Skip to main content
Log in

Pharmacokinetic Contributions to Postantibiotic Effects

Focus on Aminoglycosides

  • Review Article
  • Clinical Pharmacokinetic Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The postantibiotic effect (PAE) refers to a period of time after complete removal of an antimicrobial during which there is no growth of the target organism. The PAE appears to be a feature of most antimicrobial agents and has been documented with a variety of common bacterial pathogens. Various factors influence the presence or duration of the PAE including the type of organism, type of antimicrobial, concentration of antimicrobial, duration of antimicrobial exposure, antimicrobial combinations, and inoculum and medium used.

β-Lactams demonstrate a PAE against Gram-positive cocci, but produce only a short PAE with Gram-negative bacilli. Antimicrobial agents that inhibit RNA or protein synthesis have a PAE against Gram-positive cocci and Gram-negative bacilli.

In vivo studies of aminoglycosides suggest that area under the plasma concentration-time curve is the pharmacokinetic parameter that best correlates with clinical efficacy. This is thought to be due to the concentration-dependent killing and PAE possessed by these antimicrobials. Animal and human studies have reported that once-daily administration of aminoglycoside is as effective as, or more effective than, and possibly less toxic than traditional multiple daily administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Craig WA, Vogelman BS. The postantibiotic effect. Ann Intern Med 1987; 15 Suppl. A: 900–2

    Google Scholar 

  2. Parker RF, Luse S. The action of penicillin on Staphylococcus: further observation on the effect of a short exposure. J Bacteriol 1948; 56: 75–81

    PubMed  CAS  Google Scholar 

  3. Parker RF, Marsh HC. The action of penicillin on staphylococcus. J Bacteriol 1946; 51: 181–6

    Google Scholar 

  4. Eagle H. The recovery of bacteria from the toxic effects of penicillin. J Clin Invest 1949; 28: 832–6

    Article  PubMed  CAS  Google Scholar 

  5. McDonald PJ, Craig WA, Kunin CM. Persistent effects of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis 1977; 135: 217–23

    Article  PubMed  CAS  Google Scholar 

  6. Bundtzen RW, Gerber AU, Cohn DL, et al. Postantibiotic suppression of bacterial growth. Rev Infect Dis 1981; 3: 28–37

    Article  PubMed  CAS  Google Scholar 

  7. Craig WA, Gudmundsson S. The postantibiotic effect. In: Lorian V, editor. Antibiotics in laboratory medicine, 3rd ed. Baltimore: William and Wilkins, 1991: 403–31

    Google Scholar 

  8. Zhanel GG, Hoban DJ, Harding GKM. The postantibiotic effect: a review of in vitro and in vivo data. DICP Ann Pharmacother 1991; 25: 153–63

    CAS  Google Scholar 

  9. Kirby WMM, Craig WA. Theory and applications of pulse dosing: a summary of the symposium. Rev Infect Dis 1981; 3: 1–3

    Article  PubMed  CAS  Google Scholar 

  10. Vogelman BS, Craig WA. Postantibiotic effects. J Antimicrob Chemother 1985; 15 Suppl. A: 37–46

    PubMed  CAS  Google Scholar 

  11. Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis 1991; 74: 63–70

    Google Scholar 

  12. Renneberg J, Walder M. Postantibiotic effects of imipenem, norfloxacin and amikacin in vitro and in vivo. Antimicrob Agents Chemother 1989; 33: 1714–20

    Article  PubMed  CAS  Google Scholar 

  13. Gu JW, Neu HC. In vitro activity of dactimicin a novel pseudodisaccharide aminoglycoside compared with activities of other aminoglycosides. Antimicrob Agents Chemother 1989; 33: 1998–2003

    Article  PubMed  CAS  Google Scholar 

  14. Gottfredsson M, Erlendsdottir H, Gudmundsson S. Quantitation of postantibiotic effect by measuring CO2 generation of bacteria with the bactec blood culture system. Antimicrob Agents Chemother 1991; 35: 2658–61

    Article  PubMed  CAS  Google Scholar 

  15. Baquero F, Culebras E, Patron C, et al. Postantibiotic effect of imipenem on gram-positive and gram-negative micro-organisms. J Antimicrob Chemother 1986; 18 Suppl. E: 47–59

    PubMed  CAS  Google Scholar 

  16. Bodey GP, Pan T. Effect of cephalothin on growth patterns of microorganisms. J Antibiot 1976; 29: 1092–5

    Article  PubMed  CAS  Google Scholar 

  17. Kuenzi B, Segessenmann CH, Gerber AU. Postantibiotic effect of roxithromycin, erythromycin and clindamycin against selected Gram-positive bacteria and Haemophilus influenzae. J Antimicrob Chemother 1987; 20 Suppl. B: 39–46

    PubMed  CAS  Google Scholar 

  18. Bush LM, Boscia JA, Wendeler M, et al. In vitro postantibiotic effect of daptomycin (LY 146032) against Enterococcus faecalis and methicillin susceptible and methicillin resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 1989; 33: 1198–200

    Article  PubMed  CAS  Google Scholar 

  19. Hanberger H, Nilsson LE, Maller R, et al. Pharmacodynamics of beta-lactam antibiotics on Gram-negative bacteria: initial killing, morphology and postantibiotic effect. Scand J Infect Dis 1991; 74: 118–23

    Google Scholar 

  20. Drabu YJ, Blakemore PH. The postantibiotic effect of teicoplanin: monotherapy and combination studies. J Antimicrob Chemother 1991; 27 Suppl. B: 1–7

    Article  PubMed  CAS  Google Scholar 

  21. Fu, KP, Foleno B, Rosenthale ME. The postantibiotic suppressive effect of L-ofloxacin, an optically active isomer of ofloxacin. Diagn Microbiol Infect Dis 1992; 15: 375–8

    Article  PubMed  CAS  Google Scholar 

  22. Davidson RJ, Zhanel GG, Phillips R, et al. Human serum enhances the postantibiotic effect of fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother 1991; 35: 1261–3

    Article  PubMed  CAS  Google Scholar 

  23. Minguez F, Ramos C, Barrientos S, et al. Postantibiotic effect of ciprofloxacin compared with that of five other quinolones. Chemotherapy 1991; 37: 420–5

    Article  PubMed  CAS  Google Scholar 

  24. Molinari G, Bandelloni R, Paglia P, et al. In vitro antimicrobial activity and postantibiotic effect of lomefloxacin a new difluoroquinolone. Diagn Microbiol Infect Dis 1989; 12: 53–6

    Article  Google Scholar 

  25. Debbia EA, Pesce A, Schito GC. In vitro assessment of the postantibiotic effect of lomefloxacin against Gram-positive and Gram-negative pathogens. Am J Med 1992; 92 Suppl. 4A: 45–7

    Article  Google Scholar 

  26. Fuursted K. Synergistic effect of ampicillin or vancomycin in combination with decreasing concentrations of streptomycin against enterococci. Acta Pathol Microbiol Scand 1988; 96: 395–9

    CAS  Google Scholar 

  27. Webster C, Ghazanfar K, Slack R. Subinhibitory and postantibiotic effects of spiramycin and erythromycin on Staphylococcus aureus. J Antimicrob Chemother 1988; 22 Suppl. B: 33–9

    PubMed  CAS  Google Scholar 

  28. Gerber AU, Craig WA. Growth kinetics of respiratory pathogens after short exposures to ampicillin and erythromycin in vitro. J Antimicrob Chemother 1981; 8 Suppl. C: 81–91

    Article  PubMed  CAS  Google Scholar 

  29. Gerber AU, Craig WA. Experimentelle Studien zur Frage des optimalen Dosisintervalls in der Antibiotika at Therapie. Schweiz Med Wochenshr 1982; 112: 42–5

    CAS  Google Scholar 

  30. Varotto F, Garlaschi ML, Garlaschi MC, et al. In vitro postantibiotic effects of miocamycin and erythromycin on Grampositive cocci. J Chemother 1990; 2: 355–61

    PubMed  CAS  Google Scholar 

  31. Bayer AS, Tu J. Chemoprophylactic efficacy against experimental endocarditis caused by β-lactamase-producing aminoglycoside resistant enterococci is associated with prolonged serum inhibitory activity. Antimicrob Agents Chemother 1990; 34: 1068–74

