Skip to main content

Advertisement

Log in

Spray-Dried and Spray-Freeze-Dried Powder Formulations of an Anti-Interleukin-4Rα Antibody for Pulmonary Delivery

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objective

The therapeutic options for severe asthma are limited, and the biological therapies are all parenterally administered. The purpose of this study was to formulate a monoclonal antibody that targets the receptor for IL-4, an interleukin implicated in the pathogenesis of severe asthma, into a dry powder intended for delivery via inhalation.

Methods

Dehydration was achieved using either spray drying or spray freeze drying, which exposes the thermolabile biomacromolecules to stresses such as shear and adverse temperatures. 2-hydroxypropyl-beta-cyclodextrin was incorporated into the formulation as protein stabiliser and aerosol performance enhancer. The powder formulations were characterised in terms of physical and aerodynamic properties, while the antibody was assessed with regard to its structural stability, antigen-binding ability, and in vitro biological activity after drying.

Results

The spray-freeze-dried formulations exhibited satisfactory aerosol performance, with emitted fraction exceeding 80% and fine particle fraction of around 50%. The aerosolisation of the spray-dried powders was hindered possibly by high residual moisture. Nevertheless, the antigen-binding ability and inhibitory potency were unaffected for the antibody in the selected spray-dried and spray-freeze-dried formulations, and the antibody was physically stable even after one-year storage at ambient conditions.

Conclusions

The findings of this study establish the feasibility of developing an inhaled dry powder formulation of an anti-IL-4R antibody using spray drying and spray freeze drying techniques with potential for the treatment of severe asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. GBD 2019 Cause and risk summaries. IHME, Seattle, WA 2020. https://www.healthdata.org/results/gbd_summaries/2019/asthma-level-3-cause. Accessed 25 Feb 2022.

  2. Hekking P-PW, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol. 2015;135(4):896–902. https://doi.org/10.1016/j.jaci.2014.08.042.

    Article  PubMed  Google Scholar 

  3. Global initiative for asthma. Global strategy for asthma management and prevention. 2021. https://ginasthma.org/gina-reports.

  4. Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73. https://doi.org/10.1183/09031936.00202013.

    Article  CAS  PubMed  Google Scholar 

  5. Lefebvre P, Duh MS, Lafeuille M-H, Gozalo L, Desai U, Robitaille M-N, et al. Acute and chronic systemic corticosteroid-related complications in patients with severe asthma. J Allergy Clin Immunol. 2015;136(6):1488–95. https://doi.org/10.1016/j.jaci.2015.07.046.

    Article  CAS  PubMed  Google Scholar 

  6. Sarnes E, Crofford L, Watson M, Dennis G, Kan H, Bass D. Incidence and US costs of corticosteroid-associated adverse events: a systematic literature review. Clin Ther. 2011;33(10):1413–32. https://doi.org/10.1016/j.clinthera.2011.09.009.

    Article  PubMed  Google Scholar 

  7. Israel E, Reddel HK. Severe and difficult-to-treat asthma in adults. N Engl J Med. 2017;377(10):965–76. https://doi.org/10.1056/NEJMra1608969.

    Article  CAS  PubMed  Google Scholar 

  8. Irvine DJ, Su X, Kwong B. Routes of delivery for biological drug products. In: Gad SC, editor. Pharmaceutical sciences encyclopedia. Chapter 22. Hoboken, NJ: John Wiley & Sons; 2013. p. 1–48. https://doi.org/10.1002/9780470571224.pse521.

    Chapter  Google Scholar 

  9. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2019;18(1):19–40. https://doi.org/10.1038/nrd.2018.183.

    Article  CAS  PubMed  Google Scholar 

  10. Sou T, Meeusen EN, de Veer M, Morton DAV, Kaminskas LM, McIntosh MP. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol. 2011;29(4):191–8. https://doi.org/10.1016/j.tibtech.2010.12.009.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson KA. Preparation of peptide and protein powders for inhalation. Adv Drug Deliv Rev. 1997;26(1):3–15. https://doi.org/10.1016/S0169-409X(97)00506-1.

    Article  CAS  PubMed  Google Scholar 

  12. Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 2015;20(3):380–9. https://doi.org/10.1016/j.drudis.2014.09.020.

    Article  CAS  PubMed  Google Scholar 

  13. Fahy JV, Cockcroft DW, Boulet L-P, Wong HH, Deschesnes F, Davis EE, et al. Effect of aerosolized anti-IgE (E25) on airway responses to inhaled allergen in asthmatic subjects. Am J Respir Crit Care Med. 1999;160(3):1023–7. https://doi.org/10.1164/ajrccm.160.3.9810012.

    Article  CAS  PubMed  Google Scholar 

  14. Burgess G, Boyce M, Jones M, Larsson L, Main MJ, Morgan F, et al. Randomized study of the safety and pharmacodynamics of inhaled interleukin-13 monoclonal antibody fragment VR942. eBioMedicine. 2018;35:67–75. https://doi.org/10.1016/j.ebiom.2018.07.035.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Respaud R, Vecellio L, Diot P, Heuzé-Vourc’h N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin Drug Deliv. 2015;12(6):1027–39. https://doi.org/10.1517/17425247.2015.999039.

    Article  CAS  PubMed  Google Scholar 

  16. Shoyele SA, Slowey A. Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int J Pharm. 2006;314(1):1–8. https://doi.org/10.1016/j.ijpharm.2006.02.014.

    Article  CAS  PubMed  Google Scholar 

  17. Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm. 2021;163:198–211. https://doi.org/10.1016/j.ejpb.2021.04.003.

    Article  CAS  PubMed  Google Scholar 

  18. Bhambhani A, Blue JT. Lyophilization strategies for development of a high-concentration monoclonal antibody formulation: Benefits and Pitfalls 2010. https://www.americanpharmaceuticalreview.com/Featured-Articles/117600-Lyophilization-Strategies-for-Development-of-a-High-Concentration-Monoclonal-Antibody-Formulation-Benefits-and-Pitfalls/.

  19. Sharma A, Khamar D, Cullen S, Hayden A, Hughes H. Innovative drying Technologies for Biopharmaceuticals. Int J Pharm. 2021;609:121115. https://doi.org/10.1016/j.ijpharm.2021.121115.

    Article  CAS  PubMed  Google Scholar 

  20. Chang RYK, Chow MYT, Khanal D, Chen D, Chan H-K. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Deliv Rev. 2021;172:64–79. https://doi.org/10.1016/j.addr.2021.02.017.

    Article  CAS  PubMed  Google Scholar 

  21. Ziaee A, Albadarin AB, Padrela L, Femmer T, O'Reilly E, Walker G. Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019;127:300–18. https://doi.org/10.1016/j.ejps.2018.10.026.

    Article  CAS  PubMed  Google Scholar 

  22. Karimi M, Kamali H, Mohammadi M, Tafaghodi M. Evaluation of various techniques for production of inhalable dry powders for pulmonary delivery of peptide and protein. J Drug Deliv Sci Technol. 2022;69:103186. https://doi.org/10.1016/j.jddst.2022.103186.

    Article  CAS  Google Scholar 

  23. Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm. 2015;488(1-2):136–53. https://doi.org/10.1016/j.ijpharm.2015.04.053.

    Article  CAS  PubMed  Google Scholar 

  24. Matejtschuk P. Lyophilization of proteins. In: Day JG, Stacey GN, editors. Cryopreservation and freeze-drying protocols. 2nd ed. chapter 4, vol. 368. Totowa, NJ: Humana Press; 2007. p. 59–72. https://doi.org/10.1007/978-1-59745-362-2_4.

    Chapter  Google Scholar 

  25. Yu Z, Johnston KP, Williams RO III. Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity. Eur J Pharm Sci. 2006;27(1):9–18. https://doi.org/10.1016/j.ejps.2005.08.010.

    Article  CAS  PubMed  Google Scholar 

  26. Mensink MA, Frijlink HW, van der Voort MK, Hinrichs WLJ. How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm. 2017;114:288–95. https://doi.org/10.1016/j.ejpb.2017.01.024.

    Article  CAS  PubMed  Google Scholar 

  27. Iwai J, Ogawa N, Nagase H, Endo T, Loftsson T, Ueda H. Effects of various cyclodextrins on the stability of freeze-dried lactate dehydrogenase. J Pharm Sci. 2007;96(11):3140–3. https://doi.org/10.1002/jps.20847.

    Article  CAS  PubMed  Google Scholar 

  28. Serno T, Geidobler R, Winter G. Protein stabilization by cyclodextrins in the liquid and dried state. Adv Drug Deliv Rev. 2011;63(13):1086–106. https://doi.org/10.1016/j.addr.2011.08.003.

    Article  CAS  PubMed  Google Scholar 

  29. Ramezani V, Vatanara A, Seyedabadi M, Nabi Meibodi M, Fanaei H. Application of cyclodextrins in antibody microparticles: potentials for antibody protection in spray drying. Drug Dev Ind Pharm. 2017;43(7):1103–11. https://doi.org/10.1080/03639045.2017.1293679.

    Article  CAS  PubMed  Google Scholar 

  30. Haeuser C, Goldbach P, Huwyler J, Friess W, Allmendinger A. Be aggressive! Amorphous excipients enabling single-step freeze-drying of monoclonal antibody formulations. Pharmaceutics. 2019;11(11):616. https://doi.org/10.3390/pharmaceutics11110616.

    Article  CAS  PubMed Central  Google Scholar 

  31. Lo JCK, Pan HW, Lam JKW. Inhalable protein powder prepared by spray-freeze-drying using Hydroxypropyl-β-Cyclodextrin as excipient. Pharmaceutics. 2021;13(5):615. https://doi.org/10.3390/pharmaceutics13050615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Inactive ingredient search for approved drug products. U.S. Food and Drug Administration, Silver Spring, MD. 2022. http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm. Accessed 04 Jun 2022.

  33. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1-2):1–19. https://doi.org/10.1016/j.ijpharm.2010.03.017.

    Article  CAS  PubMed  Google Scholar 

  34. al-Nakib W, Higgins PG, Barrow GI, Tyrrell DA, Andries K, Bussche GV, et al. Suppression of colds in human volunteers challenged with rhinovirus by a new synthetic drug (R61837). Antimicrob Agents Chemother. 1989;33(4):522–5. https://doi.org/10.1128/AAC.33.4.522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Depreter F, Pilcer G, Amighi K. Inhaled proteins: challenges and perspectives. Int J Pharm. 2013;447(1-2):251–80. https://doi.org/10.1016/j.ijpharm.2013.02.031.

    Article  CAS  PubMed  Google Scholar 

  36. Qiu Y, Man RCH, Liao Q, Kung KLK, Chow MYT, Lam JKW. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J Control Release. 2019;314:102–15. https://doi.org/10.1016/j.jconrel.2019.10.026.

    Article  CAS  PubMed  Google Scholar 

  37. Liao Q, Lam ICH, Lin HHS, Wan LTL, Lo JCK, Tai W, et al. Effect of formulation and inhaler parameters on the dispersion of spray freeze dried voriconazole particles. Int J Pharm. 2020;584:119444. https://doi.org/10.1016/j.ijpharm.2020.119444.

  38. Mohan M, Lee S, Guo C, Peri SP, Doub WH. Evaluation of abbreviated impactor measurements (AIM) and efficient data analysis (EDA) for dry powder inhalers (DPIs) against the full-resolution next generation impactor (NGI). AAPS PharmSciTech. 2017;18(5):1585–94. https://doi.org/10.1208/s12249-016-0625-9.

    Article  PubMed  Google Scholar 

  39. United States Pharmacopeia (USP). Aerosols, Nasal Sprays, Metered-Dose Inhalers, and Dry Powder Inhalers. USP on Compounding – A Guide for the Compounding Practitioner. Chapter 601. Rockville, MD: The United States Pharmacopeial Convention; 2014. p. 152-78.

  40. Laube BL, Janssens HM, de Jongh FHC, Devadason SG, Dhand R, Diot P, et al. What the pulmonary specialist should know about the new inhalation therapies. Eur Respir J. 2011;37(6):1308–417. https://doi.org/10.1183/09031936.00166410.

