Skip to main content

Abstract

The basic quality features of H. tuberosus tubers were discussed, such as regularity of shape, color of flesh and skin, resistance to darkening of raw and cooked tuber flesh, freshness of appearance, smell, and taste. Most of the quality characteristics are related to the genotype. The factors that contribute to the susceptibility of tuber flesh to ACD are not only genetic, but environmental in nature. The interaction of genetic and habitat factors affects the total concentration of CgA, CA, AA, and iron, which in turn determines the degree of dark pigmentation. It has been proven that the CgA content in tubers is under genetic control. The chemical composition of tubers, their biological value and energy value of H. tuberosus were also determined. The biological value is discussed in terms of such properties as: nutritional value, taste, and importance for maintaining consumer health. A special place is devoted to sensory assessment, characterizing a food product in terms similar to the sensations when consuming food, which are the result of a food–human interaction and the reaction of human senses to sensory active ingredients and physical properties of the assessed product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amino acids

AC:

After-cooking darkening

ACD:

After-cooking darkening

Arg:

Arginine

Asp:

Asparagine

C4H:

Cinnamic acid 4-hydroxylase

CA:

Citric acid

cDNA:

Amplified fragment length polymorphism

CgA:

Chlorogenic acid

CGH:

p-Coumaroyl-d-glucose hydroxylase

CP:

Crude protein

DM:

Dry mass

DVS:

Daily values

EAA:

Essential amino acids

EST:

Expressed sequence tag

FOS:

Fructo-oligosaccharides

FW:

Fresh weight

GC:

Gas chromatography

Glu:

Glutamine

Gly:

Glycine

HPLC:

High performance liquid chromatography

NEAA:

Non-essential AA

PPO:

Polyphenol oxidase

QHT:

Hydroxycinnamoyl

QTL:

Quantitative trait loci

RFLP:

Restriction fragment length polymorphism

RH:

Relative humidity

SAPP:

Sodium acid pyrophosphate

SNP:

Single nucleotide polymorphism

TAA:

Total AA

References

  1. Norme Cee-Onu FFV-03 (2010). Concernant La Commercialisation Et Le Contrôle De La Qualité Commerciale Des Artichauts 2010 Édition

    Google Scholar 

  2. Cieślik E, Kopeć A, Pražnik W (2005) Healthy properties of Jerusalem artichoke flour (Helianthus tuberosus L.). EJPAU, Food Science and Technology 8(2). http://www.ejpau.media.pl/volume8/issue2/art-37.html

  3. Cieślik E, Gębusia A, Florkiewicz A, Micka B (2011) Protein and amino acid content no acids in Jerusalem artichoke tubers (Helianthus tuberosus L.) of the red rote Zonen-Ugel variety. Acta Sci Pol Food Technol 10(4):433–441

    Google Scholar 

  4. Sawicka B (1998) Fodder value of Jerusalem artichoke (Helianthus tuberosus L.) under nitrogen fertilization. Annales UMCS E-53(11):97–108. [in Polish]

    Google Scholar 

  5. Sawicka B (1999) Possibilities of using Jerusalem artichoke (Helianthus tuberosus L.) as vegetables. Proceedings of the VIII Scientific Horticulture Plant Breeding Symposium, Horticulture Plant Breeding to start with XXI century. Lublin, 04-05.02, 95-98. [in Polish]

    Google Scholar 

  6. Sawicka B (2000) The effect of nitrogen fertilization on the biological value of Helianthus tuberosus L. tubers. Rocz Ak Rol Poz 323:447–451. [in Polish]

    Google Scholar 

  7. Sawicka B, Michałek W (2005) Evaluation and productivity of H. tuberosus L. in the conditions of Central-East Poland, East Poland. Electron J Pol Agric Univ Hort 8(3):42. http://www.ejpau.media.pl/volume8/issue3/art-42.html. 8,

    Google Scholar 

  8. Sawicka B, Kalembasa D (2011) Fluctuations of selected microelements in Helianthus tuberosus L. tubers due to diverse nitrogen nutrition. Adv Food Sci. 33(3):166–173

    CAS  Google Scholar 

  9. Sawicka B, Kalembasa D (2013) Annual variability of some toxic element contents (Cd, Cr, Co, Ni, and Pb) and response of two Jerusalem artichoke varieties to increasing nitrogen fertilizer at constant PK levels. Pol J Environ Stud 22(3):861–871

    CAS  Google Scholar 

  10. Sawicka B, Danilčenko H, Jariene E, Skiba D, Rachoń L, Barbaś P, Pszczółkowski P (2021) Nutritional value of Jerusalem Artichoke Tubers (Helianthus tuberosus L.) grown in organic system under lithuanian and polish conditions. Agriculture 11:440. https://doi.org/10.3390/agriculture11050440

    Article  CAS  Google Scholar 

  11. Cieślik E (1998) Amino acid content of Jerusalem artichoke (Helianthus tuberosus L.) tuber before and after storage in soil. Proceedings of the Seventh Seminar on Inulin. Leuven, Belgium, pp 86–87

    Google Scholar 

  12. Cieślik E, Gębusia A (2010) Topinambur (Helianthus tuberosus L.)—a tuber with health-promoting properties. Postępy Nauk Roln 3:91–103. (in Polish)

    Google Scholar 

  13. Baryłko-Pikielna N, Matuszewska I (2009) Sensory food research. Basics of the application method. Publisher: Polskie Towarzystwo Technologów Żywności—Wydawnictwo Naukowe (2009–2014), p 375. ISBN:978-83-924646-9-3, 978-83-935421-3-0

