Skip to main content

The Surgical Care Improvement Project Redux: Should CMS Revive Process of Care Measures for Prevention of Surgical Site Infections?

  • Chapter
  • First Online:
Infection Prevention
  • 918 Accesses

Abstract

Centers for Medicare and Medicaid Services (CMS) incentives and penalties have the potential to exert powerful motivating forces on hospital decision makers and can result in major changes in prioritization of hospital resources. Because of this, thoughtful alignment of incentives and penalties with performance metrics that are likely to promote adherence to processes that result in improved patient outcomes is critically important. Although CMS has shifted the focus of pay-for-performance metrics from process to outcome measures, challenges around standardizing application of SSI surveillance definitions and methods and the weaknesses of current risk adjustment methods may limit the utility of SSI outcome measures to drive improvements in practice. Possible modifications and additions to prior Surgical Care Improvement Project (SCIP) process measures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDermott KW, Freeman WJ, Elixhauser A. Overview of operating room procedures during inpatient stays in U.S. hospitals, 2014. HCUP Statistical Brief #233. Agency for Healthcare Research and Quality, Rockville, MD. December 2017. Available at: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb233-Operating-Room-Procedures-United-States-2014.jsp. Accessed 8 Mar 2021.

  2. Hall MJ, Schwartzman A, Zhang J, Liu X. Ambulatory surgery data from hospitals and ambulatory surgery centers: United States, 2010. Natl Health Stat Report. 2017;102:1–15.

    Google Scholar 

  3. Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of healthcare-associated infections. N Engl J Med. 2014;370:1198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scott RD. The direct medical costs of healthcare-associated infections in U.S. hospitals and the benefits of prevention. Centers for Disease Control and Prevention. 2009. Available at: http://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf. Accessed 29 Feb 2016.

  5. Stone PW, Braccia D, Larson E. Systematic review of economic analyses of health care associated infections. Am J Infect Control. 2005;33(9):501–9.

    Article  PubMed  Google Scholar 

  6. Zimlichman E, Henderson D, Tamir O, et al. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med. 2013;173(22):2039–46.

    Article  PubMed  Google Scholar 

  7. De Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control. 2009;37:387–97.

    Article  PubMed  Google Scholar 

  8. Bratzler DW, Houck PM. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis. 2004;38:1706–15.

    Article  PubMed  Google Scholar 

  9. Bratzler DW, Hunt DR. The surgical infection prevention and surgical care improvement projects: national initiatives to improve outcomes for patients having surgery. Clin Infect Dis. 2006;43:322–30.

    Article  PubMed  Google Scholar 

  10. Dellinger EP, Hausmann SM, Bratzler DW, et al. Hospitals collaborate to decrease surgical site infections. Am J Surg. 2005;190:9–15.

    Article  PubMed  Google Scholar 

  11. U.S. Government Printing Office. The Deficit Reduction Act of 2005. Available at: https://www.gpo.gov/fdsys/pkg/PLAW-109publ171/html/PLAW-109publ171.htm. Accessed 8 Mar 2021.

  12. Centers for Medicare & Medicaid Services. Hospital compare. Available at: https://www.cms.gov/medicare/quality-initiatives-patient-assessment-instruments/hospitalqualityinits/hospitalcompare.html. Accessed 8 Mar 2021.

  13. Centers for Medicare & Medicaid Services. Medicare program: hospital inpatient prospective payment systems for acute care hospitals and the long-term care hospital prospective payment system and fiscal year 2013 rates; hospitals’ resident caps for graduate medical education payment purposes; quality reporting requirements for specific providers and for ambulatory surgical centers. Final rule. Fed Regist. 2012;77(170):53257–750.

    Google Scholar 

  14. Centers for Medicare & Medicaid Services. Medicare program; hospital inpatient value-based purchasing program. Final rule. Fed Regist. 2011;76(88):26490–547.

    Google Scholar 

  15. Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 2013;70(3):195–283.

    Article  CAS  PubMed  Google Scholar 

  16. Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37:1288–301.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Classen DC, Evans RS, Pestotnik SL, et al. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992;326:281–6.

    Article  CAS  PubMed  Google Scholar 

  18. Steinberg JP, Braun BI, Hellinger WC, et al. Timing of antimicrobial prophylaxis and the risk of surgical site infections: results from the Trial to Reduce Antimicrobial Prophylaxis Errors. Ann Surg. 2009;205(1):10–6.

    Article  Google Scholar 

  19. van Kasteren ME, Mannien J, Ott A, et al. Antibiotic prophylaxis and the risk of surgical site infections following total hip arthroplasty: timely administration is the most important factor. Clin Infect Dis. 2007;44(7):921–7.

    Article  PubMed  Google Scholar 

  20. Harbath S, Samore MH, Lichtenberg D, Carmeli Y. Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. Circulation. 2000;101:2916–21.

    Article  Google Scholar 

  21. Coakley BA, Sussman ES, Wolfson TS, et al. Postoperative antibiotics correlate with worse outcomes after appendectomy for nonperforated appendicitis. J Am Coll Surg. 2011;213(6):778–83.

    Article  PubMed  Google Scholar 

  22. Tanner J, Norrie P, Melen K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev. 2011;11:CD004122.

    Google Scholar 

  23. Furnary AP, Zerr KJ, Grunkemeier GL, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann Thorac Surg. 1999;67:352–60.

    Article  CAS  PubMed  Google Scholar 

  24. Carr JM, Sellke FW, Fey M, et al. Implementing tight glucose control after coronary artery bypass surgery. Ann Thorac Surg. 2005;80:902–9.

    Article  PubMed  Google Scholar 

  25. Dronge AS, Perkal MF, Kancir S, et al. Long-term glycemic control and postoperative infectious complications. Arch Surg. 2006;141(4):375–80.

    Article  PubMed  Google Scholar 

  26. Golden SH, Peart-Vigilance C, Kao WH, Brancati FL. Perioperative glycemic control and the risk of infectious complications in a cohort of adults with diabetes. Diabetes Care. 1999;22(9):1408–14.

    Article  CAS  PubMed  Google Scholar 

  27. Olsen MA, Nepple JJ, Riew KD, et al. Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am. 2008;90(1):62–9.

    Article  PubMed  Google Scholar 

  28. Kwon S, Thompson R, Dellinger P, Yanez D, Farrohki E, Flum D. Importance of perioperative glycemic control in general surgery: a report from the Surgical Care and Outcomes Assessment Program. Ann Surg. 2013;257(1):8–14.

    Article  PubMed  Google Scholar 

  29. Umpierrez GE, Smiley D, Jacobs S, et al. Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). Diabetes Care. 2011;34(2):256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anderson DJ, Podgorny K, Berríos-Torres SI, et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35:605–27.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Berríos-Torres SI, Umsheid CA, Bratzler DW, for the Healthcare Infection Control Practices Advisory Committee, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 2017;152(8):784–91.

    Article  PubMed  Google Scholar 

  32. World Health Organization. Global guidelines for the prevention of surgical site infection. 2nd ed. Geneva: World Health Organization; 2018. License: CC BY-NC-SA 3.0 IGO.

    Google Scholar 

  33. Gandhi GY, Nuttall GA, Abel MD, et al. Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial. Ann Intern Med. 2007;146(4):233–43.

    Article  PubMed  Google Scholar 

  34. Chan RP, Galas FR, Hajjar LA, et al. Intensive perioperative glucose control does not improve outcomes of patients submitted to open-heart surgery: a randomized controlled trial. Clinics (Sao Paulo). 2009;64(1):51–60.

    Article  Google Scholar 

  35. de Vries FEE, Gans SL, Solomkin JS, Allegranzi B, Egger M, Dellinger EP, Boermeester MA. Meta-analysis of lower perioperative blood glucose target levels for reduction of surgical-site infection. Br J Surg. 2017;104:e95–e105.

    Article  PubMed  CAS  Google Scholar 

  36. Kurz A, Sessler DI, Lenhardt R. Study of wound infection and temperature group. Perioperative normothermia to reduce the incidence of surgical wound infection and shorten hospitalization. N Engl J Med. 1996;334(19):1209–15.

    Article  CAS  PubMed  Google Scholar 

  37. Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. Lancet. 2001;358(9285):876–80.

    Article  CAS  PubMed  Google Scholar 

  38. National Institute for Health and Clinical Excellence (NICE). Surgical site infection: prevention and treatment of surgical site infection. London: NICE; 2019. Available at: https://www.nice.org.uk/guidance/ng125. Accessed 7 Mar 2021.

    Google Scholar 

  39. Nguyen N, Yegiyants S, Kaloostian C, Abbas MA, Difronzo LA. The surgical care improvement project (SCIP) initiative to reduce infection in elective colorectal surgery: which performance measures affect outcome? Am Surg. 2008;74(10):1012–6.

    Article  PubMed  Google Scholar 

  40. Hawn MT, Itani KM, Gray SH, Vick CC, Henderson W, Houston TK. Association of timely administration of prophylactic antibiotics for major surgical procedures and surgical site infection. J Am Coll Surg. 2008;206(5):814–9.

    Article  PubMed  Google Scholar 

  41. Stulberg JJ, Delaney CP, Neuhauser DV, Aron DC, Fu P, Koroukian SM. Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA. 2010;303(24):2479–85.

    Article  CAS  PubMed  Google Scholar 

  42. Sands K, Vineyard G, Platt R. Surgical site infections occurring after hospital discharge. J Infect Dis. 1996;173(4):963–70.

    Article  CAS  PubMed  Google Scholar 

  43. Hawn MT, Vick CC, Richman J, Holman W, Deierhoi RJ, Graham LA, Henderson WG, Itani KMF. Surgical site infection prevention: time to move beyond the surgical care improvement program. Ann Surg. 2011;254:494–501.

    Article  PubMed  Google Scholar 

  44. Bratzler DW. Surgical care improvement project performance measures: good but not perfect. Clin Infect Dis. 2013;56(3):428–9.

    Article  PubMed  Google Scholar 

  45. The Joint Commission. Specifications manual for national hospital inpatient quality measures. Available at: http://www.jointcommission.org/specifications_manual_for_national_hospital_inpatient_quality_measures.aspx. Accessed 8 Mar 2021.

  46. Kamel C, McGahan L, Polisena J, et al. Preoperative skin antiseptic preparations for preventing surgical site infections: a systematic review. Infect Control Hosp Epidemiol. 2012;33:608–17.

    Article  PubMed  Google Scholar 

  47. Darouiche RO, Wall MJ, Itani KM, et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N Engl J Med. 2010;362:18–26.

    Article  CAS  PubMed  Google Scholar 

  48. Dumville JC, McFarlane E, Edwards P, et al. Preoperative skin antiseptics for preventing surgical wound infections after clean surgery (review). Cochrane Database Syst Rev. 2015;(4):CD003949. https://doi.org/10.1002/14651858.CD003949.pub4.

  49. Guenaga KF, Matos D, Wille-Jorgensen P. Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst Rev. 2011;(9):CD001544.

    Google Scholar 

  50. Englesbe MJ, Brooks L, Kubus J, et al. A statewide assessment of surgical site infection following colectomy: the role of oral antibiotics. Ann Surg. 2010;252(3):514–9.

    Article  PubMed  Google Scholar 

  51. Nelson RL, Gladman E, Barbateskovic M. Antimicrobial prophylaxis for colorectal surgery. Cochrane Database Syst Rev. 2014;(5):CD001181.

    Google Scholar 

  52. Deierhoi RJ, Dawes LG, Vick C, Itani KMF, Hawn MT. Choice of intravenous antibiotic prophylaxis for colorectal surgery does matter. J Am Coll Surg. 2013;217:763–9.

    Article  PubMed  Google Scholar 

  53. Dalfino L, Giglio MT, Puntillo F, et al. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care. 2011;153:R154.

    Article  Google Scholar 

  54. de Jonge S, Egger M, Latif A, Loke YK, Berenholtz S, Boermeester M, Allegranzi B, Solomkin J. Effectiveness of 80% vs. 30-35% fraction of inspired oxygen in patients undergoing surgery: an updated systematic review and meta-analysis. Br J Anaesth. 2019;122(3):325–34.

    Article  PubMed  Google Scholar 

  55. Belda FJ, Aguilera L, Garcia de la Asuncion J, et al. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA. 2005;294(16):2035–42.

    Article  CAS  PubMed  Google Scholar 

  56. Bickel A, Gurevits M, Vamos R, et al. Perioperative hyperoxygenation and wound site infection following surgery for acute appendicitis: a randomized, prospective, controlled trial. Arch Surg. 2011;146(4):464–70.

    Article  PubMed  Google Scholar 

  57. Greif R, Akca O, Horn EP, et al. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med. 2000;342(3):161–7.

    Article  CAS  PubMed  Google Scholar 

  58. Bode LG, Kluytmans JA, Wertheim HF, et al. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med. 2010;362:9–17.

    Article  CAS  PubMed  Google Scholar 

  59. Schweizer M, Perencevich E, McDanel J, et al. Effectiveness of a bundled intervention of decolonization and prophylaxis to decrease Gram positive surgical site infections after cardiac or orthopedic surgery: systematic review and meta-analysis. BMJ. 2013;346:2743.

    Article  Google Scholar 

  60. Schweizer ML, Chiang H, Septimus E, et al. Association of a bundled intervention with surgical site infections among patients undergoing cardiac, hip or knee surgery. JAMA. 2015;313(21):2162–71.

    Article  CAS  PubMed  Google Scholar 

  61. Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355:2725–32.

    Article  CAS  PubMed  Google Scholar 

  62. Haynes AB, Weiser TG, Berry WR, et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360:491–9.

    Article  CAS  PubMed  Google Scholar 

  63. Tanner J, Padley W, Assadian O, Leaper D, Kiernan M, Edmiston C. Do surgical care bundles reduce the risk of surgical site infections in patients undergoing colorectal surgery? A systematic review and cohort meta-analysis of 8,515 patients. Surgery. 2015;158:66–77.

    Article  PubMed  Google Scholar 

  64. Gustafsson UO, Scott MJ, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. World J Surg. 2013;37:259–84.

    Article  CAS  PubMed  Google Scholar 

  65. Getzeiler CV, Rotramel A, Wilson C, et al. Prospective study of colorectal enhanced recovery after surgery in a community hospital. JAMA Surg. 2014;149:955–61.

    Article  Google Scholar 

  66. Nicholson A, Lowe MC, Parker J, et al. Systematic review and meta-analysis of enhanced recovery programmes in surgical patients. Br J Surg. 2014;101:172–88.

    Article  CAS  PubMed  Google Scholar 

  67. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg. 2017;152(3):292–8.

    Article  PubMed  Google Scholar 

  68. Keenan JE, Speicher PJ, Nussbaum DP, Abdelgadir Adam M, Miller TM, Mantyh CR, Thacker JKM. Improving outcomes in colorectal surgery by sequential implementation of multiple standardized care programs. J Am Coll Surg. 2015;221:404–14.

    Article  PubMed  Google Scholar 

  69. Waits SA, Fritze D, Banarjee M, et al. Developing an argument for bundled interventions to reduce surgical site infection in colorectal surgery. Surgery. 2014;155(4):602–6.

    Article  PubMed  Google Scholar 

  70. Centers for Medicare & Medicaid. Hospital-Acquired Conditions. Available at: http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/HospitalAcqCond/Hospital-Acquired_Conditions.html. Accessed 8 Mar 2021.

  71. Centers for Medicare & Medicaid Services. Medicare program; hospital inpatient prospective payment systems for acute care hospitals and the long-term care hospital prospective payment system and fiscal year 2015 rates; quality reporting requirements for specific providers; reasonable compensation equivalents for physician services in excluded hospitals and certain teaching hospitals; provider administrative appeals and judicial review; enforcement provisions for organ transplant centers; and electronic health record (EHR) incentive program. Final rule. Fed Regist. 2014;79(163):49853–50536.

    Google Scholar 

  72. Calderwood MS, Ma A, Khan YM, et al. Use of Medicare diagnosis and procedure codes to improve detection of surgical site infections following hip arthroplasty, knee arthroplasty, and vascular surgery. Infect Control Hosp Epidemiol. 2012;33(1):40–9.

    Article  PubMed  Google Scholar 

  73. Yokoe DS, Khan Y, Olsen MA, et al. Enhanced surgical site infection surveillance following hysterectomy, vascular, and colorectal surgery. Infect Control Hosp Epidemiol. 2012;33(8):768–73.

    Article  PubMed  Google Scholar 

  74. Centers for Disease Control and Prevention. National Healthcare Safety Network. Surgical site infection (SSI) event. Available at: https://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf, www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf. Accessed 7 Mar 2021.

  75. Yokoe DS, Avery TR, Platt R, Huang SS. Reporting surgical site infections following total hip and knee arthroplasty: impact of limiting surveillance to the operative hospital. Clin Infect Dis. 2013;57(9):1282–8.

    Article  PubMed  Google Scholar 

  76. Yokoe DS, Avery TR, Platt R, et al. Ranking hospitals based on colon surgery and abdominal hysterectomy surgical site infection outcomes: impact of limiting surveillance to the operative hospital. Clin Infect Dis. 2018;67:1096–102.

    Article  PubMed  Google Scholar 

  77. Stone PW, Pogorzelska-Maziarz M, Herzig CT, et al. State of infection prevention in US hospitals enrolled in the National Healthcare Safety Network. Am J Infect Control. 2014;42(2):94–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Talbot TR, et al. Public reporting of healthcare-associated infection data: recommendations from the Healthcare Infection Control Practices Advisory Committee. Ann Intern Med. 2013;159:631–5.

    Article  PubMed  Google Scholar 

  79. Centers for Disease Control and Prevention. National Healthcare Safety Network. The NHSN standardized infection ratio (SIR). A guide to the SIR (updated February 2021). Available at: https://www.cdc.gov/nhsn/pdfs/ps-analysis-resources/nhsn-sir-guide.pdf. Accessed 8 Mar 2021.

  80. Jackson SS, Leekha S, Magder LS, et al. Electronically available comorbidities should be used in surgical site infection risk adjustment. Clin Infect Dis. 2017;65:803–10.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kahn CN, Ault T, Potetz L, Walke T, Chambers JH, Burch S. Assessing Medicare’s hospital pay-for-performance programs and whether they are achieving their goals. Health Aff. 2015;34(8):1281–8.

    Article  Google Scholar 

  82. Centers for Medicare & Medicaid Services. Hospital compare datasets. Available at: https://data.medicare.gov/data/hospital-compare. Accessed 8 Mar 2021.

  83. Katz JN, Losina E, Barrett J, Phillips CB, Mahomed NN, Lew RA, et al. Association between hospital and surgeon procedure volume and outcomes of total hip replacement in the United States medicare population. J Bone Joint Surg Am. 2001;83(11):1622–9.

    Article  CAS  PubMed  Google Scholar 

  84. Birkmeyer JD, Siewers AE, Finlayson EV, Stukel TA, Lucas FL, Batista I, et al. Hospital volume and surgical mortality in the United States. N Engl J Med. 2002;346(15):1128–37.

    Article  PubMed  Google Scholar 

  85. Guebbels EL, Wille JC, Nagelkerke NJ, Vandenbroucke-Grauls CM, Grobbee DE, de Boer AS. Hospital-related determinants for surgical-site infection following hip arthroplasty. Infect Control Hosp Epidemiol. 2005;26(5):435–41.

    Article  Google Scholar 

  86. Rajaram R, Chung JW, Kinnier CV, Barnard C, Mohanty S, Pavey ES, McHugh MC, Bilimoria KY. Hospital characteristics associated with penalties in the Center for Medicare & Medicaid Services Hospital-Acquired Condition Reduction program. JAMA. 2015;314(4):375–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah S. Yokoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yokoe, D.S. (2022). The Surgical Care Improvement Project Redux: Should CMS Revive Process of Care Measures for Prevention of Surgical Site Infections?. In: Bearman, G., Morgan, D.J., K. Murthy, R., Hota, S. (eds) Infection Prevention. Springer, Cham. https://doi.org/10.1007/978-3-030-98427-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98427-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98426-7

  • Online ISBN: 978-3-030-98427-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics