Skip to main content
Log in

Isolation of Quercetin and Avicularin from Dennettia tripetala (G. Baker) Seeds, and Evaluation of the Oxidative Stress Management Capacity and Cytotoxic Activities of Its Acetone Extract and Fractions

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Analysis of the phytochemical content of the acetone extract of Dennettia tripetala G. Baker seeds, DPPH radical scavenging activity (RSA) and oxidative burst assay of the extract and its fractions led to the isolation of quercetin and avicularin. Structural elucidation of these compounds was performed using NMR, ES1-MS and FT-IR spectroscopic techniques. Phytochemicals including volatile oils, steroids, terpenoids, alkaloids, glycosides, saponins, phenols, tannins and flavonoids were revealed. Phenols (111.45 ± 0.45 mgGAE/g) and flavonoids (44.11 ± 0.39 mgQE/g) were high, while tannins (3.80 ± 0.69 mgTAE/g) and alkaloids (3.76 ± 1.22%) were in low concentrations. Potent DPPH-RSA was observed for the extract (98.2 ± 0.12%) which was expressed in its DCM (80.32 ± 0.73%) and ethylacetate fractions (96.3 ± 2.57%); isolates were obtained from the latter. No suppression of phagocytic oxidative burst was observed for the extract; however, moderate activities in comparison with the standard (73.27 ± 0.28%) were obtained for the DCM (36.73 ± 0.19%) and ethylacetate (35.72 ± 0.62%) fractions. Cytotoxic evaluation on brine shrimp revealed moderate toxicity for the extract (LC50 = 296.09) expressed in its hexane (LC50 = 258.81) and residual aqueous (LC50 = 431.10) fractions. However, no toxicity was recorded for the extract and fractions on 3T3 cells at 30 µg/mL, except for the DCM fraction which exhibited a mild toxicity (IC50 = 17.19 ± 1.8); Also, no toxicity was observed for the extract and fractions on HeLa cells at similar concentration. Since the extract makes up a very small percentage of the seeds, there exist a huge margin of safety in the application of the seeds in nutrition and in the management of oxidative stress-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Engwa GA, EnNwekegwa FN, Nkeh-Chungag BN (2022) Free radicals, oxidative stress-related diseases and antioxidant supplementation. Altern Ther Health Med 28(1):114–128

    PubMed  Google Scholar 

  2. Singh S, Sedha S (2018) Medicinal plants and their pharmacological aspects. FPI 1(4):156–170

    Google Scholar 

  3. Sharifi-Rad M, Kumar NVA, Zucca P, Varoni EM, Panzarini DLE, Rajkovic J, Fokou PVT, Azzini E, Peluso I, Mishra AP, Nigam M, El Rayess Y, El Beyrouthy M, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J (2020) Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. https://doi.org/10.3389/fphys.2020.00694

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu MG, Vari CE (2022) Positive aspects of oxidative stress at different levels of the human body: a review. Antioxidants. https://doi.org/10.3390/antiox11030572

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mozzini C, Pagani M (2022) Oxidative stress in chronic and age-related diseases. Antioxidants. https://doi.org/10.3390/antiox11030521

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lourenço SC, Moldão-Martins M, Alves VD (2019) Antioxidants of natural plant origins: from sources to food industry applications. Molecules. https://doi.org/10.3390/molecules24224132wink

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: an overview. Int J Cancer. https://doi.org/10.1002/ijc.33588

    Article  PubMed  Google Scholar 

  8. Cheung EC, Vousden KH (2022) The role of ROS in tumour development and progression. Nat Rev Cancer. https://doi.org/10.1038/s41568-021-00435-0

    Article  PubMed  Google Scholar 

  9. Singh R, Manna PP (2022) Reactive oxygen species in cancer progression and its role in therapeutics. Explor Med. https://doi.org/10.37349/emed.2022.00073

    Article  Google Scholar 

  10. Morris RM, Mortimer TO, O’Neill KL (2022) Cytokines: can cancer get the message? Cancers. https://doi.org/10.3390/cancers14092178

    Article  PubMed  PubMed Central  Google Scholar 

  11. World Health Organization. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed on 13 May 2022

  12. Lim HM, Park S-H (2022) Regulation of reactive oxygen species by phytochemicals for the management of cancer and diabetes. Cri Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2025574

    Article  Google Scholar 

  13. Okoro EE, Maharjan R, Jabeen A, Ahmad MS, Azhar M, Shehla N, Zaman W, Shams S, Osoniyi OR, Onajobi FD, Choudhary MI (2021) Isoflavanquinones from Abrus precatorius roots with their antiproliferative and anti-inflammatory effects. Phytochem. https://doi.org/10.1016/j.phytochem.2021.112743

    Article  Google Scholar 

  14. Ozioma EJ, Nwamaka-Chinwe OA (2019). In: Builders PF (ed) Herbal medicine. IntechOpen, London

    Google Scholar 

  15. Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res. https://doi.org/10.1186/s40659-019-0246-3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kong CH, Xuan TD, Khanh TD, Tran H-D, Trung NT (2019) Allelochemicals and signaling chemicals in plants. Molecules. https://doi.org/10.3390/molecules24152737

    Article  PubMed  PubMed Central  Google Scholar 

  17. Geetanjali RS (2018). In: Mandal SC, Mandal V, Konishi T (eds) Natural products and drug discovery, 1st edn. Elsevier, New York

    Google Scholar 

  18. Díaz-Torres RDC, Alonso-Castro AJ, Carrillo-Inungaray ML, Carranza-Alvarez C (2021). In: Bhat RA, Hakeem KR, Dervash MA (eds) A treasure of pharmacologically active products from plants, 1st edn. Academic Press, London

    Google Scholar 

  19. Gusain P, Uniyal DP, Joga R (2021). In: Egbuna C, Mishra AP, Goyal MR (eds) Preparation of phytopharmaceuticals for the management of disorders, 1st edn. Academic Press, London

    Google Scholar 

  20. Bhat SG (2021). In: El-Shemy H (ed) Medicinal plants from nature, 1st edn. IntechOpen, London

    Google Scholar 

  21. Mensah ML, Komlaga G, Forkuo AD, Firempong C, Anning AK, Dickson RA (2019). In: Builders PF (ed) Herbal medicine, 1st edn. IntechOpen, London

    Google Scholar 

  22. Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H, Jassoy C (2021) A review of the toxicity and phytochemistry of medicinal plant species used by herbalists in treating people living with HIV/AIDS in Uganda. Front Pharmacol. https://doi.org/10.3389/fphar.2021.615147

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bose S, Datta R, Kirlin W (2021). In: Mandal SC, Chakraborty R, Sen S (eds) Evidence based validation of traditional medicines, 1st edn. Springer Nature, Singapore

    Google Scholar 

  24. Hamidi MR, Jovanova B, Panovska TK (2014) Toxicological evaluation of the plant products using Brine Shrimp (Artemia salina L.) model. Maced Pharmaceut Bull. https://doi.org/10.33320/MACED.PHARM.BULL.2014.60.01.002

    Article  Google Scholar 

  25. Sullivan KM, Allen DG, Clippinger AJ, Wilson DM, Edwards SW, Glover K, Mansouri K, Settivari R, Wijeyesakere SJ, Casey W (2021) Mind the gaps: prioritizing activities to meet regulatory needs for acute systemic lethality. Altern Anim Exp. https://doi.org/10.14573/altex.2012121

    Article  Google Scholar 

  26. Iseghohi SO (2015) A review of the uses and medicinal properties of Dennettia tripetala (Pepperfruit). Med Sci. https://doi.org/10.3390/medsci3040104

    Article  Google Scholar 

  27. Muhammed D, Adebiyi HY, Odey, Bernard BO, Alawode RA, Abdullateef L, OkunlolaBanke MO, Jonathan I, Eustace EB (2021) Dennettia tripetala (Pepper Fruit), a review of its ethno-medicinal use, phytoconstituents, and biological properties. GSC Adv Res Rev. https://doi.org/10.30574/gscarr.2021.6.3.0024

    Article  Google Scholar 

  28. Oyemitan IA, Elusiyan CA, Akanmu MA, Olugbade TA (2013) Hypnotic, anticonvulsant and anxiolytic effects of 1-nitro-2-phenylethane isolated from the essential oil of Dennettia tripetala in mice. Phytomedicine. https://doi.org/10.1016/j.phymed.2013.07.005

    Article  PubMed  Google Scholar 

  29. Egharevba HO, Idah EA (2015) Major compounds from the essential oil of the fruit and comparative phytochemical studies of the fruits and leaves of Dennettia tripetala Barker F. Found in north central Nigeria. Int J Pharmacogn Phytochem Res 7:1262–1266

    Google Scholar 

  30. Akabueze KO, Idu M, Erhabor JO, Timothy O (2016) Antimicrobial and phytochemical attributes of Dennettia Tripetala F. Baker root and bark extracts. J Microbiol Biotech Food Sci. https://doi.org/10.15414/JMBFS.2016.5.4.297-300

    Article  Google Scholar 

  31. Omage SO, Orhue NE, Omage K (2019) Evaluation of the phytochemical content, in vitro antioxidant capacity, biochemical and histological effects of Dennettia tripetala fruits in healthy rats. Food Sci Nutr. https://doi.org/10.1002/fsn3.792

    Article  PubMed  Google Scholar 

  32. López-Martín J, Anam EM, Boira H, Sanz MJ, Blázquez MA (2002) Chromone and phenanthrene alkaloids from Dennettia tripetala. Chem Pharm Bull. https://doi.org/10.1248/cpb.50.1613

    Article  Google Scholar 

  33. Ukeh DA, Oku EE, Udo IA, Nta AI, Ukeh JA (2012) Insecticidal Effect of Fruit Extracts from Xylopia aethiopica and Dennettia tripetala (Annonaceae) Against Sitophilus oryzae (Coleoptera: Curculionidae). Chilean J Agric Res 72:195–200

    Article  Google Scholar 

  34. Anosike CA, Okagu IU, Uchenna OK (2016) Phytoconstituents, acute toxicity study and protective effect of ethanol extract of Dennettia tripetala seed against aspirin-induced ulcer in rats. Int J Adv Sci Res 1:1–6

    Google Scholar 

  35. Odia A, Irabor E (2020) Evaluation of the phytochemical compositions and antioxidant activity of pepper fruit (Dennettia tripetala) seeds and peels. Int J Eng Applied Sci Tech 5:60–68

    Google Scholar 

  36. Okolie NP, Falodun A, Davids O (2014) Evaluation of the antioxidant activity of the root extract of Pepperfruit (Dennettia tripetala) and its potential for the inhibition of lipid peroxidation. Afr J Trad Comp Alt Med. https://doi.org/10.4314/ajtcam.v11i3.31

    Article  Google Scholar 

  37. Aderogba MA, Akinkunmi EO, Mabusela WT (2011) Antioxidant and antimicrobial activities of flavonoid glycosides from Dennettia tripetala G. Baker leaf extract. Nig J Nat Prod Med. https://doi.org/10.4314/njnpm.v15i1.3

    Article  Google Scholar 

  38. Mordi JC, Ichipi-Ifukor PC, Kweki GR, Ichipi-Ifukor RN, Oyem JC, Dennis-Eboh U (2021) Preliminary toxicology profile of Dennettia tripetala (Pepper Fruit) methanolic leaves extract. Clin Phytosci. https://doi.org/10.1186/s40816-021-00298-w

    Article  Google Scholar 

  39. Ikpi DE, Nku O (2008) Effect of ethanolic extract of Dennettia tripetala fruit on haematological parameters in albino wistar rats. Nigerian J Physiol Sci. https://doi.org/10.4314/njps.v23i1-2.54909

    Article  Google Scholar 

  40. Ofem OE, Ikpi DE, Antai AB (2014) Altered biliary flow rate and bile composition following consumption of ethanolic fruit extract of Dennettia tripetala in rats. Int J Appl Bas Med Res. https://doi.org/10.4103/2229-516X.125678

    Article  Google Scholar 

  41. Oyemitan IA, Iwalewa EO, Akanmu MA, Gbolade AA, Olugbade TA (2009) Acute toxicity and behavioural effects of essential oil of Dennettia tripetala G. Baker (Annonaceae) in mice. West Afr J Pharmacol Drug Res. https://doi.org/10.4314/wajpdr.v25i1.59068

    Article  Google Scholar 

  42. Daniyan MO, Adeyipo TF, Oyemitan IA, Patience BO, Ekundina VO, Akanmu MA (2021) In vivo and in silico studies of Dennettia tripetala essential oil reveal the potential harmful effects of habitual consumption of the plant seed. Toxicol Rep. https://doi.org/10.1016/j.toxrep.2021.07.019

    Article  PubMed  PubMed Central  Google Scholar 

  43. Iseghohi SO, Orhue NEJ (2017) Aqueous extract of Dennettia tripetala ameliorates liver and kidney damage caused by multiple exposures to carbon tetrachloride. Clin Phytosci. https://doi.org/10.1186/s40816-017-0043-x

    Article  Google Scholar 

  44. Iseghohi SO, Orhue NEJ, Omage K (2017) Pre-exposure to Dennettia tripetala ethanolic fruit extract prevents biochemical alterations in rats subsequently exposed to a single dose of carbon tetrachloride. IJPPE. https://doi.org/10.18052/www.scipress.com/IJPPE.6.8

    Article  Google Scholar 

  45. Nwosu LC, Adedire CO, Ogunwolu EO, Ashamo MO (2017) Toxicological and histopathological effects of Dennettia tripetala seed used as grain protectant, food, and medicine. Food Qual Saf. https://doi.org/10.1093/fqsafe/fyx019

    Article  Google Scholar 

  46. Omage SO, Orhue NEJ, Omage K (2021) Dennettia tripetala combats oxidative stress, protein and lipid dyshomeostasis, inflammation, hepatic injury, and glomerular blockage in rats. Prev Nutr Food Sci. https://doi.org/10.3746/pnf.2021.26.2.177

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abubakar AR, Haque M (2020) Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. https://doi.org/10.4103/jpbs.JPBS_175_19

    Article  PubMed  PubMed Central  Google Scholar 

  48. Evans MC (2009) Trease and Evans’ Pharmacognosy, 16th edn. Saunders Ltd, Edinburgh

    Google Scholar 

  49. Harborne JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis. Chapman and Hall Ltd, London

    Google Scholar 

  50. Sorescu A, Nuta A, Iancu R (2018). In: Asao T, Asaduzzaman M (eds) Phytochemicals—source of antioxidants and role in disease prevention, 1st edn. IntechOpen, London

    Google Scholar 

  51. Siddiqui N, Rauf A, Latif A, Mahmood Z (2017) Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). J Taibah Uni Med Sci. https://doi.org/10.1016/j.jtumed.2016.11.006

    Article  Google Scholar 

  52. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N (2019) Total Phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants. https://doi.org/10.3390/plants8040096

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kavitha CI, Indira G (2016) Quantitative estimation of total phenolic, flavonoids, tannin and chlorophyll content of leaves of Strobilanthes Kunthiana (Neelakurinji). J Med Plants Stud 4(4):282–286

    Google Scholar 

  54. Okoro EE, Osoniyi OR, Jabeen A, Shams S, Choudhary MI, Onajobi FD (2019) Anti-proliferative and immunomodulatory activities of fractions from methanol root extract of Abrus precatorius L. Cli Phytosci. https://doi.org/10.1016/j.phytochem.2021.112743

    Article  Google Scholar 

  55. Anioke I, Okwuosa C, Uchendu I, Chijioke O, Dozie-Nwakile O, Ikegwuonu I, Kalu P, Okafor M (2017) Investigation into hypoglycemic, antihyperlipidemic, and renoprotective potentials of Dennettia tripetala (Pepper Fruit) seed in a rat model of diabetes. Biomed Res Int. https://doi.org/10.1155/2017/6923629

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines. https://doi.org/10.3390/medicines5030093

    Article  PubMed  PubMed Central  Google Scholar 

  57. Oyetayo FL, Ojo OA (2017) Dennettia tripetala seeds inhibiting ferrous sulfate-induced oxidative stress in rat tissues in vitro. Oxid Antioxid Med Sci 6:35–39

    Article  Google Scholar 

  58. Hacke AC, Marques JA, Vellosa JC, Boligon AA, Silva FD, Souza DD, Bonini JS, Rocha JB, Pereira RP (2018) Ethyl acetate fraction of Cymbopogon citratus as a potential source of antioxidant compounds. New J Chem. https://doi.org/10.1039/C7NJ04352J

    Article  Google Scholar 

  59. Chen Y, Zhou G, Ma B, Tong J, Wang Y (2019) Active constituent in the ethyl acetate extract fraction of Terminalia bellirica fruit exhibits antioxidation, antifibrosis, and proapoptosis capabilities in vitro. Oxid Med Cell Long. https://doi.org/10.1155/2019/5176090

    Article  Google Scholar 

  60. Oyemitan IA, Iwalewa EO, Akanmu MA, Olugbade TA (2008) Antinociceptive and antiinflammatory effects of Essential oil of Dennettia tripetala G. Baker (Annonaceae) in Rodents. Afr J Trad CAM. https://doi.org/10.4314/ajtcam.v5i4.31290

    Article  Google Scholar 

  61. Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI (2004) In vitro antiplasmodial activity of medicinal plants native to or naturalized in South Africa. J Ethnopharm. https://doi.org/10.1016/j.jep.2004.02.011

    Article  Google Scholar 

  62. Ogori AF (2019) Plant toxins. Am J Biomed Sci Res. https://doi.org/10.34297/AJBSR.2019.04.000793

    Article  Google Scholar 

  63. Pai MP, Cottrell ML, Bertino JS (2020). In: Bennett JE, Raphael Dolin R, Blaser MJ (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 9th edn. Elsevier Inc, Philadelphia

    Google Scholar 

  64. Jagla SW (2013) Effects of seed extracts from traditional Nigerian medical plants on prostate cancer cell growth. MSc Thesis, Chicago https://indigo.uic.edu/articles/thesis/Effects_of_Seed_Extracts_from_Traditional_Nigerian_Medical_Plants_on_Prostate_Cancer_Cell_Growth/10876001/1. Accessed 15 Jun 2022

  65. Huang W, Wan C, Zhou S (2013) Quercetin—a flavonoid compound from Sarcopyramis bodinieri var delicate with potential apoptotic activity in HepG2 liver cancer cells. Tropical J Pharm Res. https://doi.org/10.4314/tjpr.v12i4.13

    Article  Google Scholar 

  66. Leena PN, Aleykutty NA (2016) Isolation and spectral identification of quercetin from the alcoholic root extract of Clerodendrum paniculatum Linn. Int J Pharma Sci Res 7:47–50

    CAS  Google Scholar 

  67. Deepika, Maurya PK (2022) Health benefits of quercetin in age-related diseases. Molecules. https://doi.org/10.3390/molecules27082498

    Article  PubMed  PubMed Central  Google Scholar 

  68. Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC (2020) Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega. https://doi.org/10.1021/acsomega.0c01818

    Article  PubMed  PubMed Central  Google Scholar 

  69. Septembre-Malaterre A, Boumendjel A, Seteyen AS, Boina C, Gasque P, Guiraud P, Sélambarom J (2022) Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomed Plus. https://doi.org/10.1016/j.phyplu.2022.100220

    Article  PubMed  Google Scholar 

  70. Dawidar AM, Abdel-Mogib M, El-Naggar ME, Mostafa ME (2014) Isolation and characterization of polygonum equisetiforme flavonoids and their acaricidal activity against Tetranychus urticae Koch. Res J Pharmaceut Biol Chem Sci 5:140–148

    Google Scholar 

  71. Fujimori K, Shibano M (2013) Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBPα-activated GLUT4-mediated glucose uptake in 3T3-L1 cells. J Agric Food Chem. https://doi.org/10.1021/jf401154c

    Article  PubMed  Google Scholar 

  72. Shen Z, Xu Y, Jiang X, Wang Z, Guo Y, Pan W, Hou J (2019) Avicularin relieves depressive-like behaviors induced by chronic unpredictable mild stress in mice. Int Med J Exp Clin Res. https://doi.org/10.12659/MSM.912401

    Article  Google Scholar 

  73. Wang Y, Liu M, Chen S, Wu Q (2020) Avicularin inhibits cell proliferation and induces cell apoptosis in cutaneous squamous cell carcinoma. Exp Ther Med. https://doi.org/10.3892/etm.2019.8303

    Article  PubMed  PubMed Central  Google Scholar 

  74. Samant NP, Gupta GL (2022) Avicularin attenuates memory impairment in rats with amyloid beta-induced Alzheimer’s disease. Neurotox Res. https://doi.org/10.1007/s12640-021-00467-2

    Article  PubMed  Google Scholar 

  75. Patel K, Patel KD (2022) Health benefits of avicularin in the medicine against cancerous disorders and other complications: biological importance, therapeutic benefit and analytical aspects. Curr Cancer Ther Rev. https://doi.org/10.2174/1573394717666210831163322

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to The World Academy of Sciences (TWAS) and International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan for a Postgraduate Fellowship Award to Ugheighele Samuel Edosewele. The contribution of Nezhun Gören, retired professor from the Department of Molecular Biology and Genetics, Yildaz Technical University, Istanbul, Turkey, is greatly appreciated.

Funding

This research was supported by The World Academy of Sciences (Grant 3240299168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel E. Ugheighele.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugheighele, S.E., Imafidon, K.E., Choudhary, M.I. et al. Isolation of Quercetin and Avicularin from Dennettia tripetala (G. Baker) Seeds, and Evaluation of the Oxidative Stress Management Capacity and Cytotoxic Activities of Its Acetone Extract and Fractions. Chemistry Africa 5, 1275–1285 (2022). https://doi.org/10.1007/s42250-022-00413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00413-5

Keywords

Navigation