    Google Scholar 

  14. Mattila P, Hellström J (2007) Phenolic acids in potatoes, vegetables, and some of their products. J Food Compos Anal 20(3–4):152–160. https://doi.org/10.1016/j.jfca.2006.05.007

    Article  CAS  Google Scholar 

  15. Yang L, He QS, Corscadden K, Udenigwe CC (2015) The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol Rep 5(2015):77–88

    Article  CAS  Google Scholar 

  16. Glibowski P (2005) Inhibicja enzymatycznego brązowienia przez zastosowanie białek serwatkowych. Folia Univ Agric Stetin Sci Aliment 246(4):107–118

    CAS  Google Scholar 

  17. Sawicka B, Skiba D (2009) Variability of the darkening of the flesh of raw and cooked tubers of Jerusalem artichoke (H. tuberosus L.). Annales UMCS E-64(2):15–22

    Google Scholar 

  18. Friedman M (1997) Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J Agric Food Chem 45:1523–1540

    Article  Google Scholar 

  19. Ziyan ES, Pekyardimci S (2003) Characterization of polyphenol oxidase from Jerusalem artichoke (Helianthus tuberosus). J Chem 27(2):217–225

    CAS  Google Scholar 

  20. Bach V, Jensen S, Clausen MR, Bertram HC, Edelenbos M (2013) Enzymatic browning and after cooking darkening of Jerusalem artichoke tubers (Helianthus tuberosus L.). Food Chem 141:1445–1450

    Article  CAS  PubMed  Google Scholar 

  21. Pan L, Sinden MR, Kennedy AH, Chai H, Watson LE, Graham TL, Douglas Kinghorn A (2008) Bioactive constituents of H. tuberosus (Jerusalem artichoke). Phytochem Lett 2(1):15–18. https://doi.org/10.1016/j.phytol.2008.10.003

    Article  CAS  Google Scholar 

  22. Aydemir T, Kavrayan D, Çinar S (2003) Isolation and characterization of polyphenoloxidase from Jerusalem artichoke (H. tuberosus L.). Sayi 21:115–125

    Google Scholar 

  23. Wang-Pruski G, Nowak J (2004) (2004). After-cooking darkening of potato. Am J Potato Res 81(1):7–16. https://doi.org/10.1007/BF02853831

    Article  CAS  Google Scholar 

  24. Florkiewicz A, Cieślik E, Filipiak-Florkiewicz A (2007) Influence of cultivar and harvest date on the chemical composition of Jerusalem artichoke tubers (Helianthus tuberosus L.). Żywność Nauka Technol Jakość 3(52):71–81. [in Polish]

    Google Scholar 

  25. Kapusta I, Szpunar-Krok E, Bobrecka-Jamro D, Cebulak T, Kaszuba J, Tobiasz-Salach R (2013) Identification and quantification of phenolic compounds from Jerusalem artichoke (Helianthus tuberosus L.) tubers. J Food Agric Environ 11(3–4):601–606

    CAS  Google Scholar 

  26. Seiler GJ, Campbell LG (2006) Genetic variability for mineral concentration in the forage of Jerusalem artichoke cultivars. Euphytica 150:281–288

    Article  CAS  Google Scholar 

  27. Sawicka B, Krochmal-Marczak B (2007) Phenotypic variability of the darkening of the pulp of Ipomoea batatas (L.). Lam Zesz Probl Post Nauk Roln 517:651–660

    Google Scholar 

  28. Sawicka B, Kuś J, Barbaś P (2006) Darkening of potato tuber flesh in the conditions of ecological and integrated cultivation system. Pamiętnik Puławski 142:445–457. [in Polish]

    Google Scholar 

  29. Dale MFB, Mackay GR (1994) Inheritance of table and processing quality. In: Bradshaw JE, Mackay GR (eds) Potato Genet ICS. CAB International Publisher, Wallingford, pp 296–297

    Google Scholar 

  30. Philippidis GP, Smith TK, Wyman CE (1993) Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng 41(9):846–853

    Article  CAS  PubMed  Google Scholar 

  31. Swinarski E (1968) The relationship between potato darkening after cooking and some factors of its composition. Hodowla Roślin i Nasiennictwo 12(4):369–384. [in Polish]

    Google Scholar 

  32. Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8(2):172–184. https://doi.org/10.1080/19490976.2017.1290756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR et al (2016) Inulin: properties, health benefits and food applications. Carbohydr Polym 2016:444–454

    Article  CAS  Google Scholar 

  34. Li W, Zhang J, Yu C, Li Q, Dong F, Wang G et al (2015) Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydr Polym 121:315–319. Available from: https://www.sciencedirect.com/science/article/abs/pii/S014486171401251X?via%3Dihub

    Article  CAS  PubMed  Google Scholar 

  35. Cabezas MJ, Rabert C, Bravo S, Shene C (2002) Inulin and sugar content in tubers of Helianthus tuberosus and Cichorium intybus: influence of temperature after harvest. J. Food Sci 67(8):2860–2865

    Article  CAS  Google Scholar 

  36. Clausen MR, Bach V, Edelenbos M, Bertram HC (2012) Metabolomics reveal drastic changes in composition during wintering of Jerusalem artichoke tubers (Helianthus tuberosus L.). J Agric Food Chem 60(37):9495–9501. https://doi.org/10.1021/jf302067m

    Article  CAS  PubMed  Google Scholar 

  37. Sawicka B, Skiba D, Pszczółkowski P, Aslan I, Sharifi-Rad J, Krochmal-Marczak B (2020) Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products. Cell Mol Biol (Noisy-le-grand) 66(4):160–177

    Article  Google Scholar 

  38. Andersson J., Garrido-Banuelos G, Bergdoll M, Vilaplana F, Menzel C, Mihnea M, Lopez-Sanchez P (2022) Comparison of steaming and boiling of root vegetables for enhancing carbohydrate content and sensory profile. J Food Eng 312:110754. https://www.sciencedirect.com/science/article/pii/S0260877421002806?via%3Dihub. January 2022

  39. United States Department of Agriculture (USDA) (2016) Basic report: Jerusalem artichokes, raw. National Nutrient Database for Standard Reference Release, 2016, 28

    Google Scholar 

  40. Alvarez D, Barbut S (2013) Effect of inulin, β-glucan and their mixtures on emulsion stability, color, and textural parameters of cooked meat batters. Meat Sci 94:320–327

    Article  CAS  PubMed  Google Scholar 

  41. Liava V, Karkanis A, Danalatos N, Tsiropoulos N (2021) Cultivation practices, adaptability and phytochemical composition of Jerusalem Artichoke (Helianthus tuberosus L.): A Weed with Economic Value. Agronomy 11:914. https://doi.org/10.3390/agronomy11050914

    Article  CAS  Google Scholar 

  42. Cieślik E, Filipiak-Florkiewicz A (2000) Topinambur (Helianthus tuberosus L.)—możliwości wykorzystywania do produkcji żywności funkcjonalnej. Żywność 1(22):71–81

    Google Scholar 

  43. Bogucka B, Jankowski K (2020) Jerusalem artichoke: quality response to potassium fertilization and irrigation in Poland. Agronomy 10:1518

    Article  CAS  Google Scholar 

  44. Bogucka B, Pszczółkowska A, Okorski A, Jankowski K (2021) The Effects of Potassium Fertilization and Irrigation on the Yield and Health Status of Jerusalem artichoke (H. tuberosus L.). Agronomy 11:234

    Article  CAS  Google Scholar 

  45. Ekholm P, Eurola M, Venalainen ER (2005) Se content of foods and diets in Finland. Proceedings, Twenty Years of Se Fertilization, 8–9 September, Helsinki, Finland, 39–45

    Google Scholar 

  46. Danilčenko H, Jariene E, Aleknaviciene P (2008) Quality of Jerusalem Artichoke (Helianthus tuberosus L.) tubers in relation to storage conditions. Not Bot Hort Agrobot Cluj. 36(2):23–27

    Google Scholar 

  47. Danilčenko H, Jarienė E, Gajewski M, Cerniauskiene J, Kulaitiene J, Sawicka B, Aleknavičienė P (2011) Accumulation of elements in some organically grown alternative horticultural crops in Lithuania. Acta Sci Pol Hortorum Cultus 10(2):23–31

    Google Scholar 

  48. Danilčenko H, Jariene E, Gajewski M, Sawicka B, Kulaitien J, Cerniauskiene J, Aleknaviciene P (2013) Changes in amino acids content in tubers of Jerusalem artichoke (Helianthus tuberosus L.) Cultivars during storage. Acta Sci Pol Hortorum Cultus 12(2):97–105

    Google Scholar 

  49. Saengthongpinit W, Sajjaanantakuz T (2005) Effect of harvest date and storage temperature on the properties of inulin from Jerusalem artichoke tubers (Helianthus tuberosus L.). Postharvest Biol Technol 37(1):93–100

    Article  CAS  Google Scholar 

  50. Danilčenko H, Jariene E, Slepetiene E, Sawicka B, Žaldarienė S (2017) The distribution of bioactive compounds in the tubers of organically grown Jerusalem artichoke (Helianthus tuberosus L.) during the growing period. Acta Sci Pol Hortorum Cultus 16(3):97–107. https://doi.org/10.24326/asphc.2017.3.10. Lublin. ISSN 1644-0692

    Article  Google Scholar 

  51. Sawicka B, Michałek W, Pszczółkowski P, Danilčenko H (2018) Variation in productivity of sweet potato (Ipomoea batatas L. [Lam.]) under different conditions of nitrogen fertilization. Zemdirbyste-Agriculture 105(2):149–158

    Article  Google Scholar 

  52. Sawicka B, Kalembasa D (2008) Variability in macroelements content in tubers of Helianthus tuberosus L. at different nitrogen fertilization levels. Acta Sci Pol Agric. 7(1):67–82

    Google Scholar 

  53. Sawicka B (2002) Variability of chemical composition of Helianthus tuberosus L tubers under conditions of differentiated nitrogen fertilization. Zesz Prob Post Nauk Roln. 484:573–579

    Google Scholar 

  54. Rodrigues MA, Sousa L, Cabanas JE, Arrobas M (2007) Tuber yield and leaf mineral composition of Jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices. Span. J Agric Res 5:545–553

    Google Scholar 

  55. Szpunar-Krok E, Bobrecka-Jamro D, Grochowska S, Buczek J (2016) Yield of the aboveground parts and tubers of Jerusalem artichoke (H. tuberosus L.) depending on plant density. Acta Sci Pol Agric 15(3):69–78

    Google Scholar 

  56. Sawicka B, Skiba D (2007) The influence of diversified mineral fertilization on potassium, phosphorus and magnesium content in H. tuberosus L. tubers. Polish J. Environ Stud 16(3A):231–234

    Google Scholar 

  57. Sawicka B, Skiba D, Kotiuk E, Wójcik S, Greguła A, Borkowska H (2015) Fluctuation of dry matter and inulin in tubers of H. tuberosus L. under changing conditions of mineral fertilization. In: Zarzecka K, Kondracki S (eds) Contemporary dilemmas of Polish agriculture III. NS. II. PSW JPII, Biała Podlaska. ISBN, 978-83-61044-95-6, pp 197–207

