH. The pharmacokinetics of high-dose carboplatin in pediatric patients with cancer. Clinical Pharmacology and Therapeutics 51: 701–707, 1992

    Article  PubMed  CAS  Google Scholar 

  • Martin ES, Crismon ML, Godley PJ. Postinduction carbamazepine clearance in a adult psychiatric population. Pharmacotherapy 11: 296–302, 1991

    PubMed  Google Scholar 

  • Mimeault J, Vallée F, Seelman R, Sörgel F, Ruel M, et al. Altered disposition of fleroxacin in patients with cystic fibrosis. Clinical Pharmacology and Therapeutics 47: 618–628, 1990

    Article  PubMed  CAS  Google Scholar 

  • Mulder GJ, Weitering JG, Scholtens E, Dawson JR, Pang KS. Extrahepatic sulfation and glucuronidation in the rat in vivo: determination of the hepatic extraction ratio of harmol and the extrahepatic contribution to harmol conjugation. Biochemical Pharmacology 33: 3081–3087, 1984

    Article  PubMed  CAS  Google Scholar 

  • Mungall DR, Ludden TM, Marshall J, Hawkins DW, Talbert RT, et al. Population pharmacokinetics of racemic warfarin in adult patients. Journal of Pharmacokinetics and Biopharmaceutics 13: 213–227, 1985

    PubMed  CAS  Google Scholar 

  • Newby MJ, Keim NL, Brown DL. Body composition of adult cystic fibrosis patients and control subjects as determined by densitometry, bioelectrical impedance, total body electrical conductivity, skinfold measurements, and deuterium dioxide dilution. American Journal of Clinical Nutrition 52: 209–213, 1990

    PubMed  CAS  Google Scholar 

  • Novak LP. Aging, total body potassium, fat-free mass and cell mass in males and females between ages 18 and 85 years. Journal of Gerontology 27: 438–443, 1972

    PubMed  CAS  Google Scholar 

  • Pace N, Rathbun EN. Studies on body composition III: the body water and chemically combined nitrogen content in relation to fat content. Journal of Biological Chemistry 158: 685–691, 1945

    CAS  Google Scholar 

  • Park RW, Grant RJ. Gastrointestinal manifestations of cystic fibrosis: a review. Gastroenterology 81: 1143–1161, 1981

    PubMed  CAS  Google Scholar 

  • Pirttiaho H. Liver size in evaluating drug metabolising capacity in man. International Journal of Clinical Pharmacology and Biopharmacy 17: 271–276, 1979

    PubMed  CAS  Google Scholar 

  • Prandota J. Clinical pharmacokinetics of changes in drug elimination in children. Developmental Pharmacology and Therapeutics 8: 311–328, 1985

    PubMed  CAS  Google Scholar 

  • Prandota J. Drug disposition in cystic fibrosis: progress in understanding pathophysiology and pharmacokinetics. Pediatric Infections Diseases Journal 6: 1111–1126, 1987

    CAS  Google Scholar 

  • Prandota J. Clinical pharmacology of antibiotics and other drugs in cystic fibrosis. Drugs 35: 542–578, 1988

    Article  PubMed  CAS  Google Scholar 

  • Presta E, Wang J, Harrison GG, Bjorntorp P, Harker WH, et al. Measurement of total body electrical conductivity: a new method for estimation of body composition. American Journal of Clinical Nutrition 37: 735–739, 1983

    PubMed  CAS  Google Scholar 

  • Pokela M, Olkkola KT, Koivisto M, Ryhänen P. Pharmacokinetics and pharmacodynamics of intravenous meperidine in neonates and infants. Clinical Pharmacology and Therapeutics 52: 342–349, 1992

    Article  PubMed  CAS  Google Scholar 

  • Rathbun EN, Pace N. Studies on body composition: determination of total body fat by means of specific gravity. Journal of Biological Chemistry 158: 667–676, 1945