    Article  CAS  PubMed  Google Scholar 

  41. van der Kant R, Karow-Zwick AR, Van Durme J, Blech M, Gallardo R, Seeliger D, et al. Prediction and reduction of the aggregation of monoclonal antibodies. J Mol Biol. 2017;429(8):1244–61. https://doi.org/10.1016/j.jmb.2017.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Drexler HG, Zaborski M, Quentmeier H. Cytokine response profiles of human myeloid factor-dependent leukemia cell lines. Leukemia. 1997;11(5):701–8. https://doi.org/10.1038/sj.leu.2400633.

    Article  CAS  PubMed  Google Scholar 

  43. Kwok PCL, Chan H-K. Solid state testing of inhaled formulations. In: Hickey AJ, da Rocha SRP, editors. Pharmaceutical inhalation aerosol technology. 3rd ed.3 ed. Boca Raton, FL: CRC Press; 2019. p. 523–40. https://doi.org/10.1201/9780429055201.

    Chapter  Google Scholar 

  44. Borghardt JM, Kloft C, Sharma A. Inhaled therapy in respiratory disease: the complex interplay of pulmonary kinetic processes. Can Respir J. 2018;2018:2732017. https://doi.org/10.1155/2018/2732017.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mansour HM, Myrdal PB, Younis U, Muralidharan P, Hillery AM, Don HJ. Pulmonary drug delivery. In: Hillery AM, Park K, editors. Drug delivery: fundamentals and applications. 2nd ed.1 ed. Boca Raton, FL: CRC Press; 2017. p. 249–78. https://doi.org/10.1201/9781315382579.

    Chapter  Google Scholar 

  46. Carrigy N, Vehring R. Engineering stable spray-dried biologic powder for inhalation. In: Hickey AJ, da Rocha SRP, editors. Pharmaceutical inhalation aerosol technology. 3rd ed.2 ed. Boca Raton, FL: CRC Press; 2019. p. 291–326. https://doi.org/10.1201/9780429055201.

    Chapter  Google Scholar 

  47. Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26. https://doi.org/10.1002/jps.20727.

    Article  CAS  PubMed  Google Scholar 

  48. Treuheit MJ, Kosky AA, Brems DN. Inverse relationship of protein concentration and aggregation. Pharm Res. 2002;19(4):511–6. https://doi.org/10.1023/A:1015108115452.

    Article  CAS  PubMed  Google Scholar 

  49. Mahler H-C, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34. https://doi.org/10.1002/jps.21566.

    Article  CAS  PubMed  Google Scholar 

  50. Hernandez R. Scale-up of complex biologics. BioPharm International. 2016;29(6):26–30 https://www.biopharminternational.com/view/scale-complex-biologics.

    Google Scholar 

  51. Bowey K, Swift BE, Flynn LE, Neufeld RJ. Characterization of biologically active insulin-loaded alginate microparticles prepared by spray drying. Drug Dev Ind Pharm. 2013;39(3):457–65. https://doi.org/10.3109/03639045.2012.662985.

    Article  CAS  PubMed  Google Scholar 

  52. Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37. https://doi.org/10.1007/s11095-006-9174-3.

    Article  CAS  PubMed  Google Scholar 

  53. Maa Y-F, Nguyen P-A, Sweeney T, Shire SJ, Hsu CC. Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res. 1999;16(2):249–54. https://doi.org/10.1023/A:1018828425184.

    Article  CAS  PubMed  Google Scholar 

  54. Dunbar CA, Hickey AJ, Holzner P. Dispersion and characterization of pharmaceutical dry powder aerosols. KONA. 1998;16:7-45. 10.14356/kona.1998007.

  55. Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv. 2020;17(1):77–96. https://doi.org/10.1080/17425247.2020.1702643.

    Article  CAS  PubMed  Google Scholar 

  56. Shepard KB, Vodak DT, Kuehl PJ, Revelli D, Zhou Y, Pluntze AM, et al. Local treatment of non-small cell lung cancer with a spray-dried bevacizumab formulation. AAPS PharmSciTech. 2021;22(7):230. https://doi.org/10.1208/s12249-021-02095-7.

    Article  CAS  PubMed  Google Scholar 

  57. Luy B, Stamato H. Spray freeze drying. In: Ohtake S, Izutsu K-i, Lechuga-Ballesteros D, editors. Drying Technologies for Biotechnology and Pharmaceutical Applications. 1st ed.8 ed. Weinheim, Germany: Wiley-VCH; 2020. p. 217–37. https://doi.org/10.1002/9783527802104.ch8.

    Chapter  Google Scholar 

  58. Szejtli J. Introduction and general overview of Cyclodextrin chemistry. Chem Rev. 1998;98(5):1743–54. https://doi.org/10.1021/cr970022c.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao Z, Zhang X, Cui Y, Huang Y, Huang Z, Wang G, et al. Hydroxypropyl-β-cyclodextrin as anti-hygroscopicity agent in amorphous lactose carriers for dry powder inhalers. Powder Technol. 2019;358:29–38. https://doi.org/10.1016/j.powtec.2018.09.098.

    Article  CAS  Google Scholar 

  60. Day CPF, Miloserdov A, Wildish-Jones K, Pearson E, Carruthers AE. Quantifying the hygroscopic properties of cyclodextrin containing aerosol for drug delivery to the lungs. Phys Chem Chem Phys. 2020;22(20):11327–36. https://doi.org/10.1039/D0CP01385D.

    Article  CAS  PubMed  Google Scholar 

  61. Brouns F. Saccharide characteristics and their potential health effects in perspective. Front Nutr. 2020;7:75. https://doi.org/10.3389/fnut.2020.00075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Young PM, Sung A, Traini D, Kwok P, Chiou H, Chan H-K. Influence of humidity on the electrostatic charge and aerosol performance of dry powder inhaler carrier based systems. Pharm Res. 2007;24(5):963–70. https://doi.org/10.1007/s11095-006-9218-8.

    Article  CAS  PubMed  Google Scholar 

  63. Pouya MA, Daneshmand B, Aghababaie S, Faghihi H, Vatanara A. Spray-freeze drying: a suitable method for aerosol delivery of antibodies in the presence of Trehalose and Cyclodextrins. AAPS PharmSciTech. 2018;19(5):2247–54. https://doi.org/10.1208/s12249-018-1023-2.

    Article  CAS  PubMed  Google Scholar 

  64. Milani S, Faghihi H, Roulholamini Najafabadi A, Amini M, Montazeri H, Vatanara A. Hydroxypropyl beta cyclodextrin: a water-replacement agent or a surfactant upon spray freeze-drying of IgG with enhanced stability and aerosolization. Drug Dev Ind Pharm. 2020;46(3):403–11. https://doi.org/10.1080/03639045.2020.1724131.

    Article  CAS  PubMed  Google Scholar 

  65. Faghihi H, Najafabadi AR, Daman Z, Ghasemian E, Montazeri H, Vatanara A. Respiratory Administration of Infliximab dry Powder for local suppression of inflammation. AAPS PharmSciTech. 2019;20(3):128. https://doi.org/10.1208/s12249-019-1308-0.

    Article  CAS  PubMed  Google Scholar 

  66. Fahy JV. Type 2 inflammation in asthma – present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65. https://doi.org/10.1038/nri3786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gandhi NA, Pirozzi G, Graham NMH. Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert Rev Clin Immunol. 2017;13(5):425–37. https://doi.org/10.1080/1744666X.2017.1298443.

    Article  CAS  PubMed  Google Scholar 

  68. Cal K, Sollohub K. Spray drying technique. I: hardware and process parameters. J Pharm Sci. 2010;99(2):575–86. https://doi.org/10.1002/jps.21886.

    Article  CAS  PubMed  Google Scholar 

  69. Maa Y-F, Nguyen P-A, Andya JD, Dasovich N, Sweeney TD, Shire SJ, et al. Effect of spray drying and subsequent processing conditions on residual moisture content and physical/biochemical stability of protein inhalation powders. Pharm Res. 1998;15(5):768–75. https://doi.org/10.1023/A:1011983322594.

    Article  CAS  PubMed  Google Scholar 

  70. Maa Y-F, Costantino HR, Nguyen P-A, Hsu CC. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm Dev Technol. 1997;2(3):213–23. https://doi.org/10.3109/10837459709031441.