    Google Scholar 

  58. Gauvrit C (1996) Efficacitéet sélectivité des herbicides. INRA, Paris

    Google Scholar 

  59. Ramsey RJL, Stephenson GR, Hall JC (2002) Effect of relative humidity on the uptake, translocation, and efficacy of glufosinate ammonium in wild oat (Avena fatua). Pestic Biochem Physiol 73(1):1–8

    Article  CAS  Google Scholar 

  60. Sawicka B (2004) The quality of H. tuberosus L. tubers under the conditions of herbicide application. Ann UMCS E-59(3):1245–1257

    Google Scholar 

  61. Łozowicka A, Rutkowska E, Hrynko I, Jankowska M, Kaczyński P (2013) Evaluation of multiresidue method for the determination pesticide residues in Jerusalem artichokes (H. tuberosus L.). Prog Plant Protect/Postępy w Ochronie Roślin 53(3):576–587

    Google Scholar 

  62. McLaurin WJ, Somda ZC, Kays SJ (1999) Jerusalem artichoke growth, development, and field storage. I. Numerical assessment of plant development and dry matter acquisition and allocation. J Plant Nutr 22:1303–1313

    Article  CAS  Google Scholar 

  63. Zhong QW, Wang Y, Wang LH, Li L (2007) Changes in the indicators of growth, development, and photosynthesis of Jerusalem artichoke. Acta Bot Boreali West Sin 27(9):1843–1848. https://doi.org/10.1016/S1872-2075(07)60055-7

    Article  CAS  Google Scholar 

  64. Cardellina J (2015) Review of biology and chemistry of Jerusalem artichoke, Helianthus tuberosus L. J Nat Prod 78:3083

    Article  CAS  Google Scholar 

  65. Kays SJ, Nottingham SF (2008) Biology and chemistry of Jerusalem artichoke Helianthus tuberosus L. CRC Press, Boca Raton, p 478. ISBN 10-1-4200-4495-8

    Google Scholar 

  66. Roberfroid MB (2007) Inulin − type fructans: functional food ingredients. J Nutr 137:2493–2502

    Article  Google Scholar 

  67. Bayarri S, Gonzalez-Tomas L, Hernando I, Lluch MA, Costell E (2011) Texture perceived on inulin-enriched low fat semisolid dairy desserts. Rheological and structural basis. J Texture Stud 42(3):174–184

    Article  Google Scholar 

  68. Byungsung P (2011) Effect of oral administration of jerusalem artichoke inulin on reducing blood lipid and glucose in STZ-induced diabetic rats[J]. J Anim Vet Adv. 10(19):2501–2507

    Article  Google Scholar 

  69. Furlan RLT, Padilla AP, Campderros ME (2014) Development of reduced fat minced meats using inulin and bovine plasma proteins as fat replacers. Meat Sci 96(2):762–768

    Article  CAS  Google Scholar 

  70. Schubert S, Feuerle R (2010) Storage of fructans in Jerusalem artichoke tubers: characteristics of resistance to a sink. New Phytol 136:115–122. https://doi.org/10.3389/e.g.,2018.01384

    Article  Google Scholar 

  71. Wang Y, Zhao Y, Xue F, Nan X, Wang H, Hua D, Liu J, Yang L, Jiang L, Xiong B (2020) Nutritional value, bioactivity, and application potential of Jerusalem artichoke (Helianthus tuberosus L.) as a neotype feed resource. Anim Nutr. 6(4):429–437. https://doi.org/10.1016/j.aninu.2020.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  72. Singh RS, Singh RP (2010) Fructooligosaccharides from inulin as prebiotics. Food Technol Biotechnol 48(4):435–450

    CAS  Google Scholar 

  73. Singh RS, Singh T, Kennedy JF (2016) Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. Int J Biol Macromol 85:565–572

    Article  CAS  PubMed  Google Scholar 

  74. Puangbut D, Jogloy S, Vorasoot N, Holbrook C, Patanothai A (2015) Responses of inulin content and inulin yield of jerusalem artichoke genotypes to seasonal environments. Int J Plant Prod 9:599–608

    Google Scholar 

  75. Puangbut D, Jogloy S, Vorasoot N, Srijaranai S, Kesmala T, Holbrook CC et al (2012) Influence of planting date and temperature on inulin content in Jerusalem artichoke (Helianthus tuberosus L.). Aust J Crop Sci [Internet] 6(7):1159–1165. Available from: https://www.cabdirect.org/cabdirect/abstract/20123255122

    CAS  Google Scholar 

  76. Berizi E, Shekarforoush SS, Mohammadinezhad S, Hosseinzadeh S, Farahnaki A (2017) The use of inulin as a fat replacer and its effect on texture and sensory properties of emulsion type sausages. Iran J Vet Res 18(4):253–257

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Abed SM, Ali AH, Noman A, Niazi S, Ammar AF, Bakry AM (2016) Inulin as prebiotics and its applications in food industry and human health, a review. Int J Agric Innov Res [Internet]. 5(1):88–97

    Google Scholar 

  78. Angiolillo L, Conte A, Del Nobile MA (2015) Technological strategies to produce functional meat burgers. LWT—Food Sci Technol 62:697–703

    Article  CAS  Google Scholar 

  79. Al-Zahraa MD (2020) Influence of inulin and pumpkin powder addition on sensory and rheological properties of low-fat probiotic yogurt. Food Publ Health 10(4):88–96

    Google Scholar 

  80. Rakhimov DA, Zhauynbaeva KS, Mezhlumyan LG, Mavlyanova R et al (2011) Carbohydrate and protein components of Helianthus tuberosus and their biological activity. Chem Nat Compd 47(4):503–506. https://doi.org/10.1007/s10600-011-9981-6