    Article  PubMed  CAS  Google Scholar 

  32. Wilson DA, Rolinson GN. The recovery period following exposure of bacteria to penicillins. Chemotherapy 1979; 25: 14–22

    Article  PubMed  CAS  Google Scholar 

  33. Eagle H, Musselman AD. The role of bactericidal action of penicillin in vitro as a function of its concentration and its paradoxically reduced activity at high concentrations against certain pathogens. J Exp Med 1948; 88: 99–131

    Article  PubMed  CAS  Google Scholar 

  34. Eagle H, Fleischam R, Musselman AD. The bactericidal action of penicillin in vivo: the participation of the host and slow recovery of the surviving organisms. Ann Intern Med 1950; 33: 544–71

    PubMed  CAS  Google Scholar 

  35. Bustamante CI, Drusano GL, Tatem BA, et al. Postantibiotic effect of imipenem on Pseudomonas aeruginosa. Antimicrob Agents Chemother 1984; 26: 678–82

    Article  PubMed  CAS  Google Scholar 

  36. Isaksson B, Nilsson L, Moller R, et al. Postantibiotic effect of aminoglycosides and Gram-negative bacteria evaluated by a new method. J Antimicrob Chemother 1988; 22: 23–33

    Article  PubMed  CAS  Google Scholar 

  37. Hessen MT, Pitsakis PG, Levison ME. Absence of a post-antibiotic effect in experimental Pseudomonas endocarditis treated with imipenem with or without gentamicin. J Infect Dis 1988; 158: 542–8

    Article  PubMed  CAS  Google Scholar 

  38. Rescott DL, Nix DE, Holden P, et al. Comparison of two methods for determining in vitro postantibiotic effects of three antibiotics on Escherichia coli. Antimicrob Agents Chemother 1988; 32: 450–3

    Article  PubMed  CAS  Google Scholar 

  39. Ingerman MJ, Pitsakis PG, Rosenberg AF, et al. The importance of pharmacodynamics in determining the dosing interval in therapy for experimental Pseudomonas endocarditis in the rat. J Infect Dis 1986; 153: 707–14

    Article  PubMed  CAS  Google Scholar 

  40. Isaksson B, Hanberger H, Maller R, et al. The postantibiotic effect of amikacin alone and in combination with piperacillin on Gram-negative bacteria. Scand J Infect Dis 1991; 74: 129–32

    Google Scholar 

  41. Hanberger H, Nilsson LE, Kihlstrom E, et al. Postantibiotic effect of β-lactam antibiotics on Escherichia coli evaluated by bioluminescence assay of bacterial ATP. Antimicrob Agents Chemother 1990; 34: 102–6

    Article  PubMed  CAS  Google Scholar 

  42. Zhanel GG, Crampton, Kim S, et al. Antimicrobial activity of subinhibitory concentrations of ciprofloxacin against Pseudomonas aeruginosa as determined by the killing curve method and the postantibiotic effect. Chemotherapy 1992; 38: 388–94

    Article  PubMed  CAS  Google Scholar 

  43. Chin NX, Neu HC. Postantibiotic suppressive effect of ciprofloxacin against Gram-positive and Gram-negative bacteria. Am J Med 1987; 82 Suppl. 4A: 58–62

    PubMed  CAS  Google Scholar 

  44. Odenholt I, Isaksson B, Nilsson L, et al. Postantibiotic and bactericidal effect of imipenem against Pseudomonas aeruginosa. Eur J Microbiol Infect Dis 1989; 8: 136–41

    Article  CAS  Google Scholar 

  45. Guan L, Burnham JC. Postantibiotic effect of CI-960 enoxacin and ciprofloxacin on Escherichia coli: effect on morphology and haemolysin activity. J Antimicrob Chemother 1992; 29: 529–38

    Article  PubMed  CAS  Google Scholar 

  46. Hardy DJ, Swanson RN, Rode RA, et al. Enhancement of the in vitro and in vivo activities of clarithromycin against Hemophilus influenzae by 14 hydroxy-clarithromycin its major metabolite in humans. Antimicrob Agents Chemother 1990; 34: 1407–13

