Skip to main content
Log in

Clinical Pharmacokinetics During Continuous Haemofiltration

  • Review Article
  • Clinical Pharmacokinetics in Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Continuous haemofiltration is an extracorporeal technique that is increasingly used to remove fluid, electrolytes, and other waste products from the blood supply of critically ill patients with acute renal failure. Continuous arteriovenous haemofiltration (CAVH), where the blood exits the body from an artery and re-enters through a vein, is widely used. Continuous venovenous haemofiltration (CVVH), where blood both exits and enters through a vein by way of a mechanical pump, avoids problems that result from the variable ultrafiltration rate found during CAVH. Continuous arteriovenous or venovenous haemodiafiltration (CAVHD or CVVHD) combine continuous haemofiltration and haemodialysis.

All methods involve ultrafiltration of the patient’s blood through a filter that is highly permeable to water and small molecules. Drug elimination by haemofiltration depends mainly on the rate of ultrafiltration, the drug protein binding and the sieving coefficient of the membrane. Because patients undergoing continuous haemofiltration have impaired renal function, dosage reduction is often recommended so that adverse drug reactions are avoided. In contrast, if drug removal by haemofiltration is significant, dosage supplementation may be required to ensure therapeutic efficacy of the drug. Therefore, knowledge of the impact of continuous haemofiltration on drug elimination and the pharmacokinetic profile of drugs is essential to good clinical management.

The currently available information on the clinical pharmacokinetic aspects of drug therapy during continuous haemofiltration are summarised. Drugs commonly associated with haemofiltration therapy are tabulated with updated pharmacokinetics and drug-monitoring information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anton AH. Increasing activity of sulfonamides with displacing agents. Annals of the New York Academy of Sciences 226: 273–292, 1973

    Article  PubMed  CAS  Google Scholar 

  • Armendariz E, Chelluri L, Ptachcinski R. Pharmacokinetics of amikacin during continuous venovenous hemofiltration. Critical Care Medicine 18: 675–676, 1990

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DK, Hidalgo HA, Eldadah M. Vancomycin and tobramycin clearance in an infant during continuous hemofiltration. Annals of Pharmacotherapy 27: 224–227, 1993

    PubMed  CAS  Google Scholar 

  • Bellomo R, Martin H, Parkin G, et al. Continuous arteriovenous haemodiafiltration in the critically ill: influence on major nutrient balance. Intensive Care Medicine 17: 399–402, 1991

    Article  PubMed  CAS  Google Scholar 

  • Bellomo R, Teede H, Boyce N. Anticoagulant regimens in acute continuous hemodiafiltration: a comparative study. Intensive Care Medicine 19: 329–332, 1993

    Article  PubMed  CAS  Google Scholar 

  • Bischoff K, Doehn M. Continuous pump-driven hemofiltration in renal failure. In Kramer P (Ed.) Arteriovenous hemofiltration, pp. 220–224, Springer-Verlag, New York, 1985

    Chapter  Google Scholar 

  • Bodenham A, Shelly MP, Park GR. The altered pharmacokinetics and pharmacodynamics of drugs commonly used in critically ill patients. Clinical Pharmacokinetics 14: 347–373, 1988

    Article  PubMed  CAS  Google Scholar 

  • Borgeat A, Biollaz J, Freymond B, et al. Hemofiltration clearance of flecainide in patient with acute renal failure [case reports]. Intensive Care Medicine 14: 236–237, 1988

    Article  PubMed  CAS  Google Scholar 

  • Bozkurt F, Hörl WH. Bedeutung der kontinuierlichen arteriovenösen Hâmofiltration (CAVH) und arteriovenösen Hâmodiafiltration (AV-HDF) in der Intensivtherpaie. Intensivmedizin und Notfallmedizin 24: 248–254, 1987

    Google Scholar 

  • Burchardi H. Hemofiltration. In Vincent JL (Ed.) Update in intensive care and emergency medicine, pp. 340–347, Springer-Verlag, New York, 1989

    Google Scholar 

  • Cigarran-Guldris S, Brier ME, Golper TA. Tobramycin clearance during simulated continuous arteriovenous hemodialysis. In Sieberth et al. (Eds) Continuous hemofiltration. Contributions to Nephrology 93: 120–123, 1991

    Google Scholar 

  • Colton C, Henderson L, Ford C, et al. Kinetics of hemodiafiltration I, in vitro transport characteristics of a hollow-fiber blood ultrafilter. Journal of Laboratory and Clinical Medicine 85: 355–381, 1975

    PubMed  CAS  Google Scholar 

  • Davies S, Fahey M, Brown E, et al. Pharmacokinetics of cefuroxime and ceftazidime in patients with acute renal failure treated by continuous arteriovenous hemofiltration. International Congress of Chemotherapy, Jerusalem, 1989

  • Davies SP, David A, Edwina A, et al. Amino acid clearances and daily losses in patients with acute renal failure treated by continuous arteriovenous hemodialysis. Critical Care Medicine 19: 1510–1515, 1991a

    Article  PubMed  CAS  Google Scholar 

  • Davies SP, Kox WJ, Brown EA. Clearance studies in patients with acute renal failure treated by continuous arteriovenous haemodialysis. In Sieberth et al. (Eds) Continuous hemofiltration. Contributions to Nephrology 93: 117–119, 1991b

    Google Scholar 

  • Dayton PG, Israili ZH, Perel JM. Influence of binding on drug metabolism and distribution. Annals of the New York Academy of Sciences 226: 172–194, 1973

    Article  PubMed  CAS  Google Scholar 

  • De Clari F. Ceftriaxone pharmacokinetics during continuous arteriovenous haemofiltration. Journal of Antimicrobial Chemotherapy 27: 394–396, 1991

    Article  Google Scholar 

  • Dodd NJ, O’Donovan RM, Bennet-Jones DN, et al. Arteriovenous hemofiltration: a recent advance in the management of renal failure. British Medical Journal 287: 1008–1010, 1983

    Article  PubMed  CAS  Google Scholar 

  • Druml W. Amino acid metabolism and amino acid supply in acute renal failure. In Sieberth & Mann (Eds) Continuous arteriovenous hemofiltration (CAVH), pp. 231–239, Karger, Basel, 1985

    Google Scholar 

  • Eisenhauer T. Development and actual performance of continuous arteriovenous hemofiltration (CAVH). In Sieberth & Mann (Eds) Continuous arteriovenous hemofiltration (CAVH), pp. 1–13, Karger, Basel, 1985

    Google Scholar 

  • Ernest D, Cutler DJ. Gentamicin clearance during continuous arteriovenous hemodiafiltration. Critical Care Medicine 20: 586–589, 1992

    Article  PubMed  CAS  Google Scholar 

  • Frigon RP, Leypoldt JK, Alford MF, et al. Hemofilter solute sieving is not governed by dynamically polarized protein. Transactions of the American Society of Artificial Internal Organs 30: 486–490, 1984

    CAS  Google Scholar 

  • Geronemus R, Schneider N. Continuous arteriovenous hemodialysis a new modality for treatment of acute renal failure. Transactions of the American Society of Artificial Internal Organs 30: 610–613, 1984

    CAS  Google Scholar 

  • Golper TA. Continuous arteriovenous hemofiltration in acute renal failure. American Journal of Kidney Diseases 6: 373–386, 1985

    PubMed  CAS  Google Scholar 

  • Golper TA. Drug removal during continuous hemofiltration or hemodialysis, In Sieberth et al. (Eds) Continuous hemofiltration. Contributions to Nephrology 93: 110–116, 1991

    Google Scholar 

  • Golper TA, Bennett WM. Drug removal by continuous arteriovenous hemofiltration. A review of the evidence in poisoned patients. Medical Toxicology 3: 341–349, 1988

    PubMed  CAS  Google Scholar 

  • Golper TA, Pullian J, Bennett WM. Removal of therapeutic drugs by continuous arteriovenous hemofiltration. Archives of Internal Medicine 145: 1651–1652, 1985a

    Article  PubMed  CAS  Google Scholar 

  • Golper TA, Ronco C, Kasplan AA. Continuous arteriovenous hemofiltration: improvements, modifications and future directions. Seminars in Dialysis 1: 50–54, 1988

    Article  Google Scholar 

  • Golper TA, Saad AM, Morris CD. Gentamicin and Phenytoin in vitro sieving characteristics through polysulfone hemofilters: effect of flow rate, drug concentration and solvent system. Kidney International 30: 937–943, 1986

    Article  PubMed  CAS  Google Scholar 

  • Golper TA, Wedel SK, Kaplan AA, et al. Drug removal during continuous arteriovenous hemofiltration theory and clinical observations. International Journal of Artificial Organs 8: 307–312, 1985b

    PubMed  CAS  Google Scholar 

  • Gulyassy PF, Depner TA. Impaired binding of drugs and endogenous ligands in renal disease. American Journal of Kidney Diseases 2: 578–601, 1983

    PubMed  CAS  Google Scholar 

  • Henderson LW. Biophysics of ultrafiltration and hemofiltration. In Drukker et al. (Eds) Replacement of renal function by dialysis, 2nd rev. ed., pp. 242–264, M. Nijof, Boston, 1983

    Chapter  Google Scholar 

  • Journois D, Chanu D, Drevillon C, et al. Pefloxacin and metabolites removal in continuous hemofiltration with dialysis. Contributions to Nephrology 93: 124–126, 1991

    PubMed  CAS  Google Scholar 

  • Kaplan AA, Longnecker RE, Folkert YW. Continuous arteriovenous hemofiltration. A report of six months experience. Annals of Internal Medicine 100: 358–367, 1984

    PubMed  CAS  Google Scholar 

  • Keller E, Fecht H, Böhler J, et al. Single-dose kinetics of imipenem/cilastatin during continuous arteriovenous hemofiltration in intensive care patients. Nephrology, Dialysis, Transplantation 4: 640–645, 1989

    PubMed  CAS  Google Scholar 

  • Keller F, Wilms H, Schultze G, et al. Effect of plasma protein binding, volume of distribution and molecular weight on the fraction of drugs eliminated by hemodialysis. Clinical Nephrology 19: 201–205, 1983

    PubMed  CAS  Google Scholar 

  • Klein F, Holland FF, Eberle K. Rejection of solutes by hemofiltration membranes. American Society of Artificial Internal Organs Journal 1: 15–23, 1978

    Google Scholar 

  • Kraft D, Lode H. Elimination of ampicillin and gentamicin by hemofiltration. Klinische Wochenschrift 57: 195–196, 1979

    Article  PubMed  CAS  Google Scholar 

  • Kramer P, Wigger W, Rieger J, et al. Arteriovenous hemofiltration: a new and simple method for treatment of overhydrated patients resistant to diuretics. Klinische Wochenschrift 55: 1121–1122, 1977

    Article  PubMed  CAS  Google Scholar 

  • Kroh UF, Dehne M, El Abed K, et al. Drug dosage during continuous hemofiltration: pharmacokinetics and practical implications. In Sieberth et al. (Eds) Continuous hemofiltration. Contributions to Nephrology 93: 127–130, 1991

    Google Scholar 

  • Kroh UF, Hofmann W, Dehne M, et al. Dosisanpassung von Pharmaka während kontinuierlicher hämofiltration. Anaesthesist 38: 225–232, 1989

    PubMed  CAS  Google Scholar 

  • Kronflol NO, Lau AH, Barakat MM. Aminoglycoside binding to polyacrylonitrile hemofilter membranes during continuous hemofiltration. Transactions of the American Society of Artificial Internal Organs 33: 300–303, 1987

    Google Scholar 

  • Kronfol NO, Lau AH, Colon-Riviera J, et al. Effects of CAVH membrane types on drug-sieving coefficients and clearances. Transactions of the American Society of Artificial Internal Organs 22: 85–87, 1986

    Google Scholar 

  • Lau AH, John E. Elimination of vancomycin by continuous arteriovenous hemofiltration. Child Nephrology and Urology 89: 232–235, 1988

    Google Scholar 

  • Lau AH, Kronfol NO, Jabar N, et al. Determinants of drug removal by continuous arteriovenous hemofiltration. Drug Intelligence and Clinical Pharmacy 20: 467, 1986

    Google Scholar 

  • Lau AH, Krofol N, John E. Increased vancomycin elimination by continuous hemofiltration. Transactions of the American Society of Artificial Internal Organs, 33: 772–774, 1987

    CAS  Google Scholar 

  • Lau AH, Pyle K, Kronfol NO, et al. Removal of cephalosporins by continuous arteriovenous ultrafiltration (CAVU) and hemofiltration. International Journal of Artificial Organs 12: 379–383, 1989

    PubMed  CAS  Google Scholar 

  • Lauer A, Saccaggi A, Ronco C, et al. Continuous arteriovenous hemofiltration in the critically ill patient. Clinical use and operational characteristics. Annals of Internal Medicine 99: 455–460, 1983

    PubMed  CAS  Google Scholar 

  • Lehman ME, Kolb KW. Gentamicin elimination in a patient undergoing continuous ultrafiltration. Clinical Pharmacy 4: 327–330, 1985

    PubMed  CAS  Google Scholar 

  • Leypoldt JK, Frigon RP, Henderson LW, Dextran sieving coefficients of hemofilter membranes. Transactions of the American Society of Artificial Internal Organs 29: 678–683, 1983

    CAS  Google Scholar 

  • Macias WL, Mueller BA, Scarim SK, et al. Continuous venovenous hemofiltration: an alternative to continuous arteriovenous hemofiltration and hemodiafiltration in acute renal failure. American Journal of Kidney Diseases 18: 451–458, 1991

    PubMed  CAS  Google Scholar 

  • McNamara PJ, Lalka D, Gibaldi M. Endogenous accumulation products and serum protein binding in uremia. Journal of Laboratory and Clinical Medicine 98: 730–740, 1981

    PubMed  CAS  Google Scholar 

  • Przechera M, Bengel D, Risler T. Pharmacokinetics of Imipenem/cilastatin during continuous arteriovenous hemofiltration In Sieberth et al. (Eds) Continuous hemofiltration. Contributions to Nephrology 93: 131–134, 1991

    Google Scholar 

  • Reetze-Bonorden P, Böhler J, Kohler C, et al. Elimination of vancomycin in patients on continuous arteriovenous hemodialysis. In Sieberth et al. (Eds) Continuous hemofiltration. Contributions to Nephrology 93: 135–139, 1991

    Google Scholar 

  • Reindenberg MM. The binding of drugs to plasma proteins and the interpretation of measurements of plasma concentration of drugs in patients with poor renal function. American Journal of Medicine 67: 466–470, 1977

    Article  Google Scholar 

  • Reidenberg MM, Affrime M. Influence of disease on binding of drugs to plasma proteins. Annals of the New York Academy of Sciences 226: 115–126, 1973

    Article  PubMed  CAS  Google Scholar 

  • Rockel A, Gilge U, Liewald, et al. Elimination of low molecular weight proteins during hemofiltration. Artificial Organs 6: 307–317, 1982

    Article  PubMed  CAS  Google Scholar 

  • Ronco C, Brendolan A, Borin D, et al. Permeability characteristics of polysulfonic membranes in CAVH. In Sieberth & Mann (Eds) Continuous arteriovenous hemofiltration (CAVH), pp. 59–63, Karger, Basel, 1985

    Google Scholar 

  • Rumpf KW, Rieger J, Ansorg R, Doht B, et al. Binding of antibiotics by dialysis membranes and its clinical relevance. Proceedings of the European Dialysis and Transplant Association 14: 607–609, 1978

    Google Scholar 

  • Rumpf KW, Rieger J, Doht B, et al. Drug elimination by hemofiltration. Journal of Dialysis 1: 677–688, 1977

    PubMed  CAS  Google Scholar 

  • Santré CH, Leroy O, Simon M, et al. Pharmacokinetics of vancomycin during continuous hemodiafiltration. Intensive Care Medicine 19: 347–350, 1993

    Article  PubMed  Google Scholar 

  • Schrader J, Stibbe W, Kandt M, et al. Low molecular weight heparin versus standard heparin: a long-term study in hemodialysis and hemofiltration patients. Transactions of the American Society of Artificial Internal Organs 36: 28–32, 1990

    CAS  Google Scholar 

  • Sigler MH, Teehan BP, Van Valkenburgh D. Solute transport in continuous hemodialysis: A new treatment for acute renal failure. Kidney International 32: 562–571, 1987

    Article  PubMed  CAS  Google Scholar 

  • Stevens PE, Riley B, Davies SP, et al. Continuous arteriovenous haemodialysis in critically ill patients. Lancet 2: 150–152, 1988

    Article  PubMed  CAS  Google Scholar 

  • Stokke T, Kramer P, Schrader J, et al. Kontinuierliche arteriovenöse Häemofiltration. Anaesthesist 31: 579–583, 1982

    PubMed  CAS  Google Scholar 

  • Suh B, Craig WA, England AC, et al. Effect of free fatty acids on protein binding of antimicrobial agents. Journal of Infectious Disease 143: 609–610, 1981

    Article  CAS  Google Scholar 

  • Thomson AH, Grant AC, Rodger RSC, et al. Gentamicin and vancomycin removal by continuous venovenous hemofiltration. Case report. DICP: Annals of Pharmacotherapy 25: 127–129, 1991

    PubMed  CAS  Google Scholar 

  • Tillement JP, Lhoste F, Findicelli TF. Diseases and drug protein binding. Clinical Pharmacokinetics 3: 144–154, 1978

    Article  PubMed  CAS  Google Scholar 

  • Trapp V, Kehr A, Striebel P, et al. Parenteral nutrition in patients with acute renal failure treated by continuous arteriovenous hemofiltration. In Verlag S (Ed.) Arteriovenous hemofiltration, pp. 139–53, Kramer P, Berlin, 1985

    Chapter  Google Scholar 

  • Vos M, Vincent HH. Continuous arteriovenous hemodiafiltration: Predicting the clearance of drugs. In Sieberth et al. (Eds) Continuous hemofiltration. Contributions to Nephrology 93: 143–145, 1991

    Google Scholar 

  • Vos MC, Vincent HH, Yzerman EPF. Clearance of imipenem/cilastatin in acute renal failure patients treated by continuous hemodiafiltration. Intensive Care Medicine 18: 282–285, 1992

    Article  PubMed  CAS  Google Scholar 

  • Weiss LG, Cars O, Danielson BG, et al. Pharmacokinetics of intravenous cefuroxime during intermittent and continuous arteriovenous hemofiltration. Clinical Nephrology 30: 282–286, 1988

    PubMed  CAS  Google Scholar 

  • Zarowitz BJ, Anandan JV, Dumler F, et al. Continuous arteriovenous hemofiltration of aminoglycoside antibiotics in critically ill patients. Journal of Clinical Pharmacology 26: 686–689, 1986

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressolle, F., Kinowski, JM., de la Coussaye, J.E. et al. Clinical Pharmacokinetics During Continuous Haemofiltration. Clin-Pharmacokinet 26, 457–471 (1994). https://doi.org/10.2165/00003088-199426060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199426060-00004

Keywords

Navigation