    Article  CAS  Google Scholar 

  81. Slimestad R, Seljaasen R, Meijera K, Skarb S (2010) Norwegian-grown Jerusalem artichoke (Helianthus tuberosus L.): morphology and content of sugars and fructo-oligosaccharides in stems and tubers. J Sci Food Agric 90:956–964

    Article  CAS  PubMed  Google Scholar 

  82. Jiang SJ (2012) Research on the extraction of inulin from Helianthus tuberosus L. Guangzhou Chem Ind 40:82–84

    CAS  Google Scholar 

  83. Shariati MA, Khan MU, Hleba L, Krebs de Souza C, Tokhtarov Z, Terentev Z (2021) Topinambur (the Jerusalem artichoke): nutritional value and its application in food products: an updated treatise. J Microbiol Biotechnol Food Sci 10(5):1–9. https://doi.org/10.15414/jmbfs.4737

    Article  CAS  Google Scholar 

  84. Mansouri E, Mohamadi SA, Milani E, Nourbakhsh L (2016) Prebiotic effect of Jerusalem artichoke (Helianthus tuberosus) fructans on the growth efficiency of Bifidobacterium bifidum and Escherichia coli. J Trop Dis. 6(5):385–389. (Accessed 29 Sept 2021)

    Google Scholar 

  85. Cardelle-Cobas A, Costo R, Corzo N, Villamiel M (2009) Fructo-oligosaccharide changes during the storage of dehydrated commercial garlic and onion samples. Int J Food Sci Technol 44:947–952

    Article  CAS  Google Scholar 

  86. Toczek K, Glibowski P (2015) Probiotic bacteria in food—new directions of application. Prebiotics Food Nutr Food Ind 69:42–45

    Google Scholar 

  87. Matusek A, Meres P, Le TKD, Orsi F (2009) Effect of temperature and pH on the degradation of fructooligosaccharides. Eur Food Res Technol 228(3):355–365

    Article  CAS  Google Scholar 

  88. Kiełtyka-Dadasiewicz A, Sawicka B, Krochmal-Marczak B, Bienia B (2014) Inulin—sources, metabolism, and the importance of utility. Towaroznawcze Problemy Jakości 1(38) http://www.tpj.pr.radom.pl/index.php [in Polish]

  89. Chyc M, Ogonowski J (2014) Jerusalem artichoke as a source of valuable raw materials for industry, especially food, cosmetics, and pharmaceuticals. Wiadomości Chemiczne 68:7–8. 719-732

    Google Scholar 

  90. Reshetnik LA (2011) Jerusalem artichokes in the health and medical nutrition. The International Conference in Moskov, 24–25.11.2011, pp 15–17

    Google Scholar 

  91. Legette LL, Lee W, Martin BR, Story JA, Campbell JK, Weaver CM (2012) Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci. 77(4):88–94. https://doi.org/10.1111/j.1750-3841.2011.02612.x

    Article  CAS  Google Scholar 

  92. Vorlamova K, Prikhodko E (1997) Fructan content in Jerusalem artichoke tubers depending on different factors. Proceedings of 4th International Workshop on Carbohydrates as Organic Raw Materials, Vienna, s. 36, 20-21.03

    Google Scholar 

  93. Şat İG (2008) The effect of heavy metals on peroxidase from Jerusalem artichoke (Helianthus tuberosus L.). Afr J Biotechnol. 7(13):2248–2253

    Google Scholar 

  94. Tabin S (1952) Possibilities of cultivating tubers (H. tuberosus L.) in Poland. Ann UMCS E-9(1952):173–264. [in Polish]

    Google Scholar 

  95. Bachmanowa S, Tabin S (1956) Evaluation of the usefulness of 15 clones of different tuber cultivars (H. tuberosus L.) for the distillery industry. Ann UMSC. E-10:301–317. [in Polish]

    Google Scholar 

  96. Talipova M (2001) Lipids of H. tuberosus L. Chem Nat Compd 37(3):213–215

    Article  CAS  Google Scholar 

  97. Janas P, Targoński Z (2007) Effects of spent brewer’s yeast and biological β-glucans on selected parameters of lipid metabolism in blood and liver in rats. Żywność Nauka Technol Jakość 1(50):161–172

    Google Scholar 

  98. Chernenko TV, Glushenkova AI, Rakhimov DA (2008) Lipids of helianthus tuberosustubers. Chem Nat Compd 44:1. https://doi.org/10.1007/s10600-008-0001-4

    Article  CAS  Google Scholar 

  99. Waszkiewicz-Robak R, Bartnikowska E (2009) Effects of spent brewer’s yeast and biological β-glucans on selected parameters of lipid metabolism in blood and liver in rats. J Anim Feed Sci 18:699–708

    Article  Google Scholar 

  100. Onacik-Gür S, Żbikowska A, Kowalska M (2014) Sources of trans fatty acids on the Polish market. Probl Hig Epidemiol 95(1):120–124. (in Polish)

    Google Scholar 

  101. Helmi Z, Azzam KMA, Tsymbalista Y, Ghazleh RA, Shaibah H, Aboul-Enein H (2014) Analysis of essential oil in leaves and tubers of Jerusalem artichoke (Helianthus tuberosus L.) by gas chromatography—mass spectrometry. Adv Pharm Bull 4(2):521–526. https://doi.org/10.5681/apb.2014.077. http://apb.tbzmed.ac.ir

    Article  PubMed  PubMed Central  Google Scholar 

  102. Radulovic NS, Dordevic MR (2014) Chemical composition of the tuber essential oil of Helianthus tuberosus L. (Asteraceae). Chem Bionurkos 11:427–437