    Article  PubMed  CAS  Google Scholar 

  47. Scalarone GM, Mikami Y, Kurita N, et al. The postantifungal effect of 5-fluorocytosine on Candida albicans. J Antimicrob Chemother 1992; 29: 129–36

    Article  PubMed  CAS  Google Scholar 

  48. Beggs WH, Jenne JW. Isoniazid uptake and growth inhibition of Mycobacterium tuberculosis in relation to time and concentration of pulsed drug exposures. Tubercle 1969; 50: 377–85

    Article  PubMed  CAS  Google Scholar 

  49. Bermudez LE, Wu M, Young LS, et al. Postantibiotic effect of amikacin and rifapentine against Mycobacterium avium complex. J Infect Dis 1992; 166: 923–6

    Article  PubMed  CAS  Google Scholar 

  50. Edelstein PH, Edelstein MAC, Weidenfeld J, et al. In vitro activity of sparfloxacin (CI 978; AT-4140) for clinical legionella species pharmacokinetics in guinea pig and use to treat guinea pigs with L. pneumophila pneumonia. Antimicrob Agents Chemother 1990; 34: 2122–7

    Article  PubMed  CAS  Google Scholar 

  51. Levasseur PR, Dournon E, Dameron G, et al. Comparative postantibacterial activities of pefloxacin, ciprofloxacin and ofloxacin against intracellular multiplication of Legionella pneumophila serogroup 1. Antimicrob Agents Chemother 1990; 34: 1733–8

    Article  Google Scholar 

  52. Vogelman BS, Craig WA. Kinetics of antimicrobial activity. J Pediatr 1986; 108: 835–40

    Article  PubMed  CAS  Google Scholar 

  53. Nishida M, Murakawa T, Kamimura T, et al. Bactericidal activity of cephalosporins in an in vitro model simulating serum levels. Antimicrob Agents Chemother 1978; 14: 6–12

    Article  PubMed  CAS  Google Scholar 

  54. Grasso S, Meinaroi G, DeCarneri I, et al. New in vitro model to study the effect of antibiotic concentration and rate of elimination on antibacterial activity. Antimicrob Agents Chemother 1978; 13: 570–6

    Article  PubMed  CAS  Google Scholar 

  55. Hanberger H, Nilsson LE, Maller R, et al. Pharmacodynamics of daptomycin and vancomycin on Enterococcus faecalis and Staphylococcus aureus demonstrated by studies of initial killing and postantibiotic effect and influence of Ca and albumin on these drugs. Antimicrob Agents Chemother 1991; 35: 1710–6

    Article  PubMed  CAS  Google Scholar 

  56. Zhanel GG, Karlowsky JA, Hoban DJ, et al. Antimicrobial activity of subinhibitory concentrations of aminoglycosides against Pseudomonas aeruginosa as determined by the killing curve method and the postantibiotic effect (PAE). Chemotherapy 1991; 37: 114–21

    Article  PubMed  CAS  Google Scholar 

  57. Karlowsky JA, Zhanel GG, Davidson RJ, et al. Postantibiotic effect in Pseudomonas aeruginosa following single and multiple aminoglycoside exposures in vitro. J Antimicrob Chemother 1994; 33: 937–47

    Article  PubMed  CAS  Google Scholar 

  58. Fuursted K. Comparative killing activity and postantibiotic effect of streptomycin combined with ampicillin, ciprofloxacin, imipenem, piperacillin or vancomycin against strains of Streptococcus faecalis and Streptococcus faecium. Chemotherapy 1988; 34: 229–34

    Article  PubMed  CAS  Google Scholar 

  59. Zuccarelli M, Simeon De Bouchberg M, Maillols H, et al. Postantibiotic effect of ciprofloxacin alone and in combination on Streptococcus faecalis. Pathol Biol (Paris) 1988; 36: 410–3

    CAS  Google Scholar 

  60. Hanberger H, Nilsson LE, Svensson E, et al. Synergic postantibiotic effect of mecillinam in combination with other beta-lactam antibiotics in relation to morphology and initial killing. J Antimicrob Chemother 1991; 28: 523–32

    Article  PubMed  CAS  Google Scholar 

  61. Gould IM, Jason AC, Milne K. Use of the Malthus microbial growth analyser to study the postantibiotic effect of antibiotics. J Antimicrob Chemother 1989; 24: 523–31

    Article  PubMed  CAS  Google Scholar 

  62. Hessen MT, Pitsakis PG, Levison ME. Postantibiotic effect of penicillin plus gentamicin versus Enterococcus faecalis in vitro and in vivo. Antimicrob Agents Chemother 1989; 33: 608–11

    Article  PubMed  CAS  Google Scholar 

  63. Winstanley TG, Hastings JGM. Synergy between penicillin and gentamicin against enterococci. J Antimicrob Chemother 1990; 25: 551–60

    Article  PubMed  CAS  Google Scholar 

  64. Isaksson B, Hanberger H, Mailer R, et al. Synergistic postantibiotic effect of amikacin and beta-lactam antibiotics on Enterococcus faecalis. J Antimicrob Chemother 1991; 27 Suppl. C: 9–14

    Article  PubMed  CAS  Google Scholar 

  65. Winstanley TG, Hastings JGM. Penicillin aminoglycoside synergy and postantibiotic effect for enterococci. J Antimicrob Chemother 1989; 23: 189–99

    Article  PubMed  CAS  Google Scholar 

  66. Gudmundsson S, Erlendsdottir H, Gottfredsson M, et al. The postantibiotic effect induced by antimicrobial combinations. Scand J Infect Dis 1991; 74: 80–93

    Google Scholar 

  67. Kroeker JS, Karlowsky JA, Drobot GR, et al. The effect of combinations of aminoglycoside, beta-lactams and fluoro-quinolones on the in vitro postantibiotic effect (PAE) of Pseudomonas aeruginosa. Conjoint Meeting on Infectious Diseases; 1994 Dec 6: Montreal

  68. Odenholt I, Isaksson B, Nilsson L, et al. Postantibiotic and bactericidal effect of imipenem against Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 1989; 8: 136–41

    Article  PubMed  CAS  Google Scholar 

  69. Gudmundsson A, Erlendsdottir H, Gottfredsson M, et al. Impact of pH and cationic supplementation on in vitro postantibiotic effect. Antimicrob Agents Chemother 1991; 35: 2617–24

    Article  PubMed  CAS  Google Scholar 

  70. Zhanel GG, Karlowsky JA, Davidson RJ, et al. Influence of human urine on the postantibiotic effect (PAE) of ciprofloxacin against Escherichia coli. Chemotherapy 1991; 37: 218–23

    Article  PubMed  CAS  Google Scholar 

  71. Zhanel GG, Karlowsky JA, Davidson RJ, et al. Effect of pooled human cerebrospinal fluid on the postantibiotic effects of cefotaxime, ciprofloxacin and gentamicin against Escherichia coli. Antimicrob Agents Chemother 1992; 36: 1136–9

    Article  PubMed  CAS  Google Scholar 

  72. McDonald PJ, Wetherall BL, Pruul H. Postantibiotic leucocyte enhancement: increased susceptibility of bacteria pretreated with antibiotics to activity of leukocytes. Rev Infect Dis 1981; 3: 38–44

    Article  PubMed  CAS  Google Scholar 

  73. Pruul H, McDonald PJ. Lomefloxacin induced modification of the kinetics of the kinetics of growth of Gram-negative bacteria and susceptibility to phagocytic killing by human neutrophils. J Antimicrob Chemother 1990; 25: 91–101

    Article  PubMed  CAS  Google Scholar 

  74. Yeaman MR, Norman DC, Bayer AS. Platelet microbicidal protein enhances antibiotic induced killing of and postantibiotic effect in Staphylococcus aureus. Antimicrob Agents Chemother 1992; 36: 1665–70

    Article  PubMed  CAS  Google Scholar 

  75. Odenholt-Tornquist I. Studies on the postantibiotic effect and the postantibiotic sub-MIC effect of meropenem. J Antimicrob Chemother 1993; 31: 881–92

