Skip to main content

Overview of the Genes Associated with Polyextremophiles

  • Chapter
  • First Online:
Trends in Biotechnology of Polyextremophiles
  • 349 Accesses

Abstract

Polyextremophiles are known to be a class of organisms that have the extraordinary ability to survive in multiple extreme environmental conditions. Their genetic makeup is what has set them apart from other Archaea and extremophiles in general. Among extremophiles, acido, thermo, halo, and similar other groups of organisms have already been discovered. These organisms have a unique composition of genes that help them survive in such extremities. Organisms such as thermoacidophiles, besides surviving in high temperatures, can also thrive in extremely low pH. Thus, these adaptations give us a glimpse of highly stable genetic content as well as metabolic flexibility in polyextremophiles. The maintenance of homeostasis in polyextremophiles such as thermoalkaliphiles and haloacidophiles is a great mystery for microbiologists. Membrane proteins, chaperons, and DNA repair proteins are greatly altered from that of their mesophilic counterparts. Thus, in this following chapter, we will try to analyze the genetic parameters that help these organisms create and exist in their own niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Adams RL, Kogut M, Russell NJ (1990) The effect of salinity on growth and lipid composition of a moderately halophilic Gram-negative bacterium HX. Biochem Cell Biol 68(1):249–254

    Article  CAS  Google Scholar 

  • Anderson I, Scheuner C, Göker M, Mavromatis K, Hooper SD, Porat I et al (2011) Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. PLoS One 6(5):e20237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelov A, Liebl W (2006) Insights into extreme thermoacidophily based on genome analysis of Picrophilus torridus and other thermoacidophilic archaea. J Biotechnol 126(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Aono R (1990) The poly- α - and - β −1,4-glucuronic acid moiety of teichuronopeptide from the cell wall of the alkalophilic Bacillus strain C-125. Biochem J 270(2):363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aono R, Ohtani M (1990) Loss of alkalophily in cell-wall-component-defective mutants derived from alkalophilic Bacillus C-125. Isolation and partial characterization of the mutants. Biochem J 266(3):933–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG (2004a) Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8(4):325–334

    Article  CAS  PubMed  Google Scholar 

  • Banciu H, Sorokin DY, Kleerebezem R, Muyzer G, Galinski EA, Kuenen JG (2004b) Growth kinetics of haloalkaliphilic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture. Extremophiles 8(3):185–192

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Chaudhari NM, Lahiri A, Gautam A, Bhowmik D, Dutta C et al (2021) Interplay of Various Evolutionary Modes in Genome Diversification and Adaptive Evolution of the Family Sulfolobaceae. Front Microbiol 12:639995

    Article  PubMed  PubMed Central  Google Scholar 

  • Barth S, Huhn M, Matthey B, Klimka A, Galinski EA, Engert A (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66(4):1572–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF (2002) The interaction of alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science (1979) 296(5565):148–151

    CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84(1):54–68

    Article  CAS  PubMed  Google Scholar 

  • Bursy J, Pierik AJ, Pica N, Bremer E (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 282(43):31147–31155

    Article  CAS  PubMed  Google Scholar 

  • Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ et al (2008) Synthesis and uptake of the compatible solutes ectoine and 5-Hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74(23):7286–7296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61

    Article  CAS  PubMed  Google Scholar 

  • Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168(1):334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Counts JA, Zeldes BM, Lee LL, Straub CT, Adams MWW, Kelly RM (2017) Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms. WIREs Syst Biol Med 9(3):e1377

    Article  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Ann Rev Microbiol 45(1):569–606

    Article  CAS  Google Scholar 

  • de Vienne DM (2016) Lifemap: exploring the entire tree of life. PLoS Biol 14(12):1–8

    Article  Google Scholar 

  • Detkova EN (2007) Boltyanskaya Yu v. Osmoadaptation of haloalkaliphilic bacteria: Role of osmoregulators and their possible practical application. Microbiology 76(5):511–522

    Article  CAS  Google Scholar 

  • Dopson M, Holmes DS, Lazcano M, McCredden TJ, Bryan CG, Mulroney KT et al (2017) Multiple osmotic stress responses in acidihalobacter prosperus result in tolerance to chloride ions. Front Microbiol 5:7

