Skip to main content

Advertisement

Log in

How does Lateral Spacing Affect Seed Yield and Net Income in Trickle-irrigated Sunflower Under Different Irrigation Regimes?

Wie wirken sich die Abstände der Tropfrohre auf den Saatgutertrag und den Nettoertrag von Sonnenblumen mit Tropfbewässerung bei unterschiedlichen Bewässerungsregimes aus?

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The proper design and management of trickle irrigation systems are important factors in ensuring the efficient water use in agriculture. In this study, the effects of different irrigation strategies were determined on the yield, net income, and water use productivity of trickle-irrigated sunflower (Helianthus annuus L. cv. Sirena) in a two-year open-field experiment (2013–14) in a semi-arid climate. Two different lateral spacings (L) of 70 cm (one lateral line per one plant row) and 140 cm (one lateral line per two plant rows) were designed, and three different wetting factors (W) were applied for each lateral spacing. Wetting factors of 1.00 and 0.60 were used as fixed values for both 70 and 140 cm lateral spacings. Moreover, two different wetting factors, 0.85 and 0.42, were used for the lateral spacings of 70 and 140 cm, respectively, using the measured wet diameter values in the experiment area. Thus, six treatments were designated as L70W1.00, L70W0.60, L70W0.85, L140W1.00, L140W0.60, and L140W0.42. The study was designed as randomized complete block design with three replications.

When the trial years and treatments were evaluated together, the irrigation depth applied per treatment varied between 333.2 and 666.0 mm, while the plant water consumption (ETc) varied between 473.8 and 751.6 mm, and the highest ETc was found in L70W1.00. The highest seed yield (5.70 t ha−1) was obtained in the L70W1.00, and the seed yield generally decreased with the decrease in water consumption. In L140W1.00, in which the same amount of irrigation water was used as in the L70W1.00, there was an 8% decrease in yield due to the design of one lateral per two plant rows. The yield response factor (ky) of sunflower was found to be 0.97, indicating that a certain level of water restriction can be applied to sunflower. However, there was a 17% reduction in seed yield in the L70W0.60 treatment compared to that in the L70W1.00 treatment, which resulted in a significant water saving of 34%. On the other hand, the lateral spacing of 1.40 m led to a significant decrease in yield under deficit irrigation conditions. The highest net income (1358 US $ ha−1) was obtained in the L70W1.00 treatment, and the net income in the L140W1.00 treatment was found to be 1160 US $ ha−1 with an approximate decrease of 15%. Therefore, to achieve high yield and net income in sunflower production, one lateral design should be used for each plant row with the wetting factor of 1.00. Moreover, to save the irrigation water in semi-arid areas, it is suggested to design a trickle lateral pipe for each plant row in sunflower production and use the wetting factor of 0.60.

Zusammenfassung

Die ordnungsgemäße Planung und Verwaltung von Systemen zur Tropfbewässerung sind wichtige Faktoren für eine effiziente Wassernutzung in der Landwirtschaft. In dieser Studie wurden die Auswirkungen verschiedener Bewässerungsstrategien auf den Ertrag, das Nettoeinkommen und die Wassernutzungsproduktivität einer Tropfbewässerung bei Sonnenblumen (Helianthus annuus L. cv. Sirena) in einem zweijährigen Freilandversuch (2013–14) in einem semiariden Klima ermittelt. Es wurden zwei verschiedene seitliche Abstände (L) der Tropfrohre von 70 cm (eine seitliche Linie pro Pflanzenreihe) und 140 cm (eine seitliche Linie pro zwei Pflanzenreihen) entworfen, und für jeden seitlichen Abstand wurden drei verschiedene Benetzungsfaktoren (W) angewendet. Die Benetzungsfaktoren von 1,00 und 0,60 wurden als Fixpunkte für die Seitenabstände von 70 und 140 cm verwendet. Darüber hinaus wurden zwei verschiedene Benetzungsfaktoren, 0,85 und 0,42, für die seitlichen Abstände von 70 bzw. 140 cm verwendet, wobei die gemessenen Werte für den Feuchtigkeitsdurchmesser im Versuchsgebiet zugrunde gelegt wurden. Somit wurden sechs Behandlungen durchgeführt, bezeichnet als L70W1.00, L70W0.60, L70W0.85, L140W1.00, L140W0.60 und L140W0.42. Die Studie wurde im randomisierten vollständigen Blockdesign mit drei Wiederholungen angelegt.

