Skip to main content
Log in

Intraoperative Detection of Surgical Gauze Using Deep Convolutional Neural Network

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

During laparoscopic surgery, surgical gauze is usually inserted into the body cavity to help achieve hemostasis. Retention of surgical gauze in the body cavity may necessitate reoperation and increase surgical risk. Using deep learning technology, this study aimed to propose a neural network model for gauze detection from the surgical video to record the presence of the gauze. The model was trained by the training group using YOLO (You Only Look Once)v5x6, then applied to the testing group. Positive predicted value (PPV), sensitivity, and mean average precision (mAP) were calculated. Furthermore, a timeline of gauze presence in the video was drawn by the model as well as human annotation to evaluate the accuracy. After the model was well-trained, the PPV, sensitivity, and mAP in the testing group were 0.920, 0.828, and 0.881, respectively. The inference time was 11.3 ms per image. The average accuracy of the model adding a marking and filtering process was 0.899. In conclusion, surgical gauze can be successfully detected using deep learning in the surgical video. Our model provided a fast detection of surgical gauze, allowing further real-time gauze tracing in laparoscopic surgery that may help surgeons recall the location of the missing gauze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

RFID:

Radio frequency identification

AI:

Artificial intelligence

CNN:

Convolutional neural network

mAP:

Mean average precision

IoU:

Intersection over Union

PPV:

Positive predictive value

ROC:

Receiver operating characteristic

PR:

Precision-recall

AP:

Average precision

FP:

False positive

TP:

True positive

TN:

True negative

CIoU:

Complete intersection over union

PET:

Positron emission tomography

fMRI:

Functional magnetic resonance imaging

CT:

Computed tomography

LBP:

Local binary patterns

RPN:

Region proposal network

GAN:

Generative adversarial network

References

  1. Ahmed, K. R. Smart pothole detection using deep learning based on dilated convolution. Sensors (Basel). 21:8406, 2021

    Article  Google Scholar 

  2. Bochkovskiy, A., C. Y. Wang and H. Y. M. Liao. YOLOv4: Optimal Speed and Accuracy of Object Detection. https://arxiv.org/2004.10934v1, 2020.

  3. Chilamkurthy, S., R. Ghosh, S. Tanamala, M. Biviji, N. G. Campeau, V. K. Venugopal, V. Mahajan, P. Rao, and P. Warier. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 392:2388–2396, 2018

    Article  Google Scholar 

  4. de la Fuente, E., F. M. Trespaderne, L. Santos, J. C. Fraile and J. P. Turiel. Parallel computing for real time gauze detection in laparoscopy images. In: 2nd International Conference on Bio-engineering for Smart Technologies (BioSMART). https://doi.org/10.1109/BIOSMART.2017.8095328.

  5. de la Fuente López, E., Á. Muñoz García, L. S. Santos Del Blanco, J. C. Fraile Marinero and J. Pérez Turiel. Automatic gauze tracking in laparoscopic surgery using image texture analysis. Comput. Methods Programs Biomed. 190:105378, 2020.

  6. Ding, Y., J. H. Sohn, M. G. Kawczynski, H. Trivedi, R. Harnish, N. W. Jenkins, D. Lituiev, T. P. Copeland, M. S. Aboian, C. M. Mari Aparici, S. C. Behr, R. R. Flavell, S. Y. Huang, K. A. Zalocusky, L. Nardo, Y. Seo, R. A. Hawkins, M. Hernandez Pampaloni, D. Hadley, and B. L. Franc. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the Brain. Radiology. 290:456–464, 2019

    Article  Google Scholar 

  7. Dong, X., Y. Lei, T. Wang, M. Thomas, L. Tang, W. J. Curran, T. Liu, and X. Yang. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med. Phys. 46:2157–2168, 2019

    Article  Google Scholar 

  8. Everingham, M. and J. Winn. The Pascal Visual Object Classes Challenge (VOC2010) Development Kit.

  9. Ghesu, F. C., E. Krubasik, B. Georgescu, V. Singh, Y. Zheng, J. Hornegger, and D. Comaniciu. Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans. Med. Imaging. 35:1217–1228, 2016

    Article  Google Scholar 

  10. Gibbs, V. C. Retained surgical items and minimally invasive surgery. World J. Surg. 35:1532–1539, 2011

    Article  Google Scholar 

  11. Hashimoto, D. A., G. Rosman, E. R. Witkowski, C. Stafford, A. J. Navarette-Welton, D. W. Rattner, K. D. Lillemoe, D. L. Rus, and O. R. Meireles. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann. Surg. 270:414–421, 2019

    Article  Google Scholar 

  12. Kitaguchi, D., N. Takeshita, H. Matsuzaki, H. Takano, Y. Owada, T. Enomoto, T. Oda, H. Miura, T. Yamanashi, M. Watanabe, D. Sato, Y. Sugomori, S. Hara, and M. Ito. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg. Endosc. 34:4924–4931, 2020

    Article  Google Scholar 

  13. Lekadir, K., A. Galimzianova, A. Betriu, M. Del Mar Vila, L. Igual, D. L. Rubin, E. Fernandez, P. Radeva, and S. Napel. A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J. Biomed. Health Inform. 21:48–55, 2017

    Article  Google Scholar 

  14. Liu, F., H. Jang, R. Kijowski, T. Bradshaw, and A. B. McMillan. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology. 286:676–684, 2018

    Article  Google Scholar 

  15. Ma, J., F. Wu, T. Jiang, J. Zhu, and D. Kong. Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Med. Phys. 44:1678–1691, 2017

    Article  Google Scholar 

  16. Madad Zadeh, S. M., T. Francois, L. Calvet, P. Chauvet, M. Canis, A. Bartoli, and N. Bourdel. SurgAI: deep learning for computerized laparoscopic image understanding in gynaecology. Surg. Endosc. 34:5377–5383, 2020

    Article  Google Scholar 

  17. Nema, S., A. Dudhane, S. Murala, and S. Naidu. RescueNet: an unpaired GAN for brain tumor segmentation. Biomed. Signal Process. Control. 55:101641, 2020

    Article  Google Scholar 

  18. Rahman, R., Z. B. Bin Azad and M. Bakhtiar Hasan. Densely populated traffic detection using YOLOv5 and non-maximum suppression ensembling. Lecture Notes on Data Engineering and Communications Technologies. Proceedings of the International Conference on Big Data, IoT, and Machine Learning:567–578. https://doi.org/10.1007/978-981-16-6636-0_43, 2022.

  19. Ravishankar, H., R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya. Learning and incorporating shape models for semantic segmentation. Med. Image Comput. Comput. Assist. Interv. 2017. https://doi.org/10.1007/978-3-319-66182-7_24

    Article  Google Scholar 

  20. Redmon, J., S. Divvala, R. Girshick and A. Farhadi. You only look once: unified, real-time object detection. https://arxiv.org/1506.02640v5, 2015.

  21. Redmon, J. and A. Farhadi. YOLO 9000: Better, Faster, Stronger. https://arxiv.org/1612.08242v1, 2016.

  22. Redmon, J. and A. Farhadi. YOLOv3: an Incremental Improvement. https://arxiv.org/1804.02767v1, 2018.

  23. Ren, S., K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. https://arxiv.org/1506.01497, 2015.

  24. Rivera, N., R. Mountain, L. Assumpcao, A. A. Williams, A. B. Cooper, D. L. Lewis, R. C. Benson, J. A. Miragliotta, M. Marohn, and R. H. Taylor. ASSIST - Automated system for surgical instrument and sponge tracking. In: 2008 IEEE Int. Con. on RFID, pp. 297–302, 2008.

  25. Rodriguez-Diaz, E., G. Baffy, W. K. Lo, H. Mashimo, G. Vidyarthi, S. S. Mohapatra, and S. K. Singh. Real-time artificial intelligence-based histologic classification of colorectal polyps with augmented visualization. Gastrointest. Endosc. 93:662–670, 2021

    Article  Google Scholar 

  26. Serra, J., X. Matias-Guiu, R. Calabuig, P. Garcia, F. J. Sancho, and J. P. La Calle. Surgical gauze pseudotumor. Am. J. Surg. 155:235–237, 1988

    Article  CAS  Google Scholar 

  27. Shvets, A. A., A. Rakhlin, A. A. Kalinin and V. I. Iglovikov. Automatic instrument segmentation in robot-assisted surgery using deep learning. In: 17th IEEE International Conference on Machine Learning and Applications (ICMLA). https://doi.org/10.1109/ICMLA.2018.00100.

  28. Sombune, P., P. Phienphanich, S. Phuechpanpaisal, S. Muengtaweepongsa, A. Ruamthanthong and C. Tantibundhit. Automated embolic signal detection using deep convolutional neural network. In: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 3365–3368, 2017.

  29. Suk, H. I., C. Y. Wee, S. W. Lee, and D. Shen. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage. 129:292–307, 2016

    Article  Google Scholar 

  30. Tokuyasu, T., Y. Iwashita, Y. Matsunobu, T. Kamiyama, M. Ishikake, S. Sakaguchi, K. Ebe, K. Tada, Y. Endo, T. Etoh, M. Nakashima, and M. Inomata. Development of an artificial intelligence system using deep learning to indicate anatomical landmarks during laparoscopic cholecystectomy. Surg. Endosc. 35:1651–1658, 2021

    Article  Google Scholar 

  31. Twinanda, A. P., S. Shehata, D. Mutter, J. Marescaux, M. de Mathelin, and N. Padoy. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging. 36:86–97, 2017

    Article  Google Scholar 

  32. Ultralytics. Yolov5. https://github.com/ultralytics/yolov5, 2020.

  33. Voigtlaender, P., M. Krause, A. Osep, J. Luiten, B. Balachandar Gnana Sekar, A. Geiger and B. Leibe. MOTS: Multi-object Tracking and Segmentation. https://arxiv.org/1902.03604v2.

  34. Yang, X., L. Yu, L. Wu, Y. Wang, D. Ni, J. Qin and P. A. Heng. Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images. AAAI. In: Proceedings of the AAAI Conference on Artificial Intelligence 31, 2017.

  35. Zhang, R., Y. Zheng, C. C. Y. Poon, D. Shen, and J. Y. W. Lau. Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker. Pattern Recognit. 83:209–219, 2018

    Article  Google Scholar 

  36. Zheng, Z., P. Wang, W. Liu, J. Li, R. Ye and D. Ren. Distance-IoU loss: faster and better learning for bounding box regression. AAAI. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12993–13000, 2020.

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology (MOST 110-2634-F-002-009) of the Republic of China (Taiwan) for the financial support in data analysis.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Feng Chang.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 125 kb)

Supplementary file2 (MP4 90839 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, SL., Chen, CS., Lin, BR. et al. Intraoperative Detection of Surgical Gauze Using Deep Convolutional Neural Network. Ann Biomed Eng 51, 352–362 (2023). https://doi.org/10.1007/s10439-022-03033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03033-9

Keywords

Navigation