    Google Scholar 

  • Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SA, Keis S, Cook GM (2006) Biochemical and Molecular Characterization of a Na+-Translocating F1Fo-ATPase from the Thermoalkaliphilic Bacterium Clostridium paradoxum. J Bacteriol 188(14):5045–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentino G, Del Giudice I, Bartolucci S, Durante L, Martino L, Del Vecchio P (2011) Identification and physicochemical characterization of BldR2 from sulfolobus solfataricus, a novel archaeal member of the MarR transcription factor family. Biochemistry 50(31):6607–6621

    Article  CAS  PubMed  Google Scholar 

  • Fütterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B et al (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci USA 101(24):9091–9096

    Article  PubMed  PubMed Central  Google Scholar 

  • Giotis ES, McDowell DA, Blair IS, Wilkinson BJ (2007) Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes. Appl Environ Microbiol 73(3):997–1001

    Article  CAS  PubMed  Google Scholar 

  • Goldfine H (2010 Oct) The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res 49(4):493–498

    Article  CAS  PubMed  Google Scholar 

  • Gouffi K, Pica N, Pichereau V, Blanco C (1999) Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl Environ Microbiol 65(4):1491–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan DW (1989 Dec) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171(12):6710–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guagliardi A, Cerchia L, Rossi M (2002) The Sso7d protein of Sulfolobus solfataricus: in vitro relationship among different activities. Archaea 1(2):87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haney PJ, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ (1999) Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci 96(7):3578–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart DJ, Vreeland RH (1988) Changes in the hydrophobic-hydrophilic cell surface character of Halomonas elongata in response to NaCl. J Bacteriol 170(1):132–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horikoshi K (1996) Alkaliphiles — from an industrial point of view. FEMS Microbiol Rev 18(2):259–270

    Article  CAS  Google Scholar 

  • Imhoff JF, Rodriguez-Valera F (1984) Betaine is the main compatible solute of halophilic eubacteria. J Bacteriol 160(1):478–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imhoff JF, Thiemann B (1991) Influence of salt concentration and temperature on the fatty acid compositions of Ectothiorhodospira and other halophilic phototrophic purple bacteria. Arch Microbiol 156(5):370–375

    Article  CAS  Google Scholar 

  • Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S et al (2011) Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13(12):3289–3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda T (1977) Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev 41(2):391–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman AE, Goldfine H, Narayan O, Gruner SM (1990) Physical studies on the membranes and lipids of plasmalogen-deficient Megasphaera elsdenii. Chem Phys Lipids 55(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Kennedy EP (1982) Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc Natl Acad Sci 79(4):1092–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kevbrin VV, Romanek CS, Wiegel J (2004) Alkalithermophiles: a double challenge from extreme environments. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Springer, Dordrecht, pp 395–412

    Google Scholar 

  • Khaleque HN, Shafique R, Kaksonen AH, Boxall NJ, Watkin ELJ (2018) Quantitative proteomics using SWATH-MS identifies mechanisms of chloride tolerance in the halophilic acidophile Acidihalobacter prosperus DSM 14174. Res Microbiol 169(10):638–648

    Article  CAS  PubMed  Google Scholar 

  • Kindzierski V, Raschke S, Knabe N, Siedler F, Scheffer B, Pflüger-Grau K et al (2017) Osmoregulation in the Halophilic Bacterium Halomonas elongata: a case study for integrative systems biology. PLoS One 12(1):e0168818

    Article  PubMed  PubMed Central  Google Scholar 

  • Koebnik R (1995) Proposal for a peptidoglycan-associating alpha-helical motif in the C-terminal regions of some bacterial cell-surface proteins. Mol Microbiol 16(6):1269–1270

    Article  CAS  PubMed  Google Scholar 

  • Konings WN, Albers SV, Koning S, Driessen AJM (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74(2):257–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9(5):330–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlmann AU, Hoffmann T, Bursy J, Jebbar M, Bremer E (2011) Ectoine and Hydroxyectoine as Protectants against Osmotic and Cold Stress: Uptake through the SigB-Controlled Betaine-Choline- Carnitine Transporter-Type Carrier EctT from Virgibacillus pantothenticus. J Bacteriol 193(18):4699–4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol Lett 33(11):2279–2285

    Article  CAS  PubMed  Google Scholar 

  • Künzel A (2003) Aharon Oren: Halophilic microorganisms and their environments. Int Microbiol 6(2):151–152

    Article  Google Scholar 

  • Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV et al (2022) OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res 51(D1):D445–D451

    Article  PubMed Central  Google Scholar 

  • Lemmens L, Tilleman L, De Koning E, Valegård K, Lindås AC, Van Nieuwerburgh F et al (2019) YtrASa, a GntR-family transcription factor, represses two genetic loci encoding membrane proteins in sulfolobus acidocaldarius. Front Microbiol 10:2084

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J et al (2021) The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 45(4):fuaa063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyn SA, Rodionova IA, Li X, Rodionov DA (2015) Novel transcriptional regulons for autotrophic cycle genes in crenarchaeota. J Bacteriol 197(14):2383–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CH, Bot AGM, de Jonge HR, Tilly BC (2007) Osmosignaling and Volume Regulation in Intestinal Epithelial Cells. Methods Enzymol 428:325–342

    Article  CAS  PubMed  Google Scholar 

  • Lippert K, Galinski EA (1992) Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37(1):61–65

    Article  CAS  Google Scholar 

  • Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the Functionally Critical A<em>X</em>A<em>X</em>A<em>X</em>A and P<em>XX</em>E<em>XX</em>P Motifs of the ATP Synthase <em>c</em>-Subunit from an Alkaliphilic <em>Bacillus</em>*. J Biol Chem 284(13):8714–8725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143(4):1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Lynn DJ, Singer GAC, Hickey DA (2002) Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res 30(19):4272–4277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, van der Oost J, Koonin EV (2009) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct 4(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  • Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S et al (2019) Living at the extremes: Extremophiles and the limits of life in a planetary context. Front Microbiol 10:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesbah NM, Wiegel J (2008) Life at extreme limits. Ann N Y Acad Sci 1125(1):44–57

    Article  CAS  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: Diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78(12):4074–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+(K+)/H+ antiporters. Mol Microbiol 74(2):270–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KJ, Kennedy EP, Reinhold VN (1986) Osmotic Adaptation by Gram-Negative Bacteria: Possible Role for Periplasmic Oligosaccharides. Science 231(4733):48–51

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Foster B, Sun H et al (2011) Complete genome sequence of Thioalkalivibrio sp. K90mix. Stand Genomic Sci 5(3):341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyyssölä A, Leisola M (2001) Actinopolyspora halophila has two separate pathways for betaine synthesis. Arch Microbiol 176(4):294–300

    Article  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63(2):334–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A (2015) Halophilic microbial communities and their environments. Curr Opin Biotechnol 33:119–124

    Article  CAS  PubMed  Google Scholar 

  • Oshima T, Moriya T (2008) A preliminary analysis of microbial and biochemical properties of high-temperature compost. Ann N Y Acad Sci 1125(1):338–344

    Article  CAS  PubMed  Google Scholar 

  • Preiss L, Yildiz Ö, Hicks DB, Krulwich TA, Meier T (2010) A new type of proton coordination in an F1Fo-ATP synthase rotor ring. PLoS Biol 8(8):1–10

    Article  Google Scholar 

  • Redder P, Garrett RA (2006) Mutations and Rearrangements in the Genome of Sulfolobus solfataricus P2. J Bacteriol 188(12):4198–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roessler M, Muller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3(12):743–754

    Article  CAS  Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U et al (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177(24):7050–7059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoma A, Garrido-Amador P, Nielsen SD, Røy H, Kjeldsen KU (2019) The polyextremophilic bacterium clostridium paradoxum attains piezophilic traits by modulating its energy metabolism and cell membrane composition. Appl Environ Microbiol 85(15):e00802–e00819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seckbach J, Oren A, Stan-Lotter H (2013) Polyextremophiles : life under multiple forms of stress. Springer, Cham

    Book  Google Scholar 

  • Severin J, Wohlfarth A, Galinski EA (1992) The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J Gen Microbiol 138(8):1629–1638