    CAS  Google Scholar 

  103. Mikos-Bielak M, Sawicka B, Czeczko R (2000) Factors modifying the content and quality of proteins in Helianthus tuberosus tubers. Proceedings of the 3rd International Conference on Predictive modelling in Foods. 12–15 September, (2000), Leuven, Belgium, pp 188–193

    Google Scholar 

  104. Maumela P, Chimphango AFA, van Rensburg E, Görgens JF (2020) Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L.). J Food Sci Technol 57(2):775–786

    Article  CAS  PubMed  Google Scholar 

  105. Chekroun MB, Amzile J, Mokhtari A, Haloui NEE, Prevost J, Fontanillas R (1996) Comparison of fructose production by 37 cultivars of Jerusalem artichoke (H. tuberosus L.). N Z J Crop Hortic Sci. 24:115–120

    Article  CAS  Google Scholar 

  106. Kunachowicz H, Kłys W (2002) Functional food. The effect of the addition of prebiotics and probiotics on the nutritional value of food. Contemporary pediatrics. Gastroenterol Hepatol Child Nutr 4(1):33–40

    Google Scholar 

  107. Žaldarienė S, Kulaitienė J, Černiauskienė J (2012) The quality comparison of different Jerusalem artichoke (Helianthus tuberosus L.) cultivars tubers. Žemės Ūkio Mokslai 19(4):268–272

    Google Scholar 

  108. Žaldarienė S (2017) Chemical composition of different genotypes of organic Jerusalem Artichoke (Helianthus tuberosus L.) along the ontogenesis cycle. Doctoral Thesis, Aleksandras Stulginskis University, Akademija, Lithuania, 2017, p 178

    Google Scholar 

  109. FAO (2020). http://www.fao.org/home/en/ (Accessed 10 Sept 2021)

  110. Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar A (2019) UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ 42:115–132

    Article  CAS  PubMed  Google Scholar 

  111. Jia X, Sun C, Zuo Y, Li G, Li G, Ren L, Chen G (2016) Integrating transcriptomics and metabolomics to characterize the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress. BMC Genom 17:188

    Article  CAS  Google Scholar 

  112. Ersahince AC, Kara K (2017) Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant. J Anim Feed Sci 26:213–225

    Google Scholar 

  113. Sawicka B, Kalembasa D, Skiba D (2015) Variability in macroelements content in the aboveground part of Helianthus tuberosus L. at different nitrogen fertilization levels. PSE 61:158–163. https://doi.org/10.17221/956/2014-PSE

    Article  CAS  Google Scholar 

  114. Belyaeva IA, Panarina OA (2016) Jerusalem artichoke in preventive nutrition for diabetics//Innovative technologies in science and education: collection of articles. Art. winners Int. Scientific-practical Conf. 2016, pp 89–92

    Google Scholar 

  115. Jariene E, Danilcenko H, Jariene E, Wawrzyniak A, Tarasevičienė Z, Jeznach M, Žaldarienė S, Tul-Krzyszczuk A (2016) Distribution of macronutrients within organically grown Jerusalem artichoke (Helianthus tuberosus L.) tubers throughout the growing period. J Elementol 21:1315–1325

    Google Scholar 

  116. Sang NTM, Ha PTN, Son NA (2020) Dalat analysis of trace element concentration in Jerusalem artichoke using total fluorescence x-ray reflection. Sci J da Lat Univ 10(3):67. https://doi.org/10.37569/DalatUniversity.10.3.699(2020)

    Article  Google Scholar 

  117. Bach V, Edelenbos (2015) Produkcja topinamburu (Helianthus tuberosus L.) i wpływ na inulinę i związki fenolowe w przetwarzaniu i wpływie na aktywne składniki w żywności. In: Preedy V (ed) Processing and impact on active components in food. Elsevier Inc., Academic Press, Amsterdam, p 699. https://doi.org/10.1016/C2012-0-02526-4

    Chapter  Google Scholar 

  118. Samal L, Chaturvedi V, Saikumar G, Somvanshi R, Pattanaik A (2015) Prebiotic potential of Jerusalem artichoke (Helianthus tuberosus L.) in Wistar rats: Effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response. J Sci Food Agric 95:1689–1696

    Article  CAS  PubMed  Google Scholar 

  119. Zhao M, Ren Y, Wei W, Yang J, Zhong Q, Li Z (2021) Metabolite analysis of Jerusalem Artichoke (Helianthus tuberosus L.) seedlings in response to polyethylene glycol-simulated drought stress. Int J Mol Sci 22:3294. https://doi.org/10.3390/ijms22073294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yuan X, Gao M, Xiao H, Tan C, Du Y (2012) Free radical scavenging activities and bioactive substances of Jerusalem artichoke (H. tuberosus L.) leaves. Food Chem 133(1):10–14

    Article  CAS  Google Scholar 

  121. PN-ISO 8586-1: 1996. Sensory analysis—General guidelines for the selection, training and monitoring of assessors. Selected raters. Polish Scientific Committee Publishing House, Warsaw. [in Polish]

    Google Scholar 

  122. PN-ISO 4121: 1998. Sensory analysis—methodology—evaluation of food products using scaling methods. Polish Scientific Committee Publishing House, Warsaw. [in Polish]

    Google Scholar 

  123. PN-ISO 6658: 1998. Sensory analysis—methodology—general guidelines. Polish Scientific Committee Publishing House, Warsaw. [in Polish]

    Google Scholar 

  124. PN-EN ISO 5495: 2007. Sensory analysis—methodology—even method. Polish Scientific Committee Publishing House, Warsaw. [in Polish]

    Google Scholar 

  125. PN-EN ISO 8586-2: 2008. Sensory analysis—General guidelines for the selection, training and monitoring of assessors. Part 2, Experts in sensory evaluation. Ed. PKN, Warsaw. Polish Scientific Committee Publishing House, Warsaw. [in Polish]

