Skip to main content
Log in

Pharmacological Basis for Abrogating Myocardial Reperfusion Injury Through a Multi-Target Combined Antioxidant Therapy

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The main goal of the treatment for acute myocardial infarction is to achieve reperfusion of the affected myocardial tissue, with percutaneous coronary angioplasty being the gold standard procedure. However, this strategy has been associated with additional heart damage termed “lethal reperfusion injury,” which is responsible for up to half of the final infarct size. Among the possible underlying mechanisms that are likely to explain this damage, studies suggest that oxidative stress plays a key role. Although this has not been translated into clinical benefits in most studies, recent preclinical studies reported promising results and a possible synergy with the combined use of vitamin C (VC), N-acetylcysteine (NAC), and deferoxamine (DFO). However, to implement a combined therapy with these drugs for patients requires further studies to understand their pharmacokinetic properties. Available data of the clinical trials have not been validated by looking into the pharmacokinetics in their design. Therefore, this article presents an update and comparison of the evidence for the efficacy of these administration schemes for each drug in cardioprotection, their pharmacokinetic properties and mechanisms of action for their use against “lethal reperfusion injury.” To achieve a cardioprotective effect using a new pharmacological strategy before the onset of reperfusion, it is helpful to consider the pharmacokinetics of each drug. In this regard, to design a fast and short pharmacologic therapeutic strategy, theoretically VC and DFO concentrations could be modeled by a one-compartment model whereas NAC could be modeled by a three-compartment model with an initial short half-life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (2020) The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 26 Sep 2021.

  2. World Health Organization (2021) Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 26 Sep 2021.

  3. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018;39:119–77. https://doi.org/10.1093/eurheartj/ehx393.

    Article  PubMed  Google Scholar 

  4. Ferrari R, Biscaglia S, Malagù M, et al. Can we improve myocardial protection during ischaemic injury? Cardiol. 2016;135:14–26. https://doi.org/10.1159/000444847.

    Article  Google Scholar 

  5. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35. https://doi.org/10.1016/S1520-765X(02)90013-1.

    Article  CAS  PubMed  Google Scholar 

  6. Eitel I, Stiermaier T, Lange T, et al. Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction. JACC Cardiovasc Imaging. 2018;11:1433–44. https://doi.org/10.1016/j.jcmg.2017.11.034.

    Article  PubMed  Google Scholar 

  7. Bulluck H, Yellon DM, Hausenloy DJ. Reducing myocardial infarct size: challenges and future opportunities. Heart. 2016;102:341–8. https://doi.org/10.1136/heartjnl-2015-307855.

    Article  CAS  PubMed  Google Scholar 

  8. Rossello X, Lobo-Gonzalez M, Ibanez B. Editor’s choice—pathophysiology and therapy of myocardial ischaemia/reperfusion syndrome. Eur Hear J Acute Cardiovasc Care. 2019;8:443–56. https://doi.org/10.1177/2048872619845283.

    Article  Google Scholar 

  9. Tratsiakovich Y, Yang J, Gonon AT, et al. Arginase as a target for treatment of myocardial ischemia-reperfusion injury. Eur J Pharmacol. 2013;720:121–3. https://doi.org/10.1016/j.ejphar.2013.10.040.

    Article  CAS  PubMed  Google Scholar 

  10. Ferreira R, Burgos M, Llesuy S, et al. Reduction of reperfusion injury with mannitol cardioplegia. Ann Thorac Surg. 1989;48:77–83. https://doi.org/10.1016/0003-4975(89)90182-3.

    Article  CAS  PubMed  Google Scholar 

  11. Rodrigo R, González-Montero J, Sotomayor CG. Novel combined antioxidant strategy against hypertension, acute myocardial infarction and postoperative atrial fibrillation. Biomedicines. 2021;9:1–20. https://doi.org/10.3390/biomedicines9060620.

    Article  CAS  Google Scholar 

  12. Hausenloy DJ, Botker HE, Condorelli G, et al. Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2013;98:7–27. https://doi.org/10.1093/cvr/cvt004.

    Article  CAS  PubMed  Google Scholar 

  13. Davidson SM, Ferdinandy P, Andreadou I, et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol. 2019;73:89–99. https://doi.org/10.1016/j.jacc.2018.09.086.

    Article  PubMed  Google Scholar 

  14. Parra-Flores P, Riquelme JA, Valenzuela-Bustamante P, et al. The association of ascorbic acid, deferoxamine and N-acetylcysteine improves cardiac fibroblast viability and cellular function associated with tissue repair damaged by simulated ischemia/reperfusion. Antioxidants. 2019;8:1–19. https://doi.org/10.3390/antiox8120614.

    Article  CAS  Google Scholar 

  15. Rodrigo R, Prieto JC, Castillo R. Cardioprotection against ischaemia/reperfusion by vitamins C and E plus n-3 fatty acids: molecular mechanisms and potential clinic applications. Clin Sci. 2013;124:1–15. https://doi.org/10.1042/CS20110663.

    Article  CAS  Google Scholar 

  16. Spoelstra-de Man AME, Elbers PWG, Oudemans-van Straaten HM. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit Care. 2018. https://doi.org/10.1186/s13054-018-1996-y.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pasupathy S, Tavella R, Grover S, et al. Early use of N-acetylcysteine with nitrate therapy in patients undergoing primary percutaneous coronary intervention for ST-segment-elevation myocardial infarction reduces myocardial infarct size (the NACIAM trial [N-acetylcysteine in acute myocardial inf. Circulation. 2017;136:894–903. https://doi.org/10.1161/CIRCULATIONAHA.117.027575.

    Article  CAS  PubMed  Google Scholar 

  18. García Pérez A, Mora Viera L, Abreu Reyes D. La N-acetilcisteína reduce el progreso de daño cardíaco en modelos experimentales. CorSalud. 2020;12:214–8.

    Google Scholar 

  19. Tang LJ, Luo XJ, Tu H, et al. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol. 2020;394:401–10. https://doi.org/10.1007/s00210-020-01932-z.

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigo R, Prieto JC, Aguayo R, et al. Joint cardioprotective effect of vitamin c and other antioxidants against reperfusion injury in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Molecules. 2021;26:1–27. https://doi.org/10.3390/molecules26185702.

    Article  CAS  Google Scholar 

  21. González-Montero J, Brito R, Gajardo AI, Rodrigo R. Myocardial reperfusion injury and oxidative stress: therapeutic opportunities. World J Cardiol. 2018;10:74–86. https://doi.org/10.4330/wjc.v10.i9.74.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peoples JN, Saraf A, Ghazal N, et al. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 2019. https://doi.org/10.1038/s12276-019-0355-7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen Z, Chua CC, Gao J, et al. Prevention of ischemia/reperfusion-induced cardiac apoptosis and injury by melatonin is independent of glutathione peroxdiase 1. J Pineal Res. 2009;46:235–41. https://doi.org/10.1111/j.1600-079X.2008.00654.x.

    Article  CAS  PubMed  Google Scholar 

  24. Kurian GA, Rajagopal R, Vedantham S, Rajesh M. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid Med Cell Longev. 2016. https://doi.org/10.1155/2016/1656450.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang BF, Yoshioka J. The emerging role of thioredoxin-interacting protein in myocardial ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2017;22:219–29. https://doi.org/10.1177/1074248416675731.

    Article  CAS  PubMed  Google Scholar 

  26. Huang X-S, Chen H-P, Yu H-H, et al. Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for hypoxic preconditioning-mediated delayed cardioprotection. Mol Cell Biochem. 2014;385:33–41. https://doi.org/10.1007/s11010-013-1812-6.

    Article  CAS  PubMed  Google Scholar 

  27. Stanley BA, Sivakumaran V, Shi S, et al. Thioredoxin reductase-2 is essential for keeping low levels of H2O2 emission from isolated heart mitochondria. J Biol Chem. 2011;286:33669–77. https://doi.org/10.1074/jbc.M111.284612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guan W, Osanai T, Kamada T, et al. Time course of free radical production after primary coronary angioplasty for acute myocardial infarction and the effect of vitamin C. Jpn Circ J. 1999;63:924–8. https://doi.org/10.1253/jcj.63.924.

    Article  CAS  PubMed  Google Scholar 

  29. Ramos C, Brito R, González-Montero J, et al. Effects of a novel ascorbate-based protocol on infarct size and ventricle function in acute myocardial infarction patients undergoing percutaneous coronary angioplasty. Arch Med Sci. 2017;13:558–67. https://doi.org/10.5114/aoms.2016.59713.

    Article  CAS  PubMed  Google Scholar 

  30. Khan SA, Bhattacharjee S, Ghani MOA, et al. Vitamin c for cardiac protection during percutaneous coronary intervention: a systematic review of randomized controlled trials. Nutrients. 2020;12:1–21. https://doi.org/10.3390/nu12082199.

    Article  CAS  Google Scholar 

  31. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004;61:461–70. https://doi.org/10.1016/j.cardiores.2003.10.025.

    Article  CAS  PubMed  Google Scholar 

  32. Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, et al. Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants. 2021;10:1–25. https://doi.org/10.3390/antiox10050667.

    Article  CAS  Google Scholar 

  33. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  34. Wang F, Yuan Q, Chen F, et al. Fundamental mechanisms of the cell death caused by nitrosative stress. Front Cell Dev Biol. 2021;9:1–10. https://doi.org/10.3389/fcell.2021.742483.

    Article  Google Scholar 

  35. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 2018;117:76–89. https://doi.org/10.1016/j.freeradbiomed.2018.01.024.

    Article  CAS  PubMed  Google Scholar 

  36. Bagatini MD, Martins CC, Battisti V, et al. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessels. 2011;26:55–63. https://doi.org/10.1007/s00380-010-0029-9.

    Article  PubMed  Google Scholar 

  37. Singh A, Lee KJ, Lee CY, et al. Relation between myocardial glutathione content and extent of ischemia-reperfusion injury. Circulation. 1989;80:1795–804. https://doi.org/10.1161/01.CIR.80.6.1795.

    Article  CAS  PubMed  Google Scholar 

  38. Ji W, Wang L, He S, et al. Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle. PLoS ONE. 2018;13:1–15. https://doi.org/10.1371/journal.pone.0208474.

    Article  Google Scholar 

  39. Valls N, Gormaz JG, Aguayo R, et al. Amelioration of persistent left ventricular function impairment through increased plasma ascorbate levels following myocardial infarction. Redox Rep. 2016;21:75–83. https://doi.org/10.1179/1351000215Y.0000000018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Z, Kim S, Quinney SK, et al. Non-compartment model to compartment model pharmacokinetics transformation meta-analysis—a multivariate nonlinear mixed model. BMC Syst Biol. 2010;4:1–7. https://doi.org/10.1186/1752-0509-4-S1-S8.

    Article  CAS  Google Scholar 

  41. Lalonde RL, Kowalski KG, Hutmacher MM, et al. Model-based drug development. Clin Pharmacol Ther. 2007;82:21–32. https://doi.org/10.1038/sj.clpt.6100235.

    Article  CAS  PubMed  Google Scholar 

  42. Ryeznik Y, Sverdlov O, Svensson EM, et al. Pharmacometrics meets statistics—a synergy for modern drug development. CPT Pharmacomet Syst Pharmacol. 2021;10:1134–49. https://doi.org/10.1002/psp4.12696.

    Article  CAS  Google Scholar 

  43. Wang Y, Zhu H, Madabushi R, et al. Model-informed drug development: current US regulatory practice and future considerations. Clin Pharmacol Ther. 2019;105:899–911. https://doi.org/10.1002/cpt.1363.

    Article  PubMed  Google Scholar 

  44. Świętaszczyk C, Jødal L. Derivation and presentation of formulas for drug concentrations in two-, three- and four-compartment pharmacokinetic models. J Pharmacol Toxicol Methods. 2019;100:1–11.

    Article  Google Scholar 

  45. Smith DA, Beaumont K, Maurer TS, Di L. Volume of distribution in drug design. J Med Chem. 2015. https://doi.org/10.1021/acs.jmedchem.5b00201.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bertrand J, Mentré F (2008) Mathematical expressions of the pharmacokinetic and pharmacodynamic models implemented in the Monolix software. 36

  47. Gasparetto C, Malinverno A, Culacciati D, et al. Antioxidant vitamins reduce oxidative stress and ventricular remodeling in patients with acute myocardial infarction. Int J Immunopathol Pharmacol. 2005;18:487–96. https://doi.org/10.1177/039463200501800308.

    Article  CAS  PubMed  Google Scholar 

  48. Shafaei-Bajestani N, Talasaz A, Salarifar M, et al. Potential role of Vitamin C intracoronary administration in preventing cardiac injury after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. J Res Pharm Pract. 2019;8:75. https://doi.org/10.4103/jrpp.jrpp_18_78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nielsen TK, Højgaard M, Andersen JT, et al. Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: a pharmacokinetic evaluation. Basic Clin Pharmacol Toxicol. 2015;116:343–8. https://doi.org/10.1111/bcpt.12323.

    Article  CAS  PubMed  Google Scholar 

  50. Martins ML, da Silva AT, Machado RP, et al. Vitamin C decreases reduced glutathione in chronic haemodialysis patients: a pilot, randomised, double-blind trial. Int Urol Nephrol. 2021;53:1695–704. https://doi.org/10.1007/s11255-021-02797-8.

    Article  CAS  PubMed  Google Scholar 

  51. Lykkesfeldt J, Tveden-Nyborg P. The pharmacokinetics of vitamin C. Nutrients. 2019. https://doi.org/10.3390/nu11102412.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016;22:463–93. https://doi.org/10.1111/odi.12446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Grooth HJ, Manubulu-Choo WP, Zandvliet AS, et al. Vitamin C pharmacokinetics in critically ill patients: a randomized trial of four IV regimens. Chest. 2018;153:1368–77. https://doi.org/10.1016/j.chest.2018.02.025.

    Article  PubMed  Google Scholar 

  54. Padayatty SJ, Sun H, Wang Y, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140:533–7.

    Article  CAS  Google Scholar 

  55. Davis JL, Paris HL, Beals JW, et al. Liposomal-encapsulated ascorbic acid: influence on vitamin C bioavailability and capacity to protect against ischemia-reperfusion injury. Nutr Metab Insights. 2016. https://doi.org/10.4137/nmi.s39764.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Levine M, Conry-Cantilena C, Wang Y, et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc Natl Acad Sci USA. 1996;93:3704–9.

    Article  CAS  Google Scholar 

  57. Levine M, Padayatty SJ, Espey MG. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr. 2011;2:78–88. https://doi.org/10.3945/an.110.000109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hudson EP, Collie JT, Fujii T, et al. Pharmacokinetic data support 6-hourly dosing of intravenous vitamin C to critically ill patients with septic shock. Crit Care Resusc. 2019;21:236–42. https://doi.org/10.51893/2020.2.err2.

    Article  PubMed  Google Scholar 

  59. Graumlinch JF, Ludden TM, Conry-Cantilena C, et al. Pharmacokinetic model of ascorbic acid in healthy male volunteers during depletion and repletion. Pharm Res. 1997;14:1133–9.

    Article  Google Scholar 

  60. Dachs GU, Gandhi J, Wohlrab C, et al. Vitamin C administration by intravenous infusion increases tumor ascorbate content in patients with colon cancer: a clinical intervention study. Front Oncol. 2021;10:1–12. https://doi.org/10.3389/fonc.2020.600715.

    Article  Google Scholar 

  61. Fowler AA, Syed AA, Knowlson S, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12:1–10. https://doi.org/10.1186/1479-5876-12-32.

    Article  CAS  Google Scholar 

  62. Jiang K, Tang K, Liu H, et al. Ascorbic acid supplements and kidney stones incidence among men and women: a systematic review and meta-analysis. Endourol Stone Dis. 2019;16:115–20. https://doi.org/10.22037/uj.v0i0.4275.

    Article  Google Scholar 

  63. Prier M, Carr AC, Baillie N. No reported renal stones with intravenous vitamin C administration: a prospective case series study. Antioxidants. 2018;7:1–10. https://doi.org/10.3390/antiox7050068.

    Article  Google Scholar 

  64. Yanase F, Fujii T, Naorungroj T, et al. Harm of IV high-dose vitamin C therapy in adult patients: a scoping review. Crit Care Med. 2020;48:E620–8. https://doi.org/10.1097/CCM.0000000000004396.

    Article  CAS  PubMed  Google Scholar 

  65. Padayatty SJ, Sun AY, Chen Q, et al. Vitamin C: intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS ONE. 2010;5:1–8. https://doi.org/10.1371/journal.pone.0011414.

    Article  CAS  Google Scholar 

  66. Thiele H, Hildebrand L, Schirdewahn C, et al. Impact of high-dose N-acetylcysteine versus placebo on contrast-induced nephropathy and myocardial reperfusion injury in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. The LIPSIA. J Am Coll Cardiol. 2010;55:2201–9. https://doi.org/10.1016/j.jacc.2009.08.091.

    Article  CAS  PubMed  Google Scholar 

  67. Nozari Y, Eshraghi A, Talasaz AH, et al. Protection from reperfusion injury with intracoronary N-acetylcysteine in patients with STEMI undergoing primary percutaneous coronary intervention in a cardiac tertiary center. Am J Cardiovasc Drugs. 2018;18:213–21. https://doi.org/10.1007/s40256-017-0258-8.

    Article  CAS  PubMed  Google Scholar 

  68. Jiang SJ, Huang CH. The clinical efficacy of N-acetylcysteine in the treatment of ST segment elevation myocardial infarction: a meta-analysis and systematic review. Int Heart J. 2021;62:142–7. https://doi.org/10.1536/ihj.20-519.

    Article  CAS  PubMed  Google Scholar 

  69. Abe M, Takiguchi Y, Ichimaru S, et al. Comparison of the protective effect of N-acetylcysteine by different treatments on rat myocardial ischemia-reperfusion injury. J Pharmacol Sci. 2008;106:571–7. https://doi.org/10.1254/JPHS.FP0071664.

    Article  CAS  PubMed  Google Scholar 

  70. Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141:150–9. https://doi.org/10.1016/j.pharmthera.2013.09.006.

    Article  CAS  PubMed  Google Scholar 

  71. Cotgreave IA, Berggren M, Jones TW, et al. Gastrointestinal metabolism of N-acetylcysteine in the rat, including an assay for sulfite in biological systems. Biopharm Drug Dispos. 1987;8:377–86. https://doi.org/10.1002/bdd.2510080408.

    Article  CAS  PubMed  Google Scholar 

  72. Olsson B, Johansson M, Gabrielsson J, Bolme P. Pharmacokinetics and bioavailability of reduced and oxidized N-acetylcysteine. Eur J Clin Pharmacol. 1988;34:77–82. https://doi.org/10.1007/BF01061422.

    Article  CAS  PubMed  Google Scholar 

  73. Brown M, Bjorksten A, Medved I, McKenna M. Pharmacokinetics of intravenous N-acetylcysteine in men at rest and during exercise. Eur J Clin Pharmacol. 2004;60:717–23. https://doi.org/10.1007/s00228-004-0862-9.

    Article  CAS  PubMed  Google Scholar 

  74. Hong SY, Gil HW, Yang JO, et al. Effect of high-dose intravenous N-acetylcysteine on the concentration of plasma sulfur-containing amino acids. Korean J Intern Med. 2005;20:217–23. https://doi.org/10.3904/kjim.2005.20.3.217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Borgström L, Kagedal B, Paulsen O. Pharmacokinetics of N-acetylcysteine in man. Eur J Clin Pharmacol. 1986;31:217–22.

    Article  Google Scholar 

  76. Prescott LF, Donovan JW, Jarvie DR, Proudfoot AT. The disposition and kinetics of intravenous N-acetylcysteine in patients with paracetamol overdosage. Eur J Clin Pharmacol. 1989;37:501–6. https://doi.org/10.1007/BF00558131.

    Article  CAS  PubMed  Google Scholar 

  77. Coles LD, Tuite PJ, Öz G, et al. Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol. 2018;58:158–67. https://doi.org/10.1002/jcph.1008.

    Article  CAS  PubMed  Google Scholar 

  78. Sanaei-Zadeh H, Taghaddosinejad F, Jalali N, Kariman H. Adverse effects of intravenous N-acetylcysteine. Clin Drug Investig. 2003;23:129–33. https://doi.org/10.2165/00044011-200323020-00006.

    Article  CAS  Google Scholar 

  79. El Hamamsy M, Bondok R, Shaheen S, Eladly GH. Safety and efficacy of adding intravenous N-acetylcysteine to parenteral l-alanyl-l-glutamine in hospitalized patients undergoing surgery of the colon: a randomized controlled trial. Ann Saudi Med. 2019;39:251–7. https://doi.org/10.5144/0256-4947.2019.251.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Badylak SF, Simmons A, Turek J, Babbs CF. Protection from reperfusion injury in the isolated rat heart by postischaemic deferoxamine and oxypurinol administration. Cardiovasc Res. 1987;21:500–6. https://doi.org/10.1093/cvr/21.7.500.

    Article  CAS  PubMed  Google Scholar 

  81. Ambrosio G, Zweier JL, Jacobus WE, et al. Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: the role of iron in the pathogenesis of reperfusion injury. Circulation. 1987;76:906–15. https://doi.org/10.1161/01.CIR.76.4.906.

    Article  CAS  PubMed  Google Scholar 

  82. Ramesh Reddy B, Kloner RA, Przyklenk K. Early treatment with deferoxamine limits myocardial ischemic/reperfusion injury. Free Radic Biol Med. 1989;7:45–52. https://doi.org/10.1016/0891-5849(89)90099-3.

    Article  Google Scholar 

  83. Magni F, Panduri G, Paolocci N. Hypothermia triggers iron-dependent lipoperoxidative damage in the isolated rat heart. Free Radic Biol Med. 1994;16:465–76. https://doi.org/10.1016/0891-5849(94)90124-4.

    Article  CAS  PubMed  Google Scholar 

  84. Chan W, Taylor AJ, Ellims AH, et al. Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circ Cardiovasc Interv. 2012;5:270–8. https://doi.org/10.1161/CIRCINTERVENTIONS.111.966226.

    Article  CAS  PubMed  Google Scholar 

  85. Velasquez J, Wray AA (2021) Deferoxamine. In: Treasure Isl. StatPearls Publ. https://www.ncbi.nlm.nih.gov/books/NBK557654/. Accessed 26 Sep 2021

  86. Bellanti F, Del Vecchio GC, Putti MC, et al. Model-based optimisation of deferoxamine chelation therapy. Pharm Res. 2016;33:498–509. https://doi.org/10.1007/s11095-015-1805-0.

    Article  CAS  PubMed  Google Scholar 

  87. Lee P, Mohammed N, Marshall L, et al. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemic patients. Drug Metab Dispos. 1993;21:640–4.

    CAS  PubMed  Google Scholar 

  88. Summers MR, Jacobs A, Tudway D, et al. Studies in desferrioxamine and ferrioxamine metabolism in normal and iron-loaded subjects. Br J Haematol. 1979;42:547–55. https://doi.org/10.1111/j.1365-2141.1979.tb01167.x.

    Article  CAS  PubMed  Google Scholar 

  89. Porter JB, Rafique R, Srichairatanakool S, et al. Recent insights into interactions of deferoxamine with cellular and plasma iron pools: implications for clinical use. Ann N Y Acad Sci. 2005;1054:155–68. https://doi.org/10.1196/annals.1345.018.

    Article  CAS  PubMed  Google Scholar 

  90. Bentur Y, McGuigan M, Koren G. Deferoxamine (desferrioxamine): new toxicities for an old drug. Drug Saf. 1991;6:37–46. https://doi.org/10.2165/00002018-199106010-00004.

    Article  CAS  PubMed  Google Scholar 

  91. Hallaway PE, Eaton JW, Panter SS, Hedlund BE. Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc Natl Acad Sci USA. 1989;86:10108–12. https://doi.org/10.1073/pnas.86.24.10108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Proudfoot AT, Simpson D, Dyson EH. Management of acute iron poisoning. Med Toxicol. 1986;1:83–100. https://doi.org/10.1007/BF03259830.

    Article  CAS  PubMed  Google Scholar 

  93. Kontoghiorghes GJ, Kolnagou A, Kontoghiorghe CN et al (2020) Trying to solve the puzzle of the interaction of ascorbic acid and iron: redox, chelation and therapeutic implications. Med 7

  94. May JM, Qu ZC, Neel DR, Li X. Recycling of vitamin C from its oxidized forms by human endothelial cells. Biochim Biophys Acta. 2003;1640:153–61. https://doi.org/10.1016/S0167-4889(03)00043-0.

    Article  CAS  PubMed  Google Scholar 

  95. Halliwell B. Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action? Free Radic Biol Med. 1989;7:645–51. https://doi.org/10.1016/0891-5849(89)90145-7.

    Article  CAS  PubMed  Google Scholar 

  96. Bartesaghi S, Trujillo M, Denicola A, et al. Reactions of desferrioxamine with peroxynitrite-derived carbonate and nitrogen dioxide radicals. Free Radic Biol Med. 2004;36:471–83. https://doi.org/10.1016/j.freeradbiomed.2003.10.011.

    Article  CAS  PubMed  Google Scholar 

  97. Gao F, Yao CL, Gao E, et al. Enhancement of glutathione cardioprotection by ascorbic acid in myocardial reperfusion injury. J Pharmacol Exp Ther. 2002;301:543–50. https://doi.org/10.1124/jpet.301.2.543.

    Article  CAS  PubMed  Google Scholar 

  98. Karahaliou A, Katsouras C, Koulouras V, et al. Ventricular arrhythmias and antioxidative medication: experimental study. Hell J Cardiol. 2008;49:320–8.

    Google Scholar 

  99. Ozaydin M, Peker O, Erdogan D, et al. N-Acetylcysteine for the prevention of postoperative atrial fibrillation: a prospective, randomized, placebo-controlled pilot study. Eur Heart J. 2008;29:625–31. https://doi.org/10.1093/eurheartj/ehn011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mabel Catalán and Dr. Raúl Vivar for their ideas, help, and support in conceptual understanding of pharmacological aspects. We also want to thank Julio Arellano for revising the final version and giving feedback to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Rodrigo.

Ethics declarations

Funding

This work was supported by the Agencia Nacional de Investigación y Desarrollo (ANID) for a project of the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT, Grant No. 1211850).

Conflict of interest

Daniel San-Martín-Martínez, Dayanara Serrano-Lemus, Vicente Cornejo, Abraham IJ. Gajardo, and Ramón Rodrigo declare that they have no potential conflicts of interest that might be relevant to the contents of this article.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

Datasets and explanation of code generated to establish comparisons between trials and to design Figs. 1 and 2 are available in the FIGSHARE repository, https://doi.org/10.6084/m9.figshare.18551417.v3.

Code availability

Code generated to establish comparisons between trials and to design Figs. 1 and 2 are available in the FIGSHARE repository, https://doi.org/10.6084/m9.figshare.18551417.v3.

Authors contributions

R.R. and A.I.J.G contributed to conceptualization, supervision, validation and writing review and editing; D.S.-M.-M., D.S.-L., and V.C. contributed to investigation collecting evidence, data curation, writing the original draft, and visualization; D.S.-M.-M. contributed to software code development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San-Martín-Martínez, D., Serrano-Lemus, D., Cornejo, V. et al. Pharmacological Basis for Abrogating Myocardial Reperfusion Injury Through a Multi-Target Combined Antioxidant Therapy. Clin Pharmacokinet 61, 1203–1218 (2022). https://doi.org/10.1007/s40262-022-01151-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-022-01151-0

Navigation