Wenn die Versuchsjahre und Behandlungen zusammen ausgewertet wurden, variierte die Bewässerungstiefe pro Behandlung zwischen 333,2 und 666,0 mm, während der Pflanzenwasserverbrauch (ETc) zwischen 473,8 und 751,6 mm variierte, wobei der höchste ETc in L70W1.00 gefunden wurde. Der höchste Saatgutertrag (5,70 t ha−1) wurde bei L70W1.00 erzielt, und der Saatgutertrag nahm im Allgemeinen mit dem Rückgang des Wasserverbrauchs ab. Bei L140W1.00, bei dem die gleiche Menge an Bewässerungswasser wie bei L70W1.00 verwendet wurde, kam es zu einem Ertragsrückgang von 8 %, der auf die Anordnung von einer Seitenlinie pro zwei Pflanzenreihen zurückzuführen ist. Der Ertragsreaktionsfaktor (ky) der Sonnenblume wurde mit 0,97 ermittelt, was darauf hindeutet, dass ein gewisses Maß an Wasserrestriktion bei Sonnenblumen angewendet werden kann. Allerdings war der Samenertrag bei der Behandlung L70W0,60 um 17 % geringer als bei der Behandlung L70W1,00, was zu einer erheblichen Wassereinsparung von 34 % führte. Andererseits führte der seitliche Abstand der Tropfrohre von 1,40 m unter den Bedingungen der Defizitbewässerung zu einem erheblichen Ertragsrückgang. Der höchste Nettoertrag (1358 US $ ha−1) wurde bei der L70W1.00-Behandlung erzielt, und der Nettoertrag bei der L140W1.00-Behandlung lag bei 1160 US $ ha−1, was einem Rückgang von etwa 15 % entspricht. Um hohe Erträge und Nettoeinnahmen bei der Sonnenblumenproduktion zu erzielen, sollte daher für jede Pflanzenreihe ein seitliches Tropfrohr mit einem Benetzungsfaktor von 1,00 verwendet werden. Um das Bewässerungswasser in halbtrockenen Gebieten zu sparen, wird außerdem vorgeschlagen, für jede Pflanzenreihe im Sonnenblumenanbau eine seitliche Versickerungsleitung mit einem Benetzungsfaktor von 0,60 anzulegen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adeleke BS, Babalola OO (2020) Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci Nutr 8(9):4666–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hurmuzi JOH, Topak R (2018) Lateral spacing affect on yield and quality attributes of drip-irrigated sweet corn. Selcuk J Agr Food Sci 32(1):55–59

    Google Scholar 

  • Albayati İJA, Topak R (2018) Effect of different dripper discharge, spacing and lateral spacing on drip irrigated green bean yield and quality parameters. Selcuk J Agr Food Sci 32(1):50–54

    Google Scholar 

  • Bozkurt Y, Yazar A, Gençel B, Sezen SM (2006) Optimum lateral spacing for drip-irrigated corn in the Mediterranean Region of Turkey. Agric Water Manag 85(1–2):113–120

    Article  Google Scholar 

  • Camp CR (1998) Subsurface drip irrigation: A review. Transactions of the ASAE 41(5):1353–1367

    Google Scholar 

  • Çetin Ö, Uygan D (2008) The effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency and net return. Agric Water Manag 95(8):949–958

    Article  Google Scholar 

  • Couto A, Padín AR, Reinoso B (2013) Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain. Agric Water Manag 124:77–84

    Article  Google Scholar 

  • Demir AO, Göksoy AT, Büyükcangaz H, Turan ZM, Köksal ES (2006) Deficit irrigation of sunflower (Helianthus annuus L.) in a sub-humid climate. Irrig Sci 24(4):279–289

    Article  Google Scholar 

  • Doorenbos J, Kassam AH (1979) Yield response to water. FAO Irrigation and Drainage Paper, No.33. FAO, Rome, p 193