    Article  Google Scholar 

  76. Odenholt I, Holm SE, Cars O. Effects of benzylpenicillin on Streptococcus pyogenes during the postantibiotic phase in vitro. J Antimicrob Chemother 1989; 24: 147–56

    Article  PubMed  CAS  Google Scholar 

  77. Odenholt-Tornquist I, Lowdin E, Cars O. Pharmacodynamic effects of subinhibitory concentrations of β-lactam antibiotics in vitro. Antimicrob Agents Chemother 1991; 35: 1834–9

    Article  Google Scholar 

  78. Odenholt-Tornquist I, Holm SE, Cars O. Pharmacodynamic effects of subinhibitory antibiotic concentrations. Scand J Infect Dis 1991; 74: 94–101

    Google Scholar 

  79. Odenholt-Tornquist I, Lowdin E, Cars O. Postantibiotic sub-MIC effects of vancomycin, roxithromycin, sparfloxacin and amikacin. Antimicrob Agents Chemother 1992; 36: 1852–8

    Article  Google Scholar 

  80. MacKenzie FM, Gould IM. The postantibiotic effect. J Antimicrob Chemother 1993; 32: 519–37

    Article  PubMed  CAS  Google Scholar 

  81. Kroeker JS, Karlowsky JA, Zhanel GG. Recommendation for the calculation of the PAE using beta-lactams and Gram-negative bacilli. J Antimicrob Chemother 1994

    Google Scholar 

  82. Fuad N, Frere JM, Ghuysen JM, et al. Mode of interaction between β-lactam antibiotics and the exocellular DD-carboxy-peptidase-transpeptidase from Streptomyces R39. Biochem J 1976; 155: 623–9

    PubMed  CAS  Google Scholar 

  83. Craig, WA, Ebert SC. Continuous infusion of beta-lactam antibiotics. Antimicrob Agents Chemother 1992; 36: 2577–83

    Article  PubMed  CAS  Google Scholar 

  84. Gilbert DN. Once daily aminoglycoside therapy. Antimicrob Agents Chemother 1991; 35: 399–405

    Article  PubMed  CAS  Google Scholar 

  85. Zhanel GG, Ariano RE. Once daily aminoglycoside dosing: Maintained efficacy with reduced nephrotoxicity. Ren Fail 1992; 14: 1–9

    Article  PubMed  CAS  Google Scholar 

  86. Parker SE, Davey PG. Practicalities of once-daily aminoglycoside dosing. J Antimicrob Ther 1993; 31: 4–8

    Article  CAS  Google Scholar 

  87. Barclay ML, Begg EJ, Hickling KG. What is the evidence for once-daily aminoglycoside therapy? Clin Pharmacokinet 1994; 27: 32–48

    Article  PubMed  CAS  Google Scholar 

  88. Gerber AU, Wiprachtiger P, Stettler-Spichiger U, et al. Constant infusions versus intermittent doses of gentamicin against Pseudomonas aeruginosa in vitro. J Infect Dis 1982; 145: 554–60

    Article  PubMed  CAS  Google Scholar 

  89. Gerber AU, Brugger HP, Feller C, et al. Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics. J Infect Dis 1986; 153: 90–7

    Article  PubMed  CAS  Google Scholar 

  90. Vogelman B, Gudmundsson S, Leggett J, et al. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 1988; 158: 831–47

    Article  PubMed  CAS  Google Scholar 

  91. Roosendaal R, Bakker-Woudenberg IAJ, Berghe-van Raffe M, et al. Impact of the dosage schedule on the efficacy of ceftazidime, gentamicin and ciprofloxacin in Klebsiella pneumoniae pneumonia and septicemia in leukopenic rats. Eur J Clin Microbiol Infect Dis 1989; 8: 878–87

    Article  PubMed  CAS  Google Scholar 

  92. Leggett JE, Fantin B, Ebert S, et al. Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models. J Infect Dis 1989; 159: 281–92

    Article  PubMed  CAS  Google Scholar 

  93. Gerber AU. Impact of the antibiotic dosage schedule on efficacy in experimental soft tissue infections. Scand J Infect Dis 1991; 74: 147–54

    Google Scholar 

  94. Fantin B, Ebert S, Leggett J, et al. Factors affecting duration of in-vivo postantibiotic effect for aminoglycosides against Gram-negative bacilli. J Antimicrob Chemother 1991; 27: 829–36

    Article  PubMed  CAS  Google Scholar 

  95. Craig WA, Redington J, Ebert SC. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 1991; 27 Suppl. C: 29–40

    Article  PubMed  CAS  Google Scholar 

  96. Roosendaal R, Bakker-Woudenberg IAJM. Impact of the antibiotic dosage schedule on efficacy in experimental lung infections. Scand J Infect Dis 1991; 74: 155–62

    Google Scholar 

  97. Dalhoff A, Ullmann U. Correlation between pharmacokinetics pharmacodynamics and efficacy of antibacterial agents in animal models. Eur J Clin Microbiol Infect Dis 1990; 9: 479–87

    Article  PubMed  CAS  Google Scholar 

  98. Drusano GL. Human pharmacokinetics of beta-lactams aminoglycosides and their combination. Scand J Infect Dis 1991; 74: 235–48

    Google Scholar 

  99. Schentag JJ. Correlation of pharmacokinetic parameters to efficacy of antibiotics: relationships between serum concentrations MIC values and bacterial eradication in patients with Gram-negative pneumonia. Scand J Infect Dis 1991; 74: 218–34

    Google Scholar 

  100. Kapusnik JE, Hackbarth CJ, Chambers HF, et al. Single large daily dosing versus intermittent dosing of tobramycin for treating experimental Pseudomonas pneumonia. J Infect Dis 1988; 158: 7–12

    Article  PubMed  CAS  Google Scholar 

  101. Wood CA, Norton DR, Kohlhepp SJ, et al. The influence of tobramycin dosage regimens on nephrotoxicity ototoxicity and antibacterial efficacy in a rat model of subcutaneous abscess. J Infect Dis 1988; 158: 13–22

    Article  PubMed  CAS  Google Scholar 

  102. Gerber AU, Kozak S, Segessenmann, et al. Once daily versus thrice daily administration of netilmicin in combination therapy of Pseudomonas aeruginosa infection in a man-adapted neutropenic animal model. Eur J Clin Microbiol Infect Dis 1989; 8: 233–7

    Article  PubMed  CAS  Google Scholar 

  103. Hatala M, Moravek J, Prat V, et al. Daily single-dose gentamicin therapy in experimental pyelonephritis. Infection 1977; 5: 232–5

    Article  PubMed  CAS  Google Scholar 

  104. Powell SH, Thompson WL, Luthe MA, et al. Once-daily vs. continuous aminoglycoside dosing: efficacy and toxicity in animal and clinical studies of gentamicin, netilmicin and tobramycin. J Infect Dis 1983; 147: 918–32

    Article  PubMed  CAS  Google Scholar 

  105. Pechere M, Letarte R, Pechère JC. Efficacy of different dosing schedules of tobramycin for treating a murine Klebsiella pneumoniae bronchopneumonia. J Antimicrob Chemother 1987; 19: 487–91

    Article  PubMed  CAS  Google Scholar 

  106. Reiner NE, Bloxham DD, Thompson WL. Nephrotoxicity of gentamicin and tobramycin given once daily or continuously in dogs. J Antimicrob Chemother 1978; 4 Suppl. A: 85–101

    Article  PubMed  CAS  Google Scholar 

  107. Bennett WM, Plamp CE, Gilbert DN, et al. The influence of dosage regimen on experimental gentamicin nephrotoxicity: dissociation of peak serum levels from renal failure. J Infect Dis 1979; 140: 576–80

    Article  PubMed  CAS  Google Scholar 

  108. Herscovici L, Grise G, Thauvin C. Efficacy and safety of once daily versus intermittent dosing of tobramycin in rabbits with acute pyelonephritis. Scand J Infect Dis 1988; 20: 205–12

    Article  PubMed  CAS  Google Scholar 

  109. Klastersky J, Prevost JM, Meunier-Carpentier F, et al. Comparative trial of single-dose versus twice daily sisomicin in bacteriuric patients. J Clin Pharmacol 1977; 17: 520–8

