Home Variations on the models of Carnot irreversible thermomechanical engine
Article
Licensed
Unlicensed Requires Authentication

Variations on the models of Carnot irreversible thermomechanical engine

  • Michel Feidt and Monica Costea EMAIL logo
Published/Copyright: April 8, 2024

Abstract

The JETC Conference held in Salerno (June 12–17, 2023) was the opportunity to honor the two centuries anniversary of the booklet publication of Sadi Carnot. The paper reports on a selective review summarizing the evolution of the ideas and concepts proposed by Carnot. We consider mainly: a. The Carnot cycle relative to thermomechanical engine, b. The concept of efficiency (Carnot efficiency), c. The forms of energy (thermal energy or heat, Q, and mechanical energy or work, W), d. The concept of entropy, rediscovered and completed by Clausius. We show the importance of the energy conversion irreversibilities that started to be considered more recently by two methods, namely, the ratio method and the entropy production method. The second approach provides more significant results from a global point of view, also with more local modeling (cycle process modeling). Some examples are given that illustrate the proposal: Carnot cycle in endo-irreversible or exo-reversible configuration, Chambadal modeling, Curzon–Ahlborn modeling. More generally, the modeling is done in the frame of FTT (Finite Time Thermodynamics), FST (Finite Speed Thermodynamics), or FDOT (Finite physical Dimensions Optimal Thermodynamics). Preliminary conclusions and perspectives are proposed.


Corresponding author: Monica Costea, Department of Engineering Thermodynamics, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania, E-mail:

  1. Research ethics: Not aplicable.

  2. Author contributions: MF designed, coordinated this research and drafted the manuscript. MC did the formal analysis and editing. The authors read and approved the final manuscript.

  3. Competing interests: The authors declare that they have no competing interest.

  4. Research funding: Not applicable.

  5. Data availability: Not applicable.

References

[1] S. Carnot, Réflexion sur la puissance motrice du feu et sur les machines propres à développer cette puissance, Paris, France, Albert Blanchard, 1824 (reprinted in 1953). (In French).Search in Google Scholar

[2] C.N.R.S., Sadi Carnot et l’essor de la Thermodynamique – Table ronde, Edition du C.N.R.S., 1976 (In French).Search in Google Scholar

[3] V. M. Brodiansky, Sadi Carnot 1796–1832, Collection Etudes, Presses Universitaires de Perpignan, 2006 (In French, Russian translation).Search in Google Scholar

[4] R. Clausius, Die Mechanische Wärmetheorie, Braunschweig, 1876 (In German).Search in Google Scholar

[5] A. Vaudrey, F. Lanzetta, and M. Feidt, “H. B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines,” J. Non-Equili. Thermodyn., vol. 39, no. 4, pp. 199–203, 2014. https://doi.org/10.1515/jnet-2014-0018.Search in Google Scholar

[6] J. Moutier, Éléments de Thermodynamique, Paris, France, Gautier-Villars, 1872, pp. 62–64 (In French).Search in Google Scholar

[7] L. Ser, Traité de physique industrielle, production et utilisation de la chaleur (Machines à air chaud), Paris, G. Masson, 1888, pp. 842–859 (In French).Search in Google Scholar

[8] F. L. Curzon and B. Ahlborn, “Efficiency of a Carnot engine at maximum power output,” Am. J. Phys., vol. 1, pp. 22–24, 1975. https://doi.org/10.1119/1.10023.Search in Google Scholar

[9] P. Penfield, “Available power from a non-ideal thermal source, submitted 1961,” J. Appl. Phys., vol. 32, pp. 1793–1794, 2004. https://doi.org/10.1063/1.1728450.Search in Google Scholar

[10] P. Chambadal, Les centrales nucléaires, Paris, A. Colin, 1957 (In French).Search in Google Scholar

[11] I. Novikov, “The efficiency of atomic power stations (a review),” J. Nucl. Energy, vol. 7, pp. 125–128, 1958, https://doi.org/10.1016/0891-3919(58)90244-4.Search in Google Scholar

[12] M. Feidt, “The history and perspective of efficiency at maximum power of the Carnot engine,” Entropy, vol. 19, no. 7, p. 369, 2017. https://doi.org/10.3390/e19070369.Search in Google Scholar