    Google Scholar 

  • Ebrahimian E, Seyyedi SM, Bybordi A, Damalas CA (2019) Seed yield and oil quality of sunflower, safflower, and sesame under different levels of irrigation water availability. Agric Water Manag 218:149–157

    Article  Google Scholar 

  • Enciso JM, Colaizzi PD, Multer WL (2005) Economic analysis of subsurface drip irrigation lateral spacing and installation depth for cotton. Trans ASEA 48(1):197–204

    Article  Google Scholar 

  • FAOSTAT (2021) http://www.fao.org/faostat/en/#data/QC. Accessed 23 Mar 2021

  • Flagella Z, Rotunno T, Tarantino E, Di Caterina R, De Caro A (2002) Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. Eur J Agron 17(3):221–230

    Article  CAS  Google Scholar 

  • García-López J, Lorite IJ, García-Ruiz R, Ordoñez R, Dominguez J (2016) Yield response of sunflower to irrigation and fertilization under semi-arid conditions. Agric Water Manag 176:151–162

    Article  Google Scholar 

  • Howell TA, Evett SR, Tolk JA, Copeland KS, Marek TH (2015) Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the US Southern High Plains. Agric Water Manag 162:33–46

    Article  Google Scholar 

  • James LG (1988) Principles of farm irrigation systems design. John Wiley, New York, p 543

    Google Scholar 

  • Kadayıfçı A, Yıldırım O (2000) The response of sunflower grain yield to water. Turk J Agric For 24(2):137–146

    Google Scholar 

  • Karam F, Lahoud R, Masaad R, Kabalan R, Breidi J, Chalita C, Rouphael Y (2007) Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions. Agric Water Manag 90(3):213–223

    Article  Google Scholar 

  • Kazemeini SA, Edalat M, Shekoofa A (2009) Interaction effects of deficit irrigation and row spacing on sunflower (Helianthus annuus L.) growth, seed yield and oil yield. Afr J Agric Res 4(11):1165–1170

    Google Scholar 

  • Kazi BR, Oad FC, Jamro GH, Jamali LA, Oad NL (2002) Effect of water stress on the growth, yield and oil content of sunflower. J Applied Sci 2(5):550–552

    Article  Google Scholar 

  • Keller İ, Bliesner RD (1990) Sprinkler and trickle irrigation. Chapman and Hall, New York

    Book  Google Scholar 

  • Kiani M, Gheysari M, Mostafazadeh-Fard B, Majidi MM, Karchani K, Hoogenboom G (2016) Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region. Agric Water Manag 171:162–172

    Article  Google Scholar 

  • Kolsarıcı Ö (2004) The effects of irrigation applied at different growing periods on yield and yield components of sunflower (Helianthus annuus L.) under Ankara conditions. Ankara Univ BAP, Ankara, p 104

    Google Scholar 

  • Lamm FR, Camp CR (2007) Subsurface drip irrigation. In: Lamm FR, Ayars JE, Nakayama FS (eds) Micro irrigation for crop production: design, operation and management. Elsevier, Kidlington, Oxford, pp 473–551

    Chapter  Google Scholar 

  • Langeroodi ARS, Kamkar B, da Silva JAT, Ataei M (2014) Response of sunflower cultivars to deficit irrigation. Helia 37(60):37–58

    Google Scholar 

  • Mubarak I, Janat M (2020) Sweet corn crop response to different dripline spacings in the dry Mediterranean area. Acta Agric Slov 116(1):125–136

    Article  Google Scholar 

  • Phene CJ, Sanders DC (1976) Influence of combined row spacing and high frequency trickle irrigation on production and quality of potatoes. Agron J 68:602–607

    Article  CAS  Google Scholar 

  • Phocaides A (2000) Technical handbook on pressurized irrigation techniques. FAO, Rome, p 372

    Google Scholar 

  • Salbaş B, Erdem T (2020) The effects of drip irrigation applications on sunflower water use, vegetative growth and yield parameters. Mediterr Agric Sci 33(3):389–396

    Google Scholar 

  • Seymen M, Yavuz D, Dursun A, Kurtar ES, Türkmen Ö (2019) Identification of drought-tolerant pumpkin (Cucurbita pepo L.) genotypes associated with certain fruit characteristics, seed yield, and quality. Agric Water Manag 221:150–159