    PubMed  CAS  Google Scholar 

  110. Giamarellou H, Yiallourous K, Petrikkos G, et al. Comparative kinetics and efficacy of amikacin administered once or twice daily in the treatment of systemic Gram-negative infections. J Antimicrob Chemother 1991; 27 Suppl. C: 73–9

    PubMed  Google Scholar 

  111. Marik PE, Lipman J, Kobilski S, et al. A prospective randomized study comparing once versus twice-daily amikacin dosing in critically ill adult and pediatric patients. J Antimicrob Chemother 1991; 28: 753–64

    Article  PubMed  CAS  Google Scholar 

  112. Labowitz E, Levison ME, Kay D. Single dose daily gentamicin therapy in urinary tract infection. Antimicrob Agents Chemother 1974; 6: 465–70

    Article  Google Scholar 

  113. Shankar A, Sharma A. Gentamicin as once daily dose therapy in recurrent urinary tract infections in children. Curr Ther Res 1987; 41: 599–603

    Google Scholar 

  114. Maller R, Isaksson B, Nilsson K, et al. A study of amikacin given once versus twice daily in serious infections. J Antimicrob Chemother 1988; 22: 75–9

    Article  PubMed  CAS  Google Scholar 

  115. Fan ST, Lau WY, Teoh-Chan CH, et al. Once daily administration of netilmicin compared with thrice daily, both in combination with metronidazole, in gangrenous and perforated appendicitis. J Antimicrob Chemother 1988; 22: 69–74

    Article  PubMed  CAS  Google Scholar 

  116. TerBraak EW, DeVries PJ, Bouter K, et al. Once daily dosing regimen for aminoglycoside plus β-lactam combination therapy of serious bacterial infections: Comparative trial with netilmicin plus ceftriaxone. Am J Med 1990; 89: 58–66

    Article  CAS  Google Scholar 

  117. Hollender LF, Bahnini J, DeManzini N, et al. A multicenter study of netilmicin once daily versus thrice daily in patients with appendicitis and other intra-abdominal infections. J Antimicrob Chemother 1989; 23: 773–83

    Article  PubMed  CAS  Google Scholar 

  118. Sturm AW. Netilmicin in the treatment of Gram-negative bacteremia: single daily versus multiple daily dosage. J Infect Dis 1989; 159: 931–7

    Article  PubMed  CAS  Google Scholar 

  119. DeVries PJ, Verkooyen RP, Leguit P, et al. Prospective randomized study of once daily versus thrice daily netilmicin regimens in patients with intra-abdominal infections. Eur J Clin Microbiol Infect Dis 1990; 9: 161–8

    Article  CAS  Google Scholar 

  120. Tulkens PM, Clercky-Braun F, Dounez J, et al. Safety and efficacy of aminoglycosides once-a-day: experimental data and randomized controlled evaluation in patients suffering from pelvic inflammatory disease. J Drug Dev 1988; 1 Suppl. 3: 71–82

    Google Scholar 

  121. Nordstrom L, Ringberg H, Cronberg S, et al. Does administration of an aminoglycoside in a single daily dose affect its efficacy and toxicity? J Antimicrob Chemother 1990; 25: 159–73

    Article  PubMed  CAS  Google Scholar 

  122. Prins JM, Buller HR, Kuijper EJ, et al. Once versus thrice daily gentamicin in patients with serious infections. Lancet 1993; 341: 335–9

    Article  PubMed  CAS  Google Scholar 

  123. DeBroe ME, Verbist L, Verpooten GA. Influence of dosage schedule on renal cortical accumulation of amikacin and tobramycin in man. J Antimicrob Chemother 1991; 27 Suppl. C: 41–7

    Article  Google Scholar 

  124. Mattie H, Craig WA, Pechère JC. Determinants of efficacy and toxicity of aminoglycosides. J Antimicrob Chemother 1989; 24: 281–93

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhanel, G.G., Craig, W.A. Pharmacokinetic Contributions to Postantibiotic Effects. Clin. Pharmacokinet. 27, 377–392 (1994). https://doi.org/10.2165/00003088-199427050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199427050-00005

Keywords

Navigation