    CAS  Google Scholar 

  • Ritschel WA. Drug disposition in the elderly: gerontokinetics. Methods and Findings in Experimental and Clinical Pharmacology 14: 555–572, 1992

    PubMed  CAS  Google Scholar 

  • Ritschel WA. Gerontokinetics. The Telford Press, Caldwell NJ, 1988

    Google Scholar 

  • Roberts CJC, Jackson L, Halliwell M, Branch RA. The relationship between liver volume, antipyrine clearance and indocyanine green clearance before and after phenobarbitone administration in man. British Journal of Clinical Pharmacology 3: 907–913, 1976

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal A, Button LN, Khaw KT. Blood volume changes in patients with cystic fibrosis. Pediatrics 59: 588–594, 1977

    PubMed  CAS  Google Scholar 

  • Roubenoff R, Kehayias JJ. The meaning and measurement of lean body mass. Nutrition Reviews 49: 163–175, 1991

    Article  PubMed  CAS  Google Scholar 

  • Rylance GW, Moreland TA, Cowan MD, Clark DC. Liver volume estimation using ultrasound scanning. Archives of Diseases in Childhood. 57: 283–286, 1982

    Article  CAS  Google Scholar 

  • Sarubbi FA, Hull JH. Amikacin serum concentrations: prediction of levels and dosage guidelines. Annals of Internal Medicine 89: 612–618, 1978

    PubMed  CAS  Google Scholar 

  • Sawyer WT, Canaday BR, Poe TE, Webb CE, Gal P, et al. Variables affecting creatinine clearance prediction. American Journal of Hospital Pharmacy 40: 2175–2180, 1983

    PubMed  CAS  Google Scholar 

  • Sawyer WT, Canaday BR, Poe TE, Webb CE, Porter RS, et al. A multicenter evaluation of variables affecting predictability of creatinine clearance. American Journal of Clinical Pathology 78: 832–838, 1982

    PubMed  CAS  Google Scholar 

  • Sawyer WT, Hutchins K. Assessment and predictability of renal function in spinal cord injury patients. Urology 19: 377–380, 1982

    Article  PubMed  CAS  Google Scholar 

  • Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Van Itallie TB. Lean Body Mass estimation by bioelectrical impedance analysis: a four-site cross validation study. American Journal of Clinical Nutrition 47: 7–14, 1988

    PubMed  CAS  Google Scholar 

  • Seow LT, Mather LE, Roberts JG. An integrated study of pharmacokinetics and pharmacodynamics of chlormethiazole in healthy young volunteers. European Journal of Clinical Pharmacology 19: 263–269, 1981

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Ludden TM. Population Pharmacokinetics/Dynamics. Annual Review of Pharmacology and Toxicology 32: 185–209, 1992

    Article  PubMed  CAS  Google Scholar 

  • Sidhu JS, Charles BG, Triggs EJ, Tudehope DI, Gray PH, et al. Assessment of bioelectrical impedance for individualising gentamicin therapy in neonates. European Journal of Clinical Pharmacology 44: 253–258, 1993

    Article  PubMed  CAS  Google Scholar 

  • Siersbaek-Nielsen K, Hansen JM, Kampmann J, Kristensen M. Rapid evaluation of creatinine clearance. Lancet 1: 1133–1134, 1971

    Article  PubMed  CAS  Google Scholar 

  • Spino M, Chai RP, Isles AF, Thiessen JJ, Tesoro A, et al. Cloxacillin absorption and disposition in cystic fibrosis. Journal of Pediatrics 105: 829–835, 1984

    Article  PubMed  CAS  Google Scholar 

  • Stockholm KH, Brochner-Mortensen J, Holland-Carlsen PF. Increased glomerular filtration rate and adrenocortical function in obese women. International Journal of Obesity 4: 67–63, 1980

    Google Scholar 

  • Svensmark O, Buchthal F. Dosage of phenytoin and phenobarbital in children. American Journal of Diseases of Children 108: 82–87, 1964

    PubMed  CAS  Google Scholar 

  • Swift CG, Homeida M, Halliwell M, Roberts CJ. Antipyrine disposition and liver size in the elderly. European Journal of Clinical Pharmacology 14: 149–152, 1978

    Article  PubMed  CAS  Google Scholar 

  • Taylor HL, Brozek J, Keys A. Basal cardiac function and body composition with special reference to obesity. Journal of Clinical Investigation 31: 976–983, 1952

    Article  PubMed  CAS  Google Scholar 

  • Vawter GF, Swachman H. Cystic fibrosis in adults: an autopsy study. Pathology Annual 14: 357–382, 1979

    PubMed  Google Scholar 

  • Vestal RE, McGuire EA, Tobin JD, Andres R, Norris AH, et al. Aging and ethanol metabolism. Clinical Pharmacology and Therapeutics 21: 343–354, 1977

    PubMed  CAS  Google Scholar 

  • Vozeh S, Katz G, Steiner V, Follath F. Population pharmacokinetic parameters in patients treated with oral mexiletine. European Journal of Clinical Pharmacology 23: 445–451, 1982a

    Article  PubMed  CAS  Google Scholar 

  • Vožeh S, Uematsu T, Aarons L, Maitre P, Landolt H, et al. Intravenous phenytoin loading in patients after neurosurgery and in status epilepticus. Clinical Pharmacokinetics 14: 122–128, 1982b

    Article  Google Scholar 

  • Weisberg HF. Water, electrolyte, and acid-base balance, Williams & Wilkins, Baltimore, 1962

    Google Scholar 

  • Woodhouse K. Drugs and the liver. Part III: ageing of the liver and the metabolism of drugs. Biopharmaceutics and Drug Disposition 13: 311–320, 1992

    Article  CAS  Google Scholar 

  • Wulfsohn NL. Halothane dosage based on lean body mass. British Journal of Anaesthesia 41: 522–526, 1969

    Article  PubMed  CAS  Google Scholar 

  • Wulfsohn NL. D-Tubocurarine dosage based on lean body mass. Canadian Anaesthetists Society Journal 19: 251–262, 1972a

    Article  PubMed  CAS  Google Scholar 

  • Wulfsohn NL. Succinylcholine dosage based on lean body mass. Canadian Anaesthetists Society Journal 19: 360–372, 1972b

    Article  PubMed  CAS  Google Scholar 

  • Wulfsohn NL. Ketamine dosage for induction based on lean body mass. Anaesthesia and Analgesia 51: 299–305, 1972c

    Article  CAS  Google Scholar 

  • Wulfsohn NL, Joshi CW. Thiopentone dosage based on lean body mass. British Journal of Anaesthesia 41: 516–521, 1969

    Article  PubMed  CAS  Google Scholar 

  • Wyatt R, Weinberger M, Hendeles M, Hendeles L. Oral theophylline dosage for the management of chronic asthma. Journal of Pediatrics 92: 125–130, 1978

    Article  PubMed  CAS  Google Scholar 

  • Wynne HA, Cope LH, Herd B, Rawlins MD, James OFW, et al. The association of age and frailty with paracetamol conjugation in man. Age and Ageing 19: 419–424, 1990

    Article  PubMed  CAS  Google Scholar 

  • Wynne HA, Cope LH, James OFW, Rawlins MD, Woodhouse KW. The effect of age and frailty upon acetanilide clearance. Age and Ageing 18: 415–418, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Wynne H, Cope L, Mutch E, Rawlins MD, Woodhouse KW, et al. The effect of age upon liver size and liver blood flow in man. Hepatology 9: 297–301, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Zarowitz BJ, Peterson E, Popowich J. Relationship of bioelectrical impedance to pharmacokinetic parameters of theophylline in healthy males. Clinical Pharmacokinetics 17: 200–207, 1989

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, D.J., Bray, K.M. Lean Body Mass as a Predictor of Drug Dosage. Clin. Pharmacokinet. 26, 292–307 (1994). https://doi.org/10.2165/00003088-199426040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199426040-00005

Keywords

Navigation