    Article  Google Scholar 

  • Sezen SM, Yazar A, Kapur B, Tekin S (2011) Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions. Agric Water Manag 98(7):1153–1161

    Article  Google Scholar 

  • Sezen SM, Tekin S, Konuşkan DB (2019) Effect of irrigation strategies on yield of drip irrigated sunflower oil and fatty acid composition and its economic returns. J Agric Sci 25(2):163–173

    Google Scholar 

  • Shafi M, Bakht J, Yousaf M, Khan MA (2013) Effects of irrigation regime on growth and seed yield of sunflower (Helianthus annuus L.). Pak J Bot 45(6):1995–2000

    Google Scholar 

  • Sinha I, Buttar GS, Brar AS (2017) Drip irrigation and fertigation improve economics, water and energy productivity of spring sunflower (Helianthus annuus L.) in Indian Punjab. Agric Water Manag 185:58–64

    Article  Google Scholar 

  • Tolk JA, Howell TA (2012) Sunflower water productivity in four Great Plains soils. Field Crop Res 127:120–128

    Article  Google Scholar 

  • Topak R, Acar B, Uyanöz R, Ceyhan E (2016) Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area. Agric Water Manag 176:180–190

    Article  Google Scholar 

  • Wondatir S, Belay Z (2020) Effect of drip lateral spacing and irrigation amount on tomato and onion crops cum water productivity at kobo Girrana valley, Ethiopia. Bsj Agri 3(2):120–127

    Google Scholar 

  • Yavuz D, Yavuz N (2021) Can agricultural drought be prevented or is it the inevitable end? 3rd International African Conference on Current Study, Abomey-Calavi, 27–28 February, pp 394–403

    Google Scholar 

  • Yavuz D, Yavuz N, Seymen M, Türkmen Ö (2015) Evapotranspiration, crop coefficient and seed yield of drip irrigated pumpkin under semi-arid conditions. Sci Hortic 197:33–40

    Article  Google Scholar 

  • Yavuz D, Yavuz N, Suheri S (2016) Design and management of a drip irrigation system for an optimum potato yield. J Agr Sci Tech 18:817–830

    Google Scholar 

  • Yavuz D, Acar B, Yavuz N, Çiftçi N (2018) Irrigation in various growth stages effect on yield and water productivity of drip-Irrigated sunflower in semi-arid Konya environment, Turkey. Int J Agric Econ Dev 6(2):7–17

    Google Scholar 

  • Yavuz D, Seymen M, Süheri S, Yavuz N, Türkmen Ö, Kurtar ES (2020) How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation? Agric Water Manag 241:106351

    Article  Google Scholar 

  • Yavuz D, Seymen M, Yavuz N, Çoklar H, Ercan M (2021) Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon. Agric Water Manag 246:106673

    Article  Google Scholar 

  • Yavuz N, Çiftçi N, Yavuz D (2019) Effects of different irrigation interval and plant-pan coefficient applications on yield and quality parameters of oil sunflower grown in semi-arid climatic conditions. Arab J Geosci 12(22):672

    Article  CAS  Google Scholar 

  • Zhang J, Zhang H, Sima MW, Trout TJ, Malone RW, Wang L (2021) Simulated deficit irrigation and climate change effects on sunflower production in Eastern Colorado with CSM-CROPGRO-Sunflower in RZWQM2. Agric Water Manag 246:106672

    Article  Google Scholar 

  • Zhou L, Feng H, Zhao Y, Qi Z, Zhang T, He J, Dyck M (2017) Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil. Agric Water Manag 184:114–123

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Agricultural Faculty administrators of Selcuk University for allocating the trial land and the Selcuk University Irrigation Department trainee students for assisting in conducting field trials of the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duran Yavuz.

Ethics declarations

Conflict of interest

D. Yavuz and N. Yavuz declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, D., Yavuz, N. How does Lateral Spacing Affect Seed Yield and Net Income in Trickle-irrigated Sunflower Under Different Irrigation Regimes?. Gesunde Pflanzen 75, 415–429 (2023). https://doi.org/10.1007/s10343-022-00715-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00715-1

Keywords

Schlüsselwörter

Navigation