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L (2011) Ion transport and osmotic adjustment in plants and bacteria. Biomol Concepts 2(5):407–419

    Article  CAS  PubMed  Google Scholar 

  • Singer GAC, Hickey DA (2003) Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317:39–47

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26(1):49–71

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18(2–3):149–158

    Article  CAS  Google Scholar 

  • Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM (2014) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43(D1):D593–D598

    Article  PubMed  PubMed Central  Google Scholar 

  • Takami H (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30(18):3927–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemata N, Samson RY, Bell SD (2019) Physical and functional compartmentalization of archaeal chromosomes. Cell 179(1):165–179.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekaia F, Yeramian E, Dujon B (2002) Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297(1):51–60

    Article  CAS  PubMed  Google Scholar 

  • Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 388(2):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To TMH, Grandvalet C, Tourdot-Maréchal R (2011) Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of lactococcus lactis subsp. cremoris. Appl Environ Microbiol 77(10):3327–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valderrama MJ, Monteoliva-Sanchez M, Quesada E, Ramos-Cormenzana A (1998) Influence of salt concentration on the cellular fatty acid composition of the moderately halophilic bacterium Halomonas salina. Res Microbiol 149(9):675–679

    Article  CAS  PubMed  Google Scholar 

  • van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat Rev Microbiol 12(7):479–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassart A, Van Wolferen M, Orell A, Hong Y, Peeters E, Albers SV et al (2013) Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. Microbiology 2(1):75–93

    Article  CAS  Google Scholar 

  • Ventosa A (1994) Taxonomy and Phylogeny of Moderately Halophilic Bacteria. In: Bacterial Diversity and Systematics. Springer, Boston, MA, pp 231–242

    Chapter  Google Scholar 

  • Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11(1):85–94

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villafane A, Voskoboynik Y, Ruhl I, Sannino D, Maezato Y, Blum P et al (2011) CopR of sulfolobus solfataricus represents a novel class of archaeal-specific copper-responsive activators of transcription. Microbiology (N Y). 157(10):2808–2817

    CAS  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S et al (2002) Functional characterization of betaine/proline transporters in betaine-accumulating Mangrove. J Biol Chem 277(21):18373–18382

    Article  CAS  PubMed  Google Scholar 

  • Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann N Y Acad Sci 1125(1):1–43

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Doudna JA (2023) CRISPR technology: a decade of genome editing is only the beginning. Science (1979) 379(6629):eadd8643

    CAS  Google Scholar 

  • Wang CY, Chang CC, Ng CC, Chen TW, Shyu YT (2008) Virgibacillus chiguensis sp. nov., a novel halophilic bacterium isolated from Chigu, a previously commercial saltern located in southern Taiwan. Int J Syst Evol Microbiol 58(2):341–345

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu X, Wen Z, Li W, Yang B, Whiteley C (2010) Isolation, purification, and properties of a novel small heat shock protein from the hyperthermophile sulfolobus solfataricus. Appl Biochem Biotechnol 162(2):476–485

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li Q, Fang Y, Yu S, Tang B, Na L et al (2016) Biochemical and functional characterization of the periplasmic domain of the outer membrane protein A from enterohemorrhagic Escherichia coli. Microbiol Res 182:109–115

    Article  PubMed  Google Scholar 

  • Yip KSP, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE et al (1995) The structure of <em>Pyrococcus furiosus</em> glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3(11):1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhao M, Chen Y, Wang L, Liu Q, Dong Y et al (2019) Architectural roles of Cren7 in folding crenarchaeal chromatin filament. Mol Microbiol 111(3):556–569

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

N/A.

Conflict of Interest

The authors state that they have no known competing financial interests or personal ties that could appear to have influenced the work described in this study.

Author Contributions

All the authors have contributed equally to the work.

Funding Agency

This work is not funded by any organization or institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sikdar, P., Saha, M., Saha, R., Ghosh, D. (2024). Overview of the Genes Associated with Polyextremophiles. In: Shah, M.P., Dey, S. (eds) Trends in Biotechnology of Polyextremophiles. Springer, Cham. https://doi.org/10.1007/978-3-031-55032-4_1

Download citation

Publish with us

Policies and ethics