    Google Scholar 

  126. PN-EN ISO 5492: 2009. Sensory analysis—Terminology. Ed. PKN, Warsaw. Polish Scientific Committee Publishing House, Warsaw. [in Polish]

    Google Scholar 

  127. PN-EN ISO 10399: 2010. Sensory analysis—Methodology—Duo-trio method. Polish Committee for Standardization, Publishing House, Warsaw. [in Polish]

    Google Scholar 

  128. PN-EN 14918: 2010. Solid biofuels. Determination of calorific value. Polish Committee for Standardization, Publishing House, Warsaw. [in Polish]

    Google Scholar 

  129. PN-EN 15210-2: 2011. Solid biofuels—Determination of the mechanical strength of briquettes and pellets. Part 2, Briquettes. Ed. PKN, Warsaw. Polish Committee for Standardization, Publishing House, Warsaw. [in Polish]

    Google Scholar 

  130. Gawędzka J, Jędryka T (2001) Sensory analysis. Selected methods and application examples. Publishing House of the Poznań University of Economics, Poznań. ISBN 83-88760-19-X

    Google Scholar 

  131. Marszałek K (2011) The Study of Coordinates of Optical Filter Color with the Help of the McCall Multilayer Calculation Program, Version 4.0.6,AGH University of Science and Technology, Thin Layer Technology Laboratory: Krakow, Poland, 2011, p 1–10

    Google Scholar 

  132. Ganczarski J (2004) CIE XYZ., pp. 45. Available online: https://docplayer.pl/ (Accessed on 26 Sept 2021)

  133. Pszczółkowski P, Krochmal-Marczak B, Sawicka B, Pszczółkowski M (2021) The impact of effective microorganisms on flesh color and chemical composition of raw potato tubers. Appl Sci 11:8959. https://doi.org/10.3390/app11198959

    Article  CAS  Google Scholar 

  134. Shyam NJ (2010) Chapter 2. Colour measurements and modelling. In: Non-destructive evaluation of food quality. Springer, Berlin, pp 17–40

    Google Scholar 

  135. Zalán Z, Hudáček J, Tóth-Markus M, Husová E, Solichová K, Hegyi F, Plocková M, Chumchalová J, Halász A (2011) Sensorially and antimicrobials active metabolite production of Lactobacillus strains on Jerusalem artichoke juice. J Sci Food Agric 91:672–679

    Article  PubMed  CAS  Google Scholar 

  136. Ng EW, Yeung M, Tong PS (2011) Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus. Int J Food Microbiol 145(1):169–175

    Article  CAS  PubMed  Google Scholar 

  137. Westman JO, Ylitervo P, Franzén CJ, Taherzadeh MJ (2012) Effects of Encapsulation of Microorganisms on Product Formation during Microbial Fermentations. Appl Microbiol Biotechnol 96(6):1441–1454

    Article  CAS  PubMed  Google Scholar 

  138. PN-EN ISO 21528-2:2017-08. Food chain microbiology—Horizontal method for the detection and enumeration of Enterobacteriaceae—Part 2: Colony enumeration method. SRZ, Food, Agriculture and Forestry Sector. Technical Body KT 3, Food Microbiology. Introduces: EN ISO 21528-2: 2017 [IDT], Replaces the standard: PN-ISO 21528-2: 2005

    Google Scholar 

  139. EN ISO 6579-1: 2017—Food chain microbiology—Horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1: Detection of Salmonella spp. (ISO 6579-1: 2017) [in Polish]

    Google Scholar 

  140. PN-EN ISO 9308-1:2014–12. Water quality—Quantification of Escherichia coli and coliform bacteria. Part 1: Membrane filtration method for testing waters with a low amount of accompanying microflora. [in Polish]

    Google Scholar 

  141. EN ISO 6579-1: 2017 / A1: 2020—Food chain microbiology—Horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1: Detection of Salmonella spp.—Amendment 1 Wider incubation temperature range, Annex D status change and MSRV composition correction and SC (ISO 6579-1: 2017 / Amendment 1: 2020) [in Polish]

    Google Scholar 

  142. Regulation of the European Parliament and of the Council No. 1924/2006 of 20 December 2006 on nutrition and health claims made on foods, Official Journal L 404 of 30 December 2006, pp 9–25

    Google Scholar 

  143. Korbutowicz T (2017) Functional food in the European Union—the concept, requirements, and development of the market. Economic—Wrocław. Economic Review 23/4 (2017). Acta Universitatis Wratislaviensis, No 382, 151–167. https://doi.org/10.19195/2084-4093.23.4.1

  144. Commission Regulation No. 353/2008 of 18 April 2008 laying down implementing rules for applications for the authorization of health claims in accordance with Art. 15 of Regulation No. 1924/2006 of the European Parliament and of the Council, Journal of L 109, 19 April 2008, p 11

    Google Scholar 

  145. Commission Regulation No. 432/2012 of 16 May 2012 establishing a list of permitted health claims on food, other than those relating to the reduction of disease risk and to the development and health of a child, O.J. L 136 of 25 May 2012, p 1

    Google Scholar 

  146. ISO 11038 (2019) Annual Markets Report ISO New England Inc Internal Market Monitor MAY 23, 2019, https://www.iso-ne.com/static-assets/documents/2019/05/2018-annual-markets-report.pdf (Accessed 03 Oct 2021)

  147. Szczesniak AS (2002) Texture is a sensory property. Food Qual Prefer 13:215–225. https://doi.org/10.1016/S0950-3293(01)00039-8

    Article  Google Scholar 

  148. Szczesniak AS, Bourne MC (1969) Sensory evaluation of food firmness. J Texture Stud 1:52–64. https://doi.org/10.1111/j.1745-4603.1969.tb00956.x

    Article  PubMed  Google Scholar 

  149. ISO 11036 (1994) Sensory analysis—methodology—texture profile. International Organization for Standardisation, Genève

    Google Scholar 

  150. Vicentini A, Liberatore L, Mastrocola D (2016) Functional foods: trends and development of the global market. Ital J Food Sci 22:338–351

    Google Scholar 

  151. Peyron MA, Woda A, Bourdiol P et al (2017) Age-related changes in mastication. J Oral Rehabil 44:299–312. https://doi.org/10.1111/joor.12478

    Article  CAS  PubMed  Google Scholar 

  152. Cichero JAY (2017) Unlocking opportunities in food design for infants, children, and the elderly: understanding milestones in chewing and swallowing across the lifespan for new innovations. J Texture Stud 48:271–279. https://doi.org/10.1111/jtxs.12236

    Article  PubMed  Google Scholar 

  153. Kohyama K (2020) Food texture—sensory evaluation and instrumental measurements. In: Nishinari K (ed) Textural characteristics of the world’s food, 1st edn. John Wiley & Sons Ltd., Hoboken. https://doi.org/10.1002/9781119430902.ch1

    Chapter  Google Scholar 

  154. Kwiecień M (2018) Studies of selected rheological and structural suspensions on the example of model pharmaceutical ointments. Doctoral dissertation, Poznań University of Technology, Poznań, Poland, 2018, p 160. [in Polish]

    Google Scholar 

  155. Radovanovic A, Stojceska V, Plunkett A, Jankovic S, Milovanovic D, Cupara S (2015) The use of dry Jerusalem artichoke as a functional nutrient in developing extruded food with low glycemic index. Food Chem 177:81–88

    Article  CAS  PubMed  Google Scholar 

  156. Catană C, Catană M, Iorga E, Lazăr A-G, Lazăr MA, Teodorescu RI, Asănică AC, Belc N, Iancu A. (2018). Valorification of Jerusalem artichoke tubers (Helianthus tuberosus) for achieving of functional ingredient with high nutritional value. https://doi.org/10.1111/j.1365-2621.2002.tb08829.x

  157. Rosenthal AJ (1999) Relation between instrumental and sensory measures of food texture. In: Food texture: measurement and perception, pp 1–17. Aspen http://www.springer.com/us/book/9780834212381

  158. Bourne MC (2002) Food texture and viscosity, concept and measurement, 2nd edn. Academic Press, New York. https://www.elsevier.com/books/food-texture-and-viscosity/bourne/978-0-12-119062-0

    Google Scholar 

  159. Petkova N, Ivanov I, Denev P, Pavlov A (2014) Bioactive Substance and Free Radical Scavenging Activities of Flour from Jerusalem artichoke (Helianthus tuberosus L.) Tubers—a comparative study. Turk J Agric Nat Sci 2:1773–1778

    Google Scholar 

  160. Feeding EA, Cakir E, Koc H (2010) Using dairy ingredients to alter the texture of foods: implications based on oral processing considerations. Int Dairy J. 20:562–570

    Article  Google Scholar 

  161. Ung C-Y, Menozzi M, Hartmann C et al (2018) Innovations in consumer research: the virtual food buffet. Food Qual Prefer 63:12–17. https://doi.org/10.1016/j.foodqual.2017.07.007

    Article  Google Scholar 

  162. Kowalczyk-Juśko, Jóźwiakowski K, Gizińska M, Zarajczyk J. (2012) Jerusalem artichoke (H. tuberosus L.) as renewable energy raw material. Teka Commission of Motorization Energetics in Agriculture 12(2):117–121

    Google Scholar 

  163. Piskier T (2009) Energy efficiency analysis of Topinambour cultivation for fuel—preliminary research results. Inżynieria Roln 5(114):237–243. [in polish]

    Google Scholar 

  164. Jankowski KJ, Dubis B, Kozak M (2021) Sewage sludge and the energy balance of Topinambour production—A case study in north-eastern Poland. Energy 236:121545. https://doi.org/10.1016/j.energy.2021.121545

    Article  CAS  Google Scholar 

  165. Commission Regulation (EC) No 1881/2006 of 19 December 2006. Maximum levels for certain contaminants in foodstuffs. Official Journal EUL20063645 | Effective act Version: September 19, 2021, to December 31, 2021

    Google Scholar 

  166. Gruca-Królikowska S, Wacławek W (2006) Metals in the environment. NS. II. The influence of heavy metals on plants. Chem Didactics Ecol Metrol 11(1–2):41–56

    Google Scholar 

  167. Regulation of the Minister of Health of 2003 (Journal of Laws of 2003, No. 37, item 326), EU Regulation No. 276/2010 (Official Journal of the EU L 86)

    Google Scholar 

  168. FAO (2007) Ford composition table for use in East Asia. I. Proximate composition mineral and vitamin contents of East Asian foods. FAO, Rome

    Google Scholar 

  169. Harmankaya M, Al Juhaimi F, Özcan MM (2012) Mineral contents of Jerusalem Artichoke (Helianthus tuberosus L.) Growing Wild in Turkey. Anal Lett 45(15):2269–2275. https://doi.org/10.1080/00032719.2012.686131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Sawicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawicka, B., Skiba, D., Pszczółkowski, P., Krochmal-Marczak, B. (2022). Tuber Quality. In: Sawicka, B., Krochmal-Marczak, B. (eds) Jerusalem Artichoke Food Science and Technology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-0805-7_3

Download citation

Publish with us

Policies and ethics