[13] Y. Wang, “Unified approach to thermodynamic optimization of generic objective function in linear response regime,” Entropy, vol. 18, pp. 161–170, 2016, https://doi.org/10.3390/e18050161.Search in Google Scholar

[14] M. Feidt, “Systématiques des cycles imparfaits,” Entropie, vol. 205, pp. 53–61, 1997 (In French).Search in Google Scholar

[15] M. Feidt, “From Carnot’s Thermodynamics to the present state of the art: two centuries of evolution,” in Communication at 17th Joint European Thermodynamics Conference, Salerno, Italy, June 12–17, 2023.Search in Google Scholar

[16] M. Feidt and R. Feidt, “Endo-irreversible thermomechanical engine with new concept of entropy production action coefficient,” Eur. Phys. J. Appl. Phys., vol. 94, p. 30901, 2021. https://doi.org/10.1051/epjap/2021200390.Search in Google Scholar

[17] M. Feidt, M. Costea, S. Petrescu, and C. Stanciu, “Nonlinear thermodynamic analysis and optimization of a Carnot engine cycle,” Entropy, vol. 18, p. 243, 2016. https://doi.org/10.3390/e18070243.Search in Google Scholar

[18] M. Feidt, “Reconsideration of efficiency of processes and systems from a non-eqiuilibrium point of view,” Int. J. Energy Environ. Econ., vol. 11, pp. 31–49, 2001.Search in Google Scholar

[19] O. M. Ibrahim, S. A. Klein, and J. W. Mitchell, “Optimum heat power cycles for specified boundary conditions,” J. Eng. Gas Turbines Power, vol. 113, pp. 514–526, 1991. https://doi.org/10.1115/1.2906271.Search in Google Scholar

[20] M. Feidt and M. Costea, “Progress in Carnot and Chambadal modeling of thermomechanical engine by considering entropy production and heat transfer entropy,” Entropy, vol. 21, no. 2, p. 1232, 2019. https://doi.org/10.3390/e21121232.Search in Google Scholar

[21] M. Feidt and M. Costea, “A new step in the optimization of the Chambadal model of the Carnot engine,” Entropy, vol. 24, no. 1, p. 84, 2022. https://doi.org/10.3390/e24010084.Search in Google Scholar PubMed PubMed Central

[22] M. Feidt and G. Siochan, “Des prolongements au modèle de Curzon–Ahlborn du moteur de Carnot,” Entropie Open Acc. ISTE J., vol. 3, pp. 1–21, 2021 (In French). https://doi.org/10.21494/iste.op.2021.0754.10.21494/ISTE.OP.2021.0754Search in Google Scholar

[23] R. Irzykiewicz and M. Feidt, “Evolution du rendement dans un cycle de Carnot moteur irréversible,” Entropie Open Acc. ISTE J., 2023, submitted for publication.Search in Google Scholar

[24] B. Andresen, Finite-Time Thermodynamics, Copenhagen, Physics Laboratory II, University of Copenhagen, 1983.Search in Google Scholar

[25] B. Andresen, P. Salamon, and R. S. Berry, “Thermodynamics in finite time,” Phys. Today, vol. 37, no. 9, pp. 62–70, 1984. https://doi.org/10.1063/1.2916405.Search in Google Scholar

[26] L. Stoicescu and S. Petrescu, “The first law of thermodynamics for processes with finite speed in closed systems,” Sci. Bull. UPB Bucharest, vol. 26, no. 5, pp. 87–108, 1964.Search in Google Scholar

[27] Y. Goth and M. Feidt, “Recherche des conditions optimales de fonctionnement des pompes à chaleur ou machines à froid associées à un cycle de Carnot endoréversible,” C.R. Acad. Sci., vol. 33, série II, no. 1, pp. 113–122, 1986 (In French).Search in Google Scholar

[28] M. Feidt, Finite Physical Dimensions Optimal Thermodynamics, ISTE Press – Elsevier, London, Tome 1 – Fundamentals, 2017, Tome 2 – Complex systems, 2018.10.1016/B978-1-78548-233-5.50001-8Search in Google Scholar

Received: 2024-02-23
Accepted: 2024-03-02
Published Online: 2024-04-08
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.7.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2023-0109/html
Scroll to top button