    Article  CAS  PubMed  Google Scholar 

  71. Schüle S, Schulz-Fademrecht T, Garidel P, Bechtold-Peters K, Frieß W. Stabilization of IgG1 in spray-dried powders for inhalation. Eur J Pharm Biopharm. 2008;69(3):793–807. https://doi.org/10.1016/j.ejpb.2008.02.010.

    Article  CAS  PubMed  Google Scholar 

  72. Ameri M, Maa Y-F. Spray drying of biopharmaceuticals: stability and process considerations. Dry Technol. 2006;24(6):763–8. https://doi.org/10.1080/03602550600685275.

    Article  CAS  Google Scholar 

  73. Santos D, Maurício AC, Sencadas V, Santos JD, Fernandes MH, Gomes PS. Spray drying: an overview. In: Pignatello R, Musumeci T, editors. Biomaterials - physics and chemistry. London, UK: IntechOpen; 2017. p. 9–35. https://doi.org/10.5772/intechopen.72247.

    Chapter  Google Scholar 

  74. Ní Ógáin O, Tajber L, Corrigan OI, Healy AM. Spray drying from organic solvents to prepare nanoporous/nanoparticulate microparticles of protein: excipient composites designed for oral inhalation. J Pharm Pharmacol. 2012;64(9):1275–90. https://doi.org/10.1111/j.2042-7158.2012.01488.x.

    Article  CAS  PubMed  Google Scholar 

  75. Alabsi W, Al-Obeidi FA, Polt R, Mansour HM. Organic solution advanced spray-dried microparticulate/Nanoparticulate dry powders of Lactomorphin for respiratory delivery: physicochemical characterization, in vitro aerosol dispersion, and cellular studies. Pharmaceutics. 2021;13(1):26. https://doi.org/10.3390/pharmaceutics13010026.

    Article  CAS  Google Scholar 

  76. Maltesen MJ, van de Weert M. Drying methods for protein pharmaceuticals. Drug Discov Today Technol. 2008;5(2-3):e81–e8. https://doi.org/10.1016/j.ddtec.2008.11.001.

    Article  PubMed  Google Scholar 

  77. Pinto JT, Faulhammer E, Dieplinger J, Dekner M, Makert C, Nieder M, et al. Progress in spray-drying of protein pharmaceuticals: literature analysis of trends in formulation and process attributes. Dry Technol. 2021;39(11):1415–46. https://doi.org/10.1080/07373937.2021.1903032.

    Article  CAS  Google Scholar 

  78. Faghihi H, Vatanara A, Najafabadi AR, Ramezani V, Gilani K. The use of amino acids to prepare physically and conformationally stable spray-dried IgG with enhanced aerosol performance. Int J Pharm. 2014;466(1):163–71. https://doi.org/10.1016/j.ijpharm.2014.03.020.

    Article  CAS  PubMed  Google Scholar 

  79. Li L, Sun S, Parumasivam T, Denman JA, Gengenbach T, Tang P, et al. ʟ-leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders. Eur J Pharm Biopharm. 2016;102:132–41. https://doi.org/10.1016/j.ejpb.2016.02.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Funding

This project was funded by the Seed Funding for Strategic Interdisciplinary Research Scheme, The University of Hong Kong. H.W.P. is a recipient of the Hong Kong PhD Fellowship, Research Grants Council, Hong Kong (PF18-13277).

Author information

Authors and Affiliations

Authors

Contributions

This study was conceptualised and designed by J.K.W.L., H.W.P., and J.C.K.L. The experiments and data analyses were performed by H.W.P. The manuscript was written by H.W.P. and edited by H.W.P., H.C.S., S.W.S.L., and J.K.W.L. The antibody was developed by J.G., L.Z., and C.Z. All authors reviewed the manuscript and approved the final version.

Corresponding authors

Correspondence to Chenghai Zhang or Jenny K. W. Lam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H.W., Seow, H.C., Lo, J.C.K. et al. Spray-Dried and Spray-Freeze-Dried Powder Formulations of an Anti-Interleukin-4Rα Antibody for Pulmonary Delivery. Pharm Res 39, 2291–2304 (2022). https://doi.org/10.1007/s11095-022-03331-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03331-w

Keywords

Navigation