Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Celestial recursion

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 26 January 2023
  • Volume 2023, article number 151, (2023)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Celestial recursion
Download PDF
  • Yangrui Hu  ORCID: orcid.org/0000-0002-3548-85741,2,3 &
  • Sabrina Pasterski3,4 
  • 408 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We examine the BCFW recursion relations for celestial amplitudes and how they inform the celestial bootstrap program. We start by recasting the celestial incarnation of the BCFW shift as a generalization of the action of familiar asymptotic symmetries on hard particles, before focusing on two limits: z → ∞ and z → 0. We then discuss how the celestial CFT data encodes the large-z behavior determining which shifts are allowed, while the infinitesimal limit is tied to the celestial bootstrap program via the BG equations that constrain the MHV sector. The extension to super-BCFW is also presented. We close by remarking on several open questions for future study.

Article PDF

Download to read the full article text

Similar content being viewed by others

Multicollinear singularities in celestial CFT

Article Open access 28 February 2024

Revisiting the shadow stress tensor in celestial CFT

Article Open access 24 April 2023

Celestial Berends-Giele current

Article Open access 27 September 2023

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Classical and Quantum Gravity
  • Computability and Recursion Theory
  • Field Theory and Polynomials
  • Gravitational Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
  • Theoretical Astrophysics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Pasterski, M. Pate and A.-M. Raclariu, Celestial Holography, in 2022 Snowmass Summer Study, Seattle U.S.A, July 17–26 2022 [arXiv:2111.11392] [INSPIRE].

  2. A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].

  3. W. Fan, A. Fotopoulos and T.R. Taylor, Soft Limits of Yang-Mills Amplitudes and Conformal Correlators, JHEP 05 (2019) 121 [arXiv:1903.01676] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  4. A. Fotopoulos and T.R. Taylor, Primary Fields in Celestial CFT, JHEP 10 (2019) 167 [arXiv:1906.10149] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Extended BMS Algebra of Celestial CFT, JHEP 03 (2020) 130 [arXiv:1912.10973] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Guevara, E. Himwich, M. Pate and A. Strominger, Holographic symmetry algebras for gauge theory and gravity, JHEP 11 (2021) 152 [arXiv:2103.03961] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Pate, A.-M. Raclariu, A. Strominger and E.Y. Yuan, Celestial operator products of gluons and gravitons, Rev. Math. Phys. 33 (2021) 2140003 [arXiv:1910.07424] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Himwich, M. Pate and K. Singh, Celestial operator product expansions and w1+∞ symmetry for all spins, JHEP 01 (2022) 080 [arXiv:2108.07763] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. S. Banerjee, S. Ghosh and R. Gonzo, BMS symmetry of celestial OPE, JHEP 04 (2020) 130 [arXiv:2002.00975] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S. Banerjee and S. Ghosh, MHV gluon scattering amplitudes from celestial current algebras, JHEP 10 (2021) 111 [arXiv:2011.00017] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Hu, L. Ren, A.Y. Srikant and A. Volovich, Celestial dual superconformal symmetry, MHV amplitudes and differential equations, JHEP 12 (2021) 171 [arXiv:2106.16111] [INSPIRE].

  12. W. Fan, A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Elements of celestial conformal field theory, JHEP 08 (2022) 213 [arXiv:2202.08288] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

  14. R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS CNCFG2010 (2010) 010 [arXiv:1102.4632] [INSPIRE].

  17. G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. Strominger, w1+∞ Algebra and the Celestial Sphere: Infinite Towers of Soft Graviton, Photon, and Gluon Symmetries, Phys. Rev. Lett. 127 (2021) 221601 [INSPIRE].

  19. T. Adamo, L. Mason and A. Sharma, Celestial w1+∞ Symmetries from Twistor Space, SIGMA 18 (2022) 016 [arXiv:2110.06066] [INSPIRE].

    MATH  Google Scholar 

  20. K. Costello and N.M. Paquette, Celestial holography meets twisted holography: 4d amplitudes from chiral correlators, JHEP 10 (2022) 193 [arXiv:2201.02595] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. F. Cachazo, P. Svrcek and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

  24. N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D. Nguyen, M. Spradlin, A. Volovich and C. Wen, The Tree Formula for MHV Graviton Amplitudes, JHEP 07 (2010) 045 [arXiv:0907.2276] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Hodges, New expressions for gravitational scattering amplitudes, JHEP 07 (2013) 075 [arXiv:1108.2227] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. Banerjee, S. Ghosh and P. Paul, MHV graviton scattering amplitudes and current algebra on the celestial sphere, JHEP 02 (2021) 176 [arXiv:2008.04330] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Guevara, Notes on Conformal Soft Theorems and Recursion Relations in Gravity, arXiv:1906.07810 [INSPIRE].

  29. M. Pate, A.-M. Raclariu and A. Strominger, Conformally Soft Theorem in Gauge Theory, Phys. Rev. D 100 (2019) 085017 [arXiv:1904.10831] [INSPIRE].

  30. S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev. D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].

  31. F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].

  32. D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity \( \mathcal{S} \)-matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

  33. S. Pasterski, RPI and Superrotations, https://physicsgirl.com/srpi.pdf (2015) [ISBN: 978-0-9863685-0-9].

  34. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

  35. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

  36. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

  37. L. Donnay, S. Pasterski and A. Puhm, Asymptotic Symmetries and Celestial CFT, JHEP 09 (2020) 176 [arXiv:2005.08990] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. S. Pasterski, A. Puhm and E. Trevisani, Celestial diamonds: conformal multiplets in celestial CFT, JHEP 11 (2021) 072 [arXiv:2105.03516] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. T. He, P. Mitra and A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, JHEP 10 (2016) 137 [arXiv:1503.02663] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96 (1954) 1428 [INSPIRE].

  42. F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  43. E. Himwich and A. Strominger, Celestial current algebra from Low’s subleading soft theorem, Phys. Rev. D 100 (2019) 065001 [arXiv:1901.01622] [INSPIRE].

  44. T.R. Taylor, A Course in Amplitudes, Phys. Rept. 691 (2017) 1 [arXiv:1703.05670] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A. Guevara, Celestial OPE blocks, arXiv:2108.12706 [INSPIRE].

  46. D. Nandan, A. Schreiber, A. Volovich and M. Zlotnikov, Celestial Amplitudes: Conformal Partial Waves and Soft Limits, JHEP 10 (2019) 018 [arXiv:1904.10940] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. W. Fan, A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Conformal blocks from celestial gluon amplitudes, JHEP 05 (2021) 170 [arXiv:2103.04420] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. A. Atanasov, W. Melton, A.-M. Raclariu and A. Strominger, Conformal block expansion in celestial CFT, Phys. Rev. D 104 (2021) 126033 [arXiv:2104.13432] [INSPIRE].

  49. W. Fan, A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Conformal blocks from celestial gluon amplitudes. Part II. Single-valued correlators, JHEP 11 (2021) 179 [arXiv:2108.10337] [INSPIRE].

  50. Y. Hu, L. Lippstreu, M. Spradlin, A.Y. Srikant and A. Volovich, Four-point correlators of light-ray operators in CCFT, JHEP 07 (2022) 104 [arXiv:2203.04255] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. S. Banerjee, S. Ghosh and S.S. Samal, Subsubleading soft graviton symmetry and MHV graviton scattering amplitudes, JHEP 08 (2021) 067 [arXiv:2104.02546] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. S. Banerjee, S. Ghosh and P. Paul, (Chiral) Virasoro invariance of the tree-level MHV graviton scattering amplitudes, JHEP 09 (2022) 236 [arXiv:2108.04262] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. C.-H. Fu, J.-C. Lee, C.-I. Tan and Y. Yang, BCFW Deformation and Regge Limit, arXiv:1305.7442 [INSPIRE].

  54. A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Extended Super BMS Algebra of Celestial CFT, JHEP 09 (2020) 198 [arXiv:2007.03785] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].

  56. A. Strominger and A. Zhiboedov, Superrotations and Black Hole Pair Creation, Class. Quant. Grav. 34 (2017) 064002 [arXiv:1610.00639] [INSPIRE].

  57. G. Compère and J. Long, Vacua of the gravitational field, JHEP 07 (2016) 137 [arXiv:1601.04958] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. E. Adjei, W. Donnelly, V. Py and A.J. Speranza, Cosmic footballs from superrotations, Class. Quant. Grav. 37 (2020) 075020 [arXiv:1910.05435] [INSPIRE].

  59. S. Pasterski and H. Verlinde, Chaos in celestial CFT, JHEP 08 (2022) 106 [arXiv:2201.01630] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. J. de Boer and S.N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].

  62. D. Simmons-Duffin, Projectors, Shadows, and Conformal Blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].

  63. S. Mizera and S. Pasterski, Celestial geometry, JHEP 09 (2022) 045 [arXiv:2204.02505] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. N. Arkani-Hamed, M. Pate, A.-M. Raclariu and A. Strominger, Celestial amplitudes from UV to IR, JHEP 08 (2021) 062 [arXiv:2012.04208] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. S. Ebert, A. Sharma and D. Wang, Descendants in celestial CFT and emergent multi-collinear factorization, JHEP 03 (2021) 030 [arXiv:2009.07881] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. W. Melton, Celestial Feynman Rules for Scalars, arXiv:2109.07462 [INSPIRE].

  67. S. Pasterski, Soft Shadows, https://physicsgirl.com/ss.pdf (2017) [ISBN: 978-0-9863685-4-7].

  68. E. Crawley, N. Miller, S.A. Narayanan and A. Strominger, State-operator correspondence in celestial conformal field theory, JHEP 09 (2021) 132 [arXiv:2105.00331] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Brown University, Providence, RI, 02912, USA

    Yangrui Hu

  2. Brown Theoretical Physics Center, Barus Hall, Providence, RI, 02912, USA

    Yangrui Hu

  3. Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada

    Yangrui Hu & Sabrina Pasterski

  4. Princeton Center for Theoretical Science, Princeton, NJ, 08544, USA

    Sabrina Pasterski

Authors
  1. Yangrui Hu
    View author publications

    Search author on:PubMed Google Scholar

  2. Sabrina Pasterski
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Yangrui Hu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2208.11635

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Pasterski, S. Celestial recursion. J. High Energ. Phys. 2023, 151 (2023). https://doi.org/10.1007/JHEP01(2023)151

Download citation

  • Received: 09 November 2022

  • Accepted: 04 January 2023

  • Published: 26 January 2023

  • DOI: https://doi.org/10.1007/JHEP01(2023)151

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Scattering Amplitudes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature