Skip to main content

Processing Technologies

  • Chapter
  • First Online:
Jerusalem Artichoke Food Science and Technology

Abstract

Jerusalem artichokes are becoming an economically important crop, the advantage which is the agro-technique of cultivation, which is easily adapted to climatic and soil conditions, for which low tillage is sufficient to obtain a pound yield. Apart from being an excellent source of food and bioactive ingredients, they are also a sustainable raw material for biofuel production. However, these excellent properties of Jerusalem artichokes are currently underused. Jerusalem artichokes can be used to produce energy in the industries. The main feature that makes Jerusalem artichokes different from potatoes and corn is that the predominant carbohydrate is inulin, not starch. Recent research is constantly discovering new uses and technologies for Jerusalem artichokes and their extract and inulin. These various applications combined with the low cost of crop plantation make Jerusalem artichoke a promising source of biomass for the maturing of the bioeconomy. Given the growing importance of industry, this chapter briefly presents how the unique physical and chemical properties of inulin provide it with many useful applications in various industries and innovative application technologies (bioethanol, fructose, beverages, dairy, confectionery, fruit, meat, etc.). The significance of different directions in developing different regulatory frameworks in competition or additional use of land resources, food, and energy demand farms of the countries, in the food, pharmaceutical, beauty products, alcohol (bioethanol) production, and climate change mitigation is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rossini F, Provenzano ME, Kuzmanović L, Ruggeri R (2019) Jerusalem artichoke (Helianthus tuberosus L.): a versatile and sustainable crop for renewable energy production in Europe. Agronomy [Internet]. 9(9):528. https://www.mdpi.com/2073-4395/9/9/528/htm. [Cited 2021 February 15]

    Article  CAS  Google Scholar 

  2. Puangbut D, Jogloy S, Vorasoot N, Srijaranai S, Kesmala T, Holbrook CC et al (2012) Influence of planting date and temperature on inulin content in Jerusalem artichoke (Helianthus tuberosus L.). Aust J Crop Sci [Internet]. 6(7):1159–1165. https://www.cabdirect.org/cabdirect/abstract/20123255122

    CAS  Google Scholar 

  3. Anikienko TI (2015) Chemical composition and nutritionally of green mass and Topinambur tubers in comparison with other crops. Adv Mod Nat Sci [Internet]. 9(2):278–282. https://natural-sciences.ru/ru/article/view?id=35577. [Cited 2021 January 15]

    Google Scholar 

  4. Zorić M, Terzić S, Sikora V, Brdar-Jokanović M, Vassilev D (2016) Effect of environmental variables on performance of Jerusalem artichoke (Helianthus tuberosus L.) cultivars in a long-term trial: a statistical approach. Euphotic [Internet] 213(1):23. https://www.cabdirect.org/cabdirect/abstract/20173070528

    Article  CAS  Google Scholar 

  5. Žaldarienė S (2017) Chemical Composition of Different Genotypes of Organic Jerusalem Artichoke (Helianthus tuberosus L.) along the Ontogenesis Cycle. Doctoral Thesis, Aleksandras Stulginskis University, Akademija, Lithuania, p 178

    Google Scholar 

  6. Danilčenko H, Jarienė E, Slepetiene A, Sawicka B, Zaldariene S (2017) 2017. The distribution of bioactive compounds in the tubers of organically grown Jerusalem artichoke (Helianthus tuberosus L.) during the growing period. Acta Sci Pol Hortorum Cultus 16(3):97–107

    Article  Google Scholar 

  7. Saengthobpinit W, Sajjaanantakul T (2005) Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol Technol [Internet]. 7(1):93–100. http://pws.npru.ac.th/onepen/data/files/thesis%20paper.pdf

    Article  CAS  Google Scholar 

  8. Petkova N, Denev P, Ivanova M, Vlaseva R, Todorova M (2013) Influence of harvest time on fructan content in the tubers of Helianthus tuberosus L. Northport Proceeding Papers [Internet] 11:284–289. https://www.researchgate.net/publication/256801258_Influence_of_harvest_time_on_fructan_content_in_tubers_of_Helianthus_tuberosus_L. [Cited 2021 April 11]

    Google Scholar 

  9. Baldini M, Danuso F, Monti A, Amaducci MT, Stevanato P, De Mastro G (2006) Chicory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest. Ital J Agronomy [Internet]. 1:291–309. https://www.researchgate.net/publication/50257528_Chicory_and_Jerusalem_artichoke_productivity_in_different_areas_of_Italy_in_relation_to_water_availability_and_time_of_harvest. [Cited 2021 June 1]

    Article  Google Scholar 

  10. Dias NS, Ferreira JF, Liu X, Suarez DL (2016) Jerusalem artichoke (Helianthus tuberosus, L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately saline irrigation waters. Ind Crops Prod [Internet]. 94:1009–1024. https://www.ars.usda.gov/arsuserfiles/20361500/pdf_pubs/P2515.pdf. [Cited 2021 June 21]

    Article  CAS  Google Scholar 

  11. Puangbut D, Jogloy S, Vorasoot N, Holbrook C, Patanothai A (2015) Responses of inulin content, and inulin yield of Jerusalem artichoke genotypes to seasonal environments. Int J Plant Prod 9:599–608

    Google Scholar 

  12. Schubert S, Feuerle R (1997) Fructan storage in tubers of Jerusalem artichoke: characterization of sink strength. New Phytol [Internet]. 136:115–122. https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1997.tb04737.x. [Cited 2021 January 12]

    Article  CAS  Google Scholar 

  13. Kays SJ, Nottingham SF (eds) (2008) Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L. CRC Press/Taylor & Francis Group, London, p 496

    Google Scholar 

  14. Yang LX, He QS, Corscaddena K, Udenigwe CC (2015) The prospects of jerusalem artichoke in function al food ingredients and bioenergy production. Biotechnol Rep [Internet]. 5:77–88. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466194/. [Cited 2021 March 12]

    Article  CAS  PubMed  Google Scholar 

  15. Jarienė E, Jeznach M, Danilčenko H, Žaldarienė S, Tarasevičienė Ž, Wawrzyniak A et al (2016) Distribution of macro nutrients within organically grown Jerusalem artichoke (Helianthus tuberosus L.) tubers throughout the growing period. J Elem 21(4):1315–1325

    Google Scholar 

  16. Kochnev NK, Kalinicheva MV (2002) Jerusalem artichoke - bioenergetics culture of the XXI century. M: Printing house “Ares”, p 76

    Google Scholar 

  17. Glibowski P, Pikus S, Jurek J, Kotowoda M (2014) Factors affecting inulin crystallization after its complete dissolution [Internet]. Carbohydr Polym. 110:107–112. https://www.sciencedirect.com/science/article/abs/pii/S0144861714003300?via%3Dihub. [Cited 2021 March 1]

    Article  CAS  PubMed  Google Scholar 

  18. Nazarenko MN (2014) Improvement of technologies for obtaining inulin and fructose-glucose syrup from Topinambur and their application in production of functional dairy products (in Russ). Diss. Abstract [Internet]. [Cited 2021 March 21]; p 24; https://kubstu.ru/data/fdlist/FDD0422.pdf?6u5r8k

  19. Sawicka B, Danilčenko H, Jariene E, Skiba D, Rachon L, Barbas P (2021) Nutritional value of Jerusalem artichoke tubers (Helianthus tuberosus L.) grown in organic system under lithuanian and polish conditions. Agriculture [Internet] 11(5):440. https://www.mdpi.com/2077-0472/11/5/440. [Cited 2021 January 2]

    Article  CAS  Google Scholar 

  20. Cabezas MJ, Rabert C, Bravo S, Shene C (2006) Inulin, and sugar contents in Helianthus tuberosus and Cichorium intybus tubers: effect of postharvest storage temperature. JFS [Internet]. 67(8):2860–2865. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2002.tb08829.x. [Cited 2021 March 15]

    Google Scholar 

  21. Franck A (2002) Technological functionality of inulin and oligofructose. Review. Br J Nutr [Internet] 87(2):287–291. https://pubmed.ncbi.nlm.nih.gov/12088531/. [Cited 2021 May 15]

    Article  Google Scholar 

  22. El-Kholy W, Mahrous H (2015) Biological studies on bio-yoghurt fortified with prebiotic obtained from Jerusalem artichoke. Food Nutr Sci [Internet]. 6:1552–1564. https://www.scirp.org/journal/paperinformation.aspx?paperid=61937. [Cited 2021 May 15]

    CAS  Google Scholar 

  23. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA (2006) The path forward for biofuels and biomaterials. Science [Internet]. 311(5760):484–489. https://science.sciencemag.org/content/311/5760/484. [Cited 2021 May 1]

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Zhang J, Yu C, Li Q, Dong F, Wang G et al (2015) Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydr Polym [Internet]. 121:315–319. https://www.sciencedirect.com/science/article/abs/pii/S014486171401251X?via%3Dihub. [Cited 2021 May 21]

    Article  CAS  PubMed  Google Scholar 

  25. Bhagia S, Akinosho H, Ferreira JF, Ragauskas AJ (2017) Biofuel production from Jerusalem artichoke tuber inulin’s; a review. Biofuel Res J [Internet]. 14:87–599. https://www.biofueljournal.com/mobile/article_46482_32f69c91e892dd01b39086e3f820acbb.pdf. [Cited 2021 March 21]

    Google Scholar 

  26. Rodrigues M, Sousa L, Cabanas J, Arrobas M (2007) Tuber yield and leaf mineral composition of Jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices. Spanish J Agric Res [Internet]. 5(4):545–553. https://bibliotecadigital.ipb.pt/bitstream/10198/2199/1/Tuber%20yield%20and%20leaf%20mineral%20composition%20of%20Jerusalem.pdf. [Cited 2021 March 1]

    Article  Google Scholar 

  27. Bhatia SC (ed) (2014) Advanced renewable energy systems. Woodhead Publishing India PVT Ltd, WPI India, New Delhi, p 775

    Google Scholar 

  28. Ekutech RI (2010) Development of Inulin Production Technology and Edible Fiber from Topinambur tubers (in Russ). Diss. Abstract [Internet]. [Cited 2021 March 21]; p 15; https://www.dissercat.com/content/razrabotka-tekhnologii-polucheniya-inulina-i-pishchevykh-volokon-iz-klubnei-topinambura

  29. Patel S, Goyal A (2011) Functional oligosaccharides: production, properties, and applications. World J Microbiol Biotechnol [Internet] 27(5):1119–1128. Available from:https://www.researchgate.net/publication/227240428_Functional_oligosaccharides_Production_properties_and_applications. [Cited 2021 May 15]

    Article  CAS  Google Scholar 

  30. Harvey M, Bharucha ZP (2016) Political orientations, state regulation and biofuels in the context of the food-energy-climate change trilemma’. In: UNSPECIFIED (ed.) Global bioethanol: evolution, risks, and uncertainties. UNSPECIFIED; pp 63–92

    Google Scholar 

  31. Ishizaki H, Hasumi K (2014) Ethanol Production from Biomass. In: Research approaches to sustainable biomass systems. Academic Press, Cambridge, pp 243–258

    Chapter  Google Scholar 

  32. Gunnarsson IB, Svensson SE, Johansson E, Karakashev D, Angelidaki I (2014) Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Ind Crops Prod Internet. 56:231–240. https://www.researchgate.net/publication/261265222_Potential_of_Jerusalem_artichoke_Helianthus_tuberosus_L_as_a_biorefinery_crop. [Cited 2021 April 15]

    Article  CAS  Google Scholar 

  33. International energy outlook [Internet]. 2020 Oct (cited 2021 March 15). https://www.eia.gov/outlooks/ieo/

  34. Dias De Oliveira M, Vaughan BE, Rykiel EJ (2005) Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience 5(7):593–602

    Article  Google Scholar 

  35. Azadi H, de Jong S, Derudder B, De Maeyer P, Witlox F (2012) Bittersweet: how sustainable is bio-ethanol production in Brazil? Renew Sust Energ Rev 16(6):3599–3606

    Article  CAS  Google Scholar 

  36. Ge XY, Zhang WG (2005) A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers, food technol. Biotechnology 43:241–246

    CAS  Google Scholar 

  37. Curt MD, Aguado PL, Sanz M, Sanchéz G, Fernández J. On the Use of the Stalks of Helianthus tuberosus L. For Bio-Ethanol Production, In 2005 AAIC Annual Meeting: International Conference on Industrial Crops and Rural Development, Murcia, Spain, September 17–21

    Google Scholar 

  38. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:11206–11210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kosaric N, Vardar-Sukan F (2001) Potential sources of energy and chemical products. In: Roehr M (ed) The biotechnology of ethanol: classical and future applications. Wiley-VCH, New York, pp 90–226

    Google Scholar 

  40. Uragami T, Wakita D, Miyata T (2010) Dehydration of an azeotrope of ethanol/water by sodium carboxymethylcellulose membranes cross-linked with organic or inorganic cross-linker. Express Polym Lett 4(11):681–691

    Article  CAS  Google Scholar 

  41. Singh J, Ngadi M, Varier A, Jabaji S (2011) Jerusalem artichoke: an emerging crop for bioenergy and bioproducts in North America, the Americas. J Plant Sci Biotechnol 5(Special Issue 1):78–89

    Google Scholar 

  42. Rutkauskas G. Research on the characteristics of energy plant biofuel and combustion ability subject to harvest time, In: 10th International conference on new technological processes and investigation methods for agricultural engineering, Raudondvaris, Lithuania. 2005, September 8–9, p 350–356

    Google Scholar 

  43. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4(6):655–664

    Article  CAS  PubMed  Google Scholar 

  44. Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  PubMed  CAS  Google Scholar 

  45. Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. Lignocellulose biodegradation. ACS Symposium Series. 889: American Chemical Society. pp 2–34

    Google Scholar 

  46. Jeffries TW, Jin YS (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  CAS  PubMed  Google Scholar 

  47. Saha BC (2005) Dilute acid pre-treatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):693–700

    Article  CAS  Google Scholar 

  48. Flores CL, Rodríguez C, Petit T, Gancedo C (2000) Carbohydrate, and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529

    CAS  PubMed  Google Scholar 

  49. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolysates. Enzyme Microb Technol. 36(2–3):94–300

    Google Scholar 

  51. Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  52. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53

    Article  CAS  PubMed  Google Scholar 

  53. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  CAS  PubMed  Google Scholar 

  54. Johnson JC (2006) Technology assessment of biomass ethanol: a multi-objective, life cycle approach under uncertainty. In: Johnson JC (ed) Chemical engineering. MIT, Cambridge, MA, p 280

    Google Scholar 

  55. Wikandari R, Millati R, Lennartsson PR, Harmayani E, Taherzadeh MJ (2012) Isolation and characterization of zygomycetes fungi from tempeh for ethanol production and biomass applications. Appl Biochem Biotechnol 167(6):1501–1512

    Article  CAS  PubMed  Google Scholar 

  56. DuPont. Danisco cellulosic ethanol LLC. Fermentation2011; In: Technology, (April 4, 2011), http://www.ddce.com/technology/fermentation.html

  57. Westman JO, Ylitervo P, Franzén CJ, Taherzadeh MJ (2012) Effects of encapsulation of microorganisms on product formation during microbial fermentations. Appl Microbiol Biotechnol 96(6):1441–1454

    Article  CAS  PubMed  Google Scholar 

  58. Krikunova LN, Shanenko EF, Sokolovskaja MV (2001) Method of Production of Ethyl Alcohol from Jerusalem Artichoke. Russian Federation Patent 2161652

    Google Scholar 

  59. Ylitervo P, Franzén CJ, Taherzadeh MJ (2012) Mechanically robust polysiloxane–ACA capsules for prolonged ethanol production. J Chem Technol Biotechnol 88(6):1080–1088

    Article  CAS  Google Scholar 

  60. Arbuzov VP, Stretovich EA, Stepanova IV, Burachevskij II. Vodka “Golden Dozed Lux”. 2004; Russian Federation Patent 2236450

    Google Scholar 

  61. Szambelan K, Nowak J, Jelen H (2005) The composition of Jerusalem artichoke (Helianthus tuberosus L.) spirits obtained from fermentation with bacteria and yeasts. Eng. Life Sci 5:68–71

    CAS  Google Scholar 

  62. Szambelan K, Nowak J (2006) Acids, and enzymatic hydrolysis of Jerusalem artichoke (Helianthus tuberosus L.) tubers for further ethanol production. EJPAU. 9(4):38

    Google Scholar 

  63. Negro MJ, Ballesteros I, Manzanares P, Oliva JM, Saez F, Ballesteros M (2006) Inulin-containing biomass for ethanol production: carbohydrate extraction and ethanol fermentation. Appl Biochem Biotechnol 129–13:922–932

    Article  Google Scholar 

  64. Rosa MF, Sá Correia I, Novais JM (1988) Improvements in ethanol tolerance of Kluyveromyces fragilis in Jerusalem artichoke juice. Biotechnol Bioeng 31:05–710

    Article  Google Scholar 

  65. Rosa MF, Bartolemeu ML, Novais JM, Sá-Correia I (1992) The Portuguese experience on the direct ethanolic fermentation of Jerusalem artichoke tubers, in Biomass for energy, industry, and environment; 6th E.C. Conference. Elsevier Applied Science, London 1992; pp 546–550

    Google Scholar 

  66. Stolzenburg K (2006) Topinambur (Helianthus tuberosus L.) als energieliefernde Pflanze im Bereich Biogas und Bioethanol: Mitt. Ges. Pflanzenbauwiss. Verlag Schmidt & Klanig, Kiel; 18:126–127

    Google Scholar 

  67. Sarchami T, Rehmann L (2014) Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass Bioenergy 69:175–182

    Article  CAS  Google Scholar 

  68. Sarchami T, Rehmann L (2015) Optimizing acid hydrolysis of Jerusalem artichoke-derived inulin for fermentative butanol production. Bioenergy Res 8(3):1148–1157

    Article  CAS  Google Scholar 

  69. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from Lignocellulosic materials: a review. Bioresources 2(4):707–738

    CAS  Google Scholar 

  70. Taherzadeh MJ, Karimi K (2011) Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In: Biofuels. Academic Press, Cambridge, pp 287–311

    Chapter  Google Scholar 

  71. Talaiekhozani A, Rezania S (2020) A critical review on the various pre-treatment technologies of lignocellulosic materials. J Environ Treat Technol 8(2):925–935

    Google Scholar 

  72. Ohta K, Akimoto H, Moriyama S (2004) 2004. Fungal inulinases: enzymology, molecular biology, and biotechnology. J Appl Glycosci 51:247–254

    Article  CAS  Google Scholar 

  73. Khatun MM, Liu CG, Zhao XQ, Yuan WJ, Bai FW (2016) Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display. J Ind Microbiol Biotechnol 44(2):295–301

    Article  PubMed  CAS  Google Scholar 

  74. Philippidis GP, Smith TK, Wyman CE (1993) Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng 41(9):846–853

    Article  CAS  PubMed  Google Scholar 

  75. El-Nagar G, Clowes G, Tudorica CM, Kuri V, Brennan CS (2002) Rheological quality, and stability of yoga-ice cream with added inulin. Int J Dairy Technol 55(2):89–93

    Article  CAS  Google Scholar 

  76. Sawicka B, Skiba D, Pszczółkowski P, Aslan I, Sharifi-Rad J, Krochmal-Marczak B (2020) Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products. Cell Mol Biol (Noisy-le-Grand) 66(4):160–177

    Article  Google Scholar 

  77. Zhang Li W, Yu J, Li C, Dong Q, Wang F, Gu G et al (2015) Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydr Polym 121:315–319

    Article  CAS  Google Scholar 

  78. Maumela P, Chimphango AFA, van Rensburg E, Görgens JF (2020) Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L.). J Food Sci Technol 57(2):775–786

    Article  CAS  PubMed  Google Scholar 

  79. Yildiz S (2011) The metabolism of fructooligosaccharides and fructooligosaccharide-related compounds in plants. Food Rev Int 27(1):16–50

    Article  CAS  Google Scholar 

  80. Petkova N, Ognyanov M, Todorova M, Denev P (2015) Ultrasound-assisted extraction, and characterization of inulin-type fructan from roots of elecampane (Inula helenium L.). Acta Nat Sci. 1:225–235

    Google Scholar 

  81. Gonzalez-Herrera SM, Herrera RR, Lopez MG, Aguilar CN, Esquivel JC, Martínez LA (2015) Inulin in food products: prebiotic and functional ingredient. Br Food J 117:371–387

    Article  Google Scholar 

  82. Temkov M, Petkova N, Denev P, Krastanov A (2015) Characterization of inulin from Helianthus tuberosus L. obtained by different extraction methods - Comparative study. Sci Works Univ Food Technol. LXII:461–464

    Google Scholar 

  83. Singh RS, Singh RP (2010) Fructooligosaccharides from inulin as prebiotics. Food Technol Biotechnol 48(4):435–450

    CAS  Google Scholar 

  84. Singh RS, Singh T, Kennedy JF (2016) Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. Int J Biol Macromol 85:565–572

    Article  CAS  PubMed  Google Scholar 

  85. Mensink MA, Frijlink HW, van der Voort MK, Hinrichs WLJ (2015) Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr Polym. 130:405–419

    Article  CAS  PubMed  Google Scholar 

  86. Saengthongpinit W, Sajjaanantakul T (2005) Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol Technol 37:93–100

    Article  CAS  Google Scholar 

  87. Ronkart SN, Deroanne C, Paquot M, Fougnies C, Blecker CS (2010) Impact of the crystallisation pathway of inulin on its monohydrate to hemi-hydrate thermal transition. Food Chem 119:317–322

    Article  CAS  Google Scholar 

  88. Leite J, Martinelli P, Murr F, Jin K (2004) Study of the inulin concentration by physical methods. Drying. B:868–875

    Google Scholar 

  89. Tonelli J, Park K, Negreiros A, Murr F (2010) Spray-drying process optimization of chicory root inulin. Dry Technol 28:369–379

    Article  CAS  Google Scholar 

  90. Vega R, Zuniga-Hansen ME (2015) The effect of processing conditions on the stability of fructooligosaccharides in acidic food products. Food Chem 173:784–789

    Article  CAS  PubMed  Google Scholar 

  91. Zhu Z, Wu Jie M, Cai Shuyi Li CS, Marszalek K, Lorenzo JM, Barba FJ (2019) Optimization of spray-drying process of Jerusalem artichoke extract for inulin production. Molecules 24(1674):1–9

    Google Scholar 

  92. Meyer D, Bayarri S, Tárrega A, Costell E (2011) Inulin as texture modifier in dairy products. Food Hydrocool 25:1881–1890

    Article  CAS  Google Scholar 

  93. Abou-Zeid NA (2015) Probiotic bacteria in dairy products: a review. IJPAS 12:37–55

    Google Scholar 

  94. Neeraj G, Ravi S, Somdutt R, Aishvarya S, Ravi K, Kumar VV (2017) Immobilized inulinase: a new horizon of paramount importance driving the production of sweetener and prebiotics. Crit Rev Biotechnol 38(3):1–14

    Google Scholar 

  95. Zuleta A, Sambucetti M (2001) Inulin determination for food labelling. J Agric Food Chem 49(10):4570–4572

    Article  CAS  PubMed  Google Scholar 

  96. Van de Wiele T, Boon L, Pismires S, Jacobs H, Verstraete W (2006) Inulin – type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 102(2):452–460

    Google Scholar 

  97. Almeida FDL, Gomes WF, Cavalcante RS, Tiwari BK, Cullen PJ, Frias JM et al (2017) Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Res Int 102:282–290

    Article  CAS  PubMed  Google Scholar 

  98. Cruz AG, Cadena RS, Walter EHM, Mortazavian AM, Granato D, Faria JAF et al (2010) Sensory analysis: relevance for prebiotic, probiotic, and synbiotic product development. Compr Rev Food Sci Food Safe 9(4):358–373

    Article  Google Scholar 

  99. Akalin AS, Erisir D (2008) Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream. J Food Sci 73(4):184–188

    Article  CAS  Google Scholar 

  100. Pandiyan C, Annal VR, Kumaresan G, Murugan B, Rajarajan G (2012) Effect of incorporation of inulin on the survivability of Lactobacillus acidophilus in synbiotic ice cream. Int Food Res J 19(4):1729–1732

    CAS  Google Scholar 

  101. Fleming SE, Groot Wassink JW (1979) Preparation of high-fructose syrup from the tubers of the Jerusalem artichoke (Helianthus tuberosus L). Food Sci Nutr 12(1):1–28

    CAS  Google Scholar 

  102. Lou Z, Wang H, Wang D, Zhang Y (2009) Preparation of inulin and phenols-rich dietary fibre powder from burdock root. Carbohydr Polym 78(4):666–671

    Article  CAS  Google Scholar 

  103. Bedzo OKK, van Rensburg E, Görgens JF (2021) Investigating the effect of different inulin-rich substrate preparations from Jerusalem artichoke (Helianthus tuberosus L.) tubers on efficient inulooligosaccharides production. Prep Biochem Biotechnol. 51(5):440–449

    Article  CAS  PubMed  Google Scholar 

  104. Aragon-Alegro LC, Alarcon JH, Cardarelli HR, Chiu MC, Saad SM (2007) Potentially probiotic and synbiotic chocolate mousse. LWT- Food Sci Technol 40(4):669–675

    Article  CAS  Google Scholar 

  105. Zhu Z, Xiao L, Yin F, Li S, He J (2018) Clarification of Jerusalem artichoke extract using ultra-filtration: effect of membrane pore size and operation conditions. Food Bioprocess Technol 11:864–873

    Article  CAS  Google Scholar 

  106. Golob T, Micovic E, Bertoncel J, Jamnik M (2004) Sensory acceptability of chocolate with inulin. Acta Agric Slov 83(2):221–231

    CAS  Google Scholar 

  107. Paseephol T, Small DM, Sherkat F (2008) Rheology, and texture of set yogurt as affected by inulin addition. J Texture Stud 39(6):617–634

    Article  Google Scholar 

  108. Abdel-Salam AM (2010) Functional food: hopefulness to good health. Am J Food Technol 5(2):86–99

    Article  Google Scholar 

  109. Farzanmehr H, Abbasi S (2009) Effects of inulin and bulking agents on some physicochemical, textural, and sensory properties of milk chocolate. J Texture Stud 40(5):536–553

    Article  Google Scholar 

  110. Allgeyer LC, Miller MJ, Lee SY (2010) Drivers of liking for yogurt drinks with prebiotics and probiotics. J Food Sci 75(4):212–219

    Article  CAS  Google Scholar 

  111. Cruz AG, Antunes ECA, Sousa ALOP, Faria JAF, Susana MIS (2009) Ice-cream as a probiotic food carrier: A review. Food Res Int 42:1233–1239

    Article  Google Scholar 

  112. Arcia PL, Costell E, Tárrega A (2011) Inulin blend as prebiotic and fat replacer in dairy desserts: optimization by response surface methodology. Int J Dairy Sci 94(5):2192–2200

    Article  CAS  Google Scholar 

  113. Khuenpet K, Jittanit W, Sirisansaneeyakul S, Srichamnong W (2018) The application of purification process for inulin powder production from Jerusalem artichoke (Helianthus tuberosus L.) tuber powder. J Food Process Preserv 42(8). https://doi.org/10.1111/jfpp.13695

  114. Srinameb BO, Nuchadomrong S, Jogloy S, Patanothai A, Srijaranai S (2015) Preparation of inulin powder from Jerusalem artichoke (Helianthus tuberosus L.) tuber. Plant Foods Hum Nutr 70(2):221–226

    Article  CAS  PubMed  Google Scholar 

  115. Ermosh LG (2012) New technique for Jerusalem artichoke drying. Vestnik Kras GA; pp 217–221

    Google Scholar 

  116. Ahmed I, Niazi MBK, Jahan Z, Naqvi SR (2018) Effect of drying parameters on the physical, morphological, and thermal properties of spray-dried inulin. J Polym Eng 38(8):775–783

    Article  CAS  Google Scholar 

  117. Al-Zahraa MD (2020) Influence of inulin and pumpkin powder addition on sensory and rheological properties of low-fat probiotic yogurt. Food Public Health 10(4):88–96

    Google Scholar 

  118. Khuenpet K, Jittanit W, Sirisansaneeyakul S, Srichamnong W (2015) Effect of pre-treatments on quality of Jerusalem artichoke (Helianthus tuberosus L.) tuber powder and inulin extraction ASABE. Trans ASABE 58(6):1873–1884

    Article  CAS  Google Scholar 

  119. Stewart SB. New inulin fractions, method for their preparation, food products and granular sugar substitutes containing these fractions. Patent number: 4104; published: 25.12.2003

    Google Scholar 

  120. Smits G, De Leenheer L. Process for the manufacture of chicory inulin, hydrolysates and derivatives of inulin, and improved chicory inulin products, hydrolysates, and derivatives. Patent number 98870012.6; Publication numberwork/1999/037686; published: 21.07.1999

    Google Scholar 

  121. Volkova IV. Improvement of production technology and zero-based extracts from Ritsema

    Google Scholar 

  122. Ritsema T, Meekins S (2003) Fructans: beneficial for plants and humans. Plant Biology [Internet]. 6(3):223–230. https://pubmed.ncbi.nlm.nih.gov/12753971/. [Cited 2021 February 12]

    CAS  Google Scholar 

  123. Ruberoid MB (2002) Functional food: concepts and application to inulin and oligofructose. Br J Nutr 87:139–S143

    Article  CAS  Google Scholar 

  124. Nair K, Khar S (2010) Thompkins on DK. Inulin dietary fiber with functional and health attributes: a review. Food Rev. Int 26:189–203

    Google Scholar 

  125. Van Loo J, Cousens P, Leenheer L, Houbregs H, Smits G (1995) On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 35(6):525–552

    Article  PubMed  Google Scholar 

  126. Rocha JR, Catana R, Ferreira BS, Cabral JMS, Fernandes P (2006) Design, and characterization of an enzyme system for inulin hydrolysis. Food Chem 95:77–82

    Article  CAS  Google Scholar 

  127. Figueira MG, Park JK, Brod PF, Honorio LS (2004) Evaluation of desorption isotherms, drying rates and inulin concentration of chicory root (Cichorium intybus L.) with and without enzymatic inactivation. J Food Eng 63:273–280

    Article  Google Scholar 

  128. Matusek A, Meres P, Le TKD, Orsi F (2009) Effect of temperature and pH on the degradation of fructooligosaccharides. Eur Food Res Technol 228(3):355–365

    Article  CAS  Google Scholar 

  129. Glibowski P, Bukowska A (2011) The effect of pH, temperature, and heating time on inulin chemical stability. Acta Sci Pol Technol Aliment 10(2):189–196

    CAS  Google Scholar 

  130. Sauer M, Jasmin I, Pascha I, Radawa MA, Khan MI, Sabir MA et al (2015) Potential application of inulin in the food industry: a review. Pak J Food Sci 25(3):110–116

    Google Scholar 

  131. Bonnen AL, Kolberg LW, Thomas W, Slavin JL (2010) Gastrointestinal tolerance of chicory inulin products. Am Diet Assoc 110(6):865–868

    Article  CAS  Google Scholar 

  132. Foster-Powell K, Holt SHA, Brand-Miller JC (2002) International table of glycaemic index and glycaemic load values. Am J Clin Nutr 76:55–56

    Article  Google Scholar 

  133. Segal MS, Rohnson RJ (2007) Is the fructose index more relevant with regard to cardiovascular disease than the glycaemic index? Eur J Nutr 46:406–417

    Article  CAS  PubMed  Google Scholar 

  134. Li JQ (2010) Polyphenol oxidase characteristics of Jerusalem artichoke. Acta Agric Borealis-Occidentalis Sin 8:38

    Google Scholar 

  135. Jiang SJ (2012) Research on the extraction of inulin from Helianthus tuberosus L. Guangzhou Chem Ind 40:82–84

    CAS  Google Scholar 

  136. Homayoni RA, Hojat AH (2015) Evaluation of changes in color of clear apple juice samples contain inulin, fructooligosaccharides and polydextrose during the six-month storage at 4 and 25°C. FSCT 13(56):173–180

    Google Scholar 

  137. Niness KR (1999) Inulin and oligofructose: what are they? J Nutr. 129(7):1402s–1406s

    Article  CAS  PubMed  Google Scholar 

  138. Schirmer M, Jekle M, Arendt E, Becker T (2012) Physicochemical interactions of polydextrose for sucrose replacement in pound cake. Food Res Int 48(1):291–298

    Article  CAS  Google Scholar 

  139. Shelke K, Faubion JM, Hoseney RC (1990) The dynamics of cake baking as studied by a combination of viscometry and electrical resistance oven heating. Cereal Chem 67(6):575–580

    Google Scholar 

  140. Sudha ML, Srivastava AK, Vetrimani R, Leelavathi K (2007) Fat replacement in soft dough biscuits: its implications for dough rheology and biscuits quality. Engineering 80:922–930

    Google Scholar 

  141. Laguna L, Varea P, Salvador A, Sanz T, Fiszman SM (2012) Balancing texture and other sensory features in reduced fat short-dough biscuits. J Texture Stud 43:235–245

    Article  Google Scholar 

  142. Kaur N, Gupta AK (2002) Application of inulin and oligofructose in health and nutrition. J Biosci 27:703–714

    Article  CAS  PubMed  Google Scholar 

  143. Krystyjan M, Gumul D, Ziobro R, Sikora M (2015) The effect of inulin as a fat replacement on dough and biscuit properties. J Food Qual 38(5):305–315

    Article  CAS  Google Scholar 

  144. Parks E, Yki-Jarvinen H, Hawkins M (2017) Out of the frying pan: dietary saturated fat influences non-alcoholic fatty liver disease. J Clin Investig 127(2):454–456

    Article  PubMed  PubMed Central  Google Scholar 

  145. Patel AR, Dewettinck H (2016) Edible oil structuring: an overview and recent updates. Food Funct 7(1):20–29

    Article  CAS  PubMed  Google Scholar 

  146. Pintado T, Herrero AM, Jimenez-Colmenero F, Pasqualin CC, Ruiz-Capillas C (2018) Chia and oat emulsion gels as new animal fat replacers and healthy bioactive sources in fresh sausage formulation. Meat Sci 135:6–13

    Article  CAS  PubMed  Google Scholar 

  147. Mantzouridou F, Spanou A, Kiosseoglou V (2012) Inulin-based dressing emulsion as a potential probiotic food carrier. Food Res Int 46(1):260–269

    Article  CAS  Google Scholar 

  148. Nourbehesht N, Shekarchizadeh H, Soltanizadeh N (2018) Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation. Ultrason Sonochem 42:585–593

    Article  CAS  PubMed  Google Scholar 

  149. Paradiso VM, Giarnetti M, Summo C, Pasqualone A, Minervini F, Caponio F (2015) Production, and characterization of emulsion filled gels based on inulin and extra virgin olive oil. Food Hydrocoll 45:30–40

    Article  CAS  Google Scholar 

  150. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR et al (2016) Inulin: properties, health benefits and food applications. Carbohydr Polym 147:444–454

    Article  CAS  PubMed  Google Scholar 

  151. Paciulli M, Littardi P, Carini E, Paradiso VM, Castellino M, Chiavaro E (2020) Inulin-based emulsion filled gel as fat replacer in shortbread cookies: effects during storage. LWT 133:109888

    Article  CAS  Google Scholar 

  152. Meyer PD, Wolf JD, Olivier P (2007) Inulin und fructooligosaccharides. In: Rosenplenter K, Nöhle U (eds) Handbuch Süßungsmittel. Behr’s Verlag, Hamburg, pp 155–193

    Google Scholar 

  153. Tungland C, Meyer D (2002) Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr Rev Food Sci Food Saf 1:73–92

    Article  CAS  Google Scholar 

  154. Christopher NS, Eisner P, Bader-Mittermaier S (2020) The combined effects of different fat replacers and rennet casein on the properties of reduced-fat processed cheese. J Dairy Sci 103(5):3980–3993

    Article  CAS  Google Scholar 

  155. Tomovska J, Gjorgievski N, Makarijoski B (2016) Examination of pH, titratable acidity, and antioxidant activity in fermented milk. J Mater Sci Eng A 6:11–12. 326–333

    Google Scholar 

  156. Mukhekar A, Desale RJ, Bhosale S (2018) Effect on sensory and microbial properties of yogurt fortified with Aloe vera. J Pharm Innov 7:146–148

    Google Scholar 

  157. Szajnar K, Znamirowska A, Kalicka D, Kuzniar P (2017) Fortification of yogurts with various magnesium compounds. J Elem 22:559–568

    Google Scholar 

  158. Meyer D, Vermulst J, Tromp RH, Hoog EHA (2011) The effect of inulin on tribology and sensory profiles of skimmed milk. J Texture Stud 42(5):387–393

    Article  Google Scholar 

  159. De Vrese D, Cuthbert-Steven J, Piccinah P, Buetikofer U, Eberhard P (2009) Rheological, microstructural, and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. Int Dairy J. 19:107–115

    Article  CAS  Google Scholar 

  160. Tarrega A, Roca Full A, Costell E (2010) Effect of blends of short and long-chain inulin on the rheological and sensory properties of prebiotic low-fat custards. LWT-Food Sci Technol 43:556–562

    Article  CAS  Google Scholar 

  161. Kipp P, Meyer D, Jelena RH (2006) Inulin’s improve sensory and textural properties of low-fat yoghurts. Int Dairy J 16:1098–1103

    Article  CAS  Google Scholar 

  162. Feeding EA, Cakir E, Koc H (2010) Using dairy ingredients to alter the texture of foods: implications based on oral processing considerations. Int Dairy J 20:562–570

    Article  Google Scholar 

  163. Wijk RA, Rasing F, Wilkinson C (2003) Texture of semi-solids: sensory flavour-texture interactions for custard desserts. J Texture Stud 34:131–146

    Article  Google Scholar 

  164. Roberfroid MB (2000) Prebiotics and probiotics are they functional foods. Am J Clin Nutr 71(6):1682S–1687S

    Article  CAS  PubMed  Google Scholar 

  165. Menink MA, Frijlink HW, Maarschalk K, Hinrich WL (2015) Inulin, flexible I oligosaccharide: an overview of its physical and chemical properties. Carbohydr Polym 130:405–419

    Article  CAS  Google Scholar 

  166. Tadesse TF (2019) Direct and indirect actions of inulin as a prebiotic polysaccharide: an overview. CPQ Nutr 3(6):01–15

    Google Scholar 

  167. Eaton SB, Konner MJ, Shostak M (1996) An evolutionary perspective enhances understanding of human nutritional requirements. J Nutr 126:1732–1740

    Article  CAS  PubMed  Google Scholar 

  168. Williams CL, Bollella M, Wynder EL (1995) A new recommendation for dietary fiber intake in childhood. Pediatrics 96:985–988

    Article  CAS  PubMed  Google Scholar 

  169. American Association of Cereal Chemists (2001) The definition of dietary fiber. Cereal Foods World 46:112–127

    Google Scholar 

  170. Garcia ALE, Tejada OV, Serna SO (2018) Dietary fiber concentrates from fruit and vegetable by-products: processing, modification, and application as functional ingredients. Food Bioprocess Technol 11:1439–1463

    Article  CAS  Google Scholar 

  171. Hymavathi TV, Megala P (2011) Functional benefits of inulin (In) and fructooligosaccharides (FOS) in food processing and value addition. J Food Process Technol 10:1–12

    Google Scholar 

  172. Massimzhan T, Velyamov D, Bekesh A, Bahytzhan T, Temirhan SM (2020) Technology of inulin-containing extract intended for producing functional food products. Eurasia J Biosci 14:1257–1262

    Google Scholar 

  173. Mary PU, Pandey S (2007) Fruit bars with Jack fruit bulbs. Beverage Food World 34(9):71–72

    Google Scholar 

  174. Aruna K, Vimala V, Dhanalakshmi K, Vinodini R (1999) Physicochemical changes during storage of papaya fruit (Carica papaya L.) bar (Thandra). J Food Sci Technol 36(5):428–433

    CAS  Google Scholar 

  175. Hymavathi TV (2002) Directory of rural technologies-part IV, vol 41. National Institute of Rural Development, Hyderabad, pp 161–164

    Google Scholar 

  176. Meghala P, Hymavathi TV (2011) Inulin and fructooligosaccharides incorporated functional fruit bars. World Acad Sci Eng Technol 59:600–605

    Google Scholar 

  177. Macfarlane S, Macfarlane GT, Cummings JH (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24:701–714

    Article  CAS  PubMed  Google Scholar 

  178. Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 39:237–238

    Article  CAS  PubMed  Google Scholar 

  179. Peuranen S, Tiihonen K, Apajalkathi KA, Saarinen M, Rautonen N (2004) The combination of polydextrose and lactolol affects microbial ecosystem and immune responses in the gastrointestinal tract. Br J Nutr 291:905–914

    Article  CAS  Google Scholar 

  180. Timmermann HM, Koning JM, Mulder L, Rombouts FM, Beynen AC (2004) Monostrain, multistrain, and multispecies probiotics — A comparison of functionality and efficacy. Int J Food Microbiol 96:219–233

    Article  Google Scholar 

  181. Guergoletto KB, Magnani M, Martin JS, Andrade DJ, Garcia S (2010) The survival of Lactobacillus casei (LC-1) adhered to prebiotic plant fibers. Innovative Food Sci Emerg Technol 11(2):415–421

    Article  CAS  Google Scholar 

  182. Gilbert L, Sloan E (1998) Food industry forecast: consumer trends to 2020 and beyond. Food Technol 1:37–44

    Google Scholar 

  183. Roger DM (2009) Packaging and the shelf life of yogurt. In: Gordon LR (ed) Food packaging and shelf life: a practical guide. CRC Press, Boca Raton, pp 143–153

    Google Scholar 

  184. Coeuret V, Gueguen M, Vernoux JP (2004) Numbers and strains of lactobacilli in some probiotic products. Int J Food Microbiol 97(2):147–156

    Article  PubMed  Google Scholar 

  185. Ng EW, Yeung M, Tong PS (2011) Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus. Int J Food Microbiol 145(1):169–175

    Article  CAS  PubMed  Google Scholar 

  186. De Vrese M, Schrezenmeir AJ (2008) Probiotics, prebiotics, and synbiotics. In: Stahl U, Donalies UEB, Nevoigt E (eds) Food biotechnology. Springer, Berlin, pp 1–66

    Google Scholar 

  187. Ting K, Liu YF, Tian-Li G, Lu-Hua Z (2016) Relationships between viscosity and the contents of macromolecular substances from milk with different storage styles. Food Science and Technology 4(4):49–56

    Article  CAS  Google Scholar 

  188. Lee WJ, Lucey JA (2010) Formation and physical properties of yogurt. Asian Australas J Anim Sci 23(9):1127–1136

    Article  CAS  Google Scholar 

  189. Berizi E, Shekarforoush SS, Mohammadinezhad S, Hosseinzadeh S, Farahnaki A (2017) The use of inulin as a fat replacer and its effect on texture and sensory properties of emulsion type sausages. Iran J Vet Res 18(4):253–257

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Shi LH, Balakrishnan K, Thiagarajah K, Ismail NIM, Yin OS (2016) Beneficial properties of probiotics. Trop Life Sci Res 27(2):73

    Article  PubMed  PubMed Central  Google Scholar 

  191. Mazloomi SM, Shekarforoush SS, Ebrahimnejad H, Sajedianfard J (2011) Effect of adding inulin on microbial and physicochemical properties of low-fat probiotic yogurt. Iran J Vet Res 12(2):93–98

    Google Scholar 

  192. Calinoiu LV, Vodnar DC, Precup G (2016) The probiotic bacteria viability under different conditions. Bull UASVM Food Sci Technol 73(2):55–60

    CAS  Google Scholar 

  193. Taha S, El Abd M, De Gobba C, Abdel-Hamid M, Khalil E, Hassan D (2017) Antioxidant, and antibacterial activities of bioactive peptides in buffalo's yogurt fermented with different starter cultures. Food Sci Biotechnol 26(5):1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mishra S, Mishra H (2018) Comparative study of the synbiotic effect of inulin and fructooligosaccharide with probiotics with regard to the various properties of fermented soy milk. Food Sci Technol Int 24(7):564–575

    Article  CAS  PubMed  Google Scholar 

  195. Soh IX, Wilian M, Yan SW (2021) Inulin enhances nutritional, sensory, and technological characteristics of synbiotic yogurt drink. Br Food J 123(7):2571–2581

    Google Scholar 

  196. Schmiele M, Mascarenhas MCCN, da Silva BAC, Rodrigues PMA (2015) Dietary fiber as fat substitute in emulsified and cooked meat model system. LWT Food Sci Technol [Internet]. 61:105–111. https://www.academia.edu/11269177/Dietary_fiber_as_fat_substitute_in_emulsified_and_cooked_meat_model_system. [cited 2021 May 01]

    Article  CAS  Google Scholar 

  197. Alaei F, Hojjatoleslamy M, Dehkordi SMH (2018) The effect of inulin as a fat substitute on the physicochemical and sensory properties of chicken sausages. Food Sci Nutr [Internet]. 6:512–519. https://www.researchgate.net/publication/322650820_The_effect_of_inulin_as_a_fat_substitute_on_the_physicochemical_and_sensory_properties_of_chicken_sausages. [cited 2021 May 01]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mehta N, Ahlawat SS, Sharma DP, Dabur RS (2013) Novel trends in development of dietary fiber rich meat products. a critical review. J Food Sci Tech [Internet] 2(2):633–647. https://www.researchgate.net/publication/257798783_Novel_trends_in_development_of_dietary_fiber_rich_meat_products-A_critical_review. [cited 2021 May 01]

    Google Scholar 

  199. Mendez Zamora GJ, Garcia Macias A, Santellano Esterada E, Chavez Martinez A, Duran Melendez LA, Silvia Varquez R et al (2015) Fat reduction in the formulation of frankfurter sausages using inulin and pectin. Food Sci Tech 53(1):25–31

    Article  Google Scholar 

  200. Barbut S, Wood J, Marangoni A (2016) Potential use of organogels to replace animal fat in comminute meat products. Meat Sci 122:155–162

    Article  CAS  PubMed  Google Scholar 

  201. Gadekar YP, Shinde AK, Karym SA (2016) Effect of inulin on physic-chemical, textural, and sensory characteristics of reduced fat lamb nuggets. Vet Anim Sci [Internet]. 1–13. https://www.researchgate.net/publication/311360489_Effect_of_inulin_on_physico-chemical_textural_and_sensory_characteristics_of_reduced_fat_lamb_nuggets. [cited 2021 May 03]

  202. Kalyani NK, Kharb S, Thompkinson DK (2010) Inulin dietary fiber with functional and health attributes - a review. Food Rev Int 26(2):189–203

    Article  CAS  Google Scholar 

  203. Bayarri S, Gonzalez-Tomas L, Hernando I, Lluch MA, Costell E (2011) Texture perceived on inulin-enriched low fat semisolid dairy desserts. Rheological and structural basis. J Texture Stud 42(3):174–184

    Article  Google Scholar 

  204. Yousefi M, Khorshidian N, Hosseini H (2018) An overview of the functionality of inulin in meat and poultry products. Nutr Food Sci [Internet] 48:819–835. https://www.researchgate.net/publication/325998403_An_overview_of_the_functionality_of_inulin_in_meat_and_poultry_products. [cited 2021 May 10]

    Article  Google Scholar 

  205. Latoch A, Glibowski P, Libera J (2016) The effect of replacing pork fat of inulin on the physicochemical and sensory quality of guinea fowl pate. Acta Sci Pol Technol Aliment [Internet] 15(3):311–320. https://pdfs.semanticscholar.org/422a/3b626fd5bf9ccc5692d6d4eacdd4f5ef0b73.pdf?_ga=2.118609417.1053850256.1628256135-784599939.1607941692. [cited 2021 May 27]

    Article  CAS  Google Scholar 

  206. Angiolillo L, Conte A, Del Nobile MA (2015) Technological strategies to produce functional meat burgers. LWT Food Sci Technol 62:697–703

    Article  CAS  Google Scholar 

  207. Abed SM, Ali AH, Noman A, Niazi S, Ammar AF, Bakry AM (2016) Inulin as prebiotics and its applications in food industry and human health; a review. Int J Agric Innov Res [Internet] 5(1):88–97. https://www.researchgate.net/publication/318900116_Inulin_as_Prebiotics_and_its_Applications_in_Food_Industry_and_Human_Health_A_Review. [cited 2021 May 27]

    Google Scholar 

  208. Nasonova VV, Tunieva EK (2019) A comparative study of fat replacers in cooked sausages. IOP Conf Ser Earth Environ Sci [Internet]. 333:1–6. https://iopscience.iop.org/article/10.1088/1755-1315/333/1/012085/pdf. [cited 2021 May 10]

    Google Scholar 

  209. Flaczyk E, Gorecka D, Kobus J, Szymandera BK (2009) The influence of inulin addition as fat substitute on reducing energy value and consumer acceptance of model pork meatballs. Food Sci Technol Qual 16(4):41–46

    CAS  Google Scholar 

  210. Cegielka A, Tambor K (2012) Effect of inulin on the physical, chemical, and sensory quality attributes of polish chicken burgers. J Food Res [Internet] 1(1):169–178. https://www.researchgate.net/publication/266171504_Effect_of_Inulin_on_the_Physical_Chemical_and_Sensory_Quality_Attributes_of_Polish_Chicken_Burgers. [cited 2021 May 10]

    Article  CAS  Google Scholar 

  211. Keenan DF, Resconi VC, Kerry JP, Hamill RM (2014) Modelling the influence of inulin as a fat substitute in comminated meat products on their physico-chemical characteristics and eating quality using a mixture design approach. Meat Sci 96:1384–1394

    Article  CAS  PubMed  Google Scholar 

  212. Menegas LZ, Pimentel TC, Garcia S, Prudencio SH (2013) Dry-fermented chicken sausage produced with inulin and corn oil: physicochemical, microbiological, and textural characteristics and acceptability during storage. Meat Sci [Internet]. 93:501–506. https://www.academia.edu/14475891/Dryfermented_chicken_sausage_produced_with_inulin_and_corn_oil_Physicochemical_microbiological_and_textural_characteristics_and_acceptability_during_storage. [cited 2021 May 10]

    Article  CAS  PubMed  Google Scholar 

  213. Rodriguez Furlan LT, Padilla AP, Campderros ME (2014) Development of reduced fat minced meats using inulin and bovine plasma proteins as fat replacers. Meat Sci 96(2):762–768

    Article  CAS  PubMed  Google Scholar 

  214. Afshari R, Hosseini H, Khaksar R, Mohammadifar MA, Amiri Z, Komeili R et al (2015) Investigation of the effects of inulin and b-glucan on the physical and sensory properties of low-fat beef burgers containing vegetable oils: optimisation of the formulation using D-optimal mixture design. Food Technol Biotechnol 53(4):436–445

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Alvarez D, Barbut S (2013) Effect of inulin, β-glucan, and their mixtures on emulsion stability, color, and textural parameters of cooked meat batters. Meat Sci 94:320–327

    Article  CAS  PubMed  Google Scholar 

  216. Elleucha M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre, and fibre-rich by-products of food processing: characterisation, technological functionality, and commercial applications: a review. Food Chem [Internet] 124(2):411–421. https://www.academia.edu/24870528/Dietary_fibre_and_fibre_rich_by_products_of_food_processing_Characterisation_technological_functionality_and_commercial_applications_A_review. [cited 2021 May 9]

    Article  CAS  Google Scholar 

  217. Radovanovic AM, Milovanovic OZ, Kipic MZ, Ninkovic MB, Cupara SM (2014) Characterization of bread enriched with Jerusalem Artichoke powder content. J Food Nutr Res [Internet] 2(12):895–898. https://www.researchgate.net/publication/286173369_Characterization_of_Bread_Enriched_with_Jerusalem_Artichoke_Powder_Content. [cited 2021 May 9]

    Article  Google Scholar 

  218. Naito S, Fukami S, Mizokami Y, Ishida N, Takano H, Koizumi M et al (2004) Effect of freeze-thaw cycles on the gluten fibrils and crumb grain structures of breads made from frozen doughs. Cereal Chem 81(1):80–86

    Article  CAS  Google Scholar 

  219. Filipovic J, Filipovic N, Filipovic V (2010) The effects of commercial fibres on frozen bread dough. J Serb Chem Soc [Internet] 75(2):195–207. https://www.researchgate.net/publication/41590320_The_effects_of_commercial_fibres_on_frozen_bread_dough. [cited 2021 May 9]

    Article  CAS  Google Scholar 

  220. Ke Y, Wang Y, Ding W, Leng Y, Lv Q, Yang H et al (2020) Effects of inulin on protein in frozen dough during frozen storage. Food Funct 11(9):7775–7783

    Article  CAS  PubMed  Google Scholar 

  221. Bojnanska T, Tokar M, Vollmannova A (2015) Rheological parameters of dough with inulin addition and its effect on bread quality. J Phys Conf Ser [Internet]. 602:1–6. https://www.researchgate.net/publication/275239095_Rheological_parameters_of_dough_with_inulin_addition_and_its_effect_on_bread_quality. [cited 2021 May 9]

    Google Scholar 

  222. Brasil JA, Silveira KC, Salgado SM, Livera AVS, Faro ZP, Guerra NB (2011) Effect of the addition of inulin on the nutritional, physical and sensory parameters of bread. Braz J Pharm Sci 47:185–191

    Article  CAS  Google Scholar 

  223. Rubel IA, Perez E, Manrique GD, Genovese DB (2014) Fibre enrichment of wheat bread with Jerusalem artichoke inulin: Effect on dough rheology and bread quality. Food Struct 3:21–29

    Article  Google Scholar 

  224. Frutos MJ, Guilabert-Anton L, Tomas-Bellido A, Hernandez-Herrero JA (2008) Effect of artichoke (Cynara scolymus L.) fiber on textural and sensory qualities of wheat bread. Food Sci Technol Int 14(5):49–55

    Article  Google Scholar 

  225. Mandala I, Polaki A, Yanniotis S (2009) Influence of frozen storage on bread enriched with different ingredients. J Food Eng 92(2):137–145

    Article  Google Scholar 

  226. Peressini D, Sensidoni A (2009) Effect of soluble dietary fibre addition on rheological and breadmaking properties of wheat doughs. J Cereal Sci 49(2):190–201

    Article  CAS  Google Scholar 

  227. Poinot P, Arvisenet G, Grua-Priol J, Fillonneau C, Le-Bail A, Prost C (2010) Influence of inulin on bread: kinetics and physico-chemical indicators of the formation of volatile compounds during baking. Food Chem 119(4):1474–1484

    Article  CAS  Google Scholar 

  228. Liu J, Luo D, Chen R, Xu B, Liu J (2016) Effects of short-chain inulin on quality of Chinese steamed bread. J Food Qual 39:255–263

    Article  CAS  Google Scholar 

  229. Moghaddasi R, Movahhed S, Ahmadi CH (2020) Effect of inulin and resistant starch on some of qualitative properties of baguette bread. J Food Biosci Technol 10(2):19–28

    Google Scholar 

  230. Korus J, Grzelak K, Achremowicz K, Sabat R (2006) Influence of prebiotic additions on the quality of gluten-free bread and on the content of inulin and fructooligosaccharides. Food Sci Technol 12(6):489–495

    Article  CAS  Google Scholar 

  231. Ziobro R, Korus J, Juszczak L, Witczak T (2013) Influence of inulin on physical characteristics and staling rate of gluten free bread. J Food Eng 116(1):21–27

    Article  CAS  Google Scholar 

  232. Hager AS, Ryan LA, Schwab C, Gänzle MG, O’Doherty JV, Arendt EK (2011) Influence of the soluble fibres inulin and oat β-glucan on quality of dough and bread. Eur Food Res Technol [Internet] 232(3):405–413. https://www.academia.edu/5208526/Influence_of_the_soluble_fibres_inulin_and_oat_%CE%B2_glucan_on_quality_of_dough_and_bread. [cited 2021 May 17]

    Article  CAS  Google Scholar 

  233. Morreale F, Benavent-Gil Y, Rosell CM (2019) Inulin enrichment of gluten free breads: Interaction between inulin and yeast. Food Chem [Internet]. 278:545–551. [cited 2021 May 17]

    Article  CAS  PubMed  Google Scholar 

  234. Caprilesa VD, Areas JAG (2013) Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance, and glycemic response of gluten-free breads. Food Funct [Internet]. 4:104–110. [cited 2021 May 17]

    Article  Google Scholar 

  235. Kiumarsi M, Shahbazi M, Yeganehzad S, Majchrzak D, Lieleg O, Winkeljann B (2019) Relation between structural, mechanical, and sensory properties of gluten-free bread as affected by modified dietary fibers. Food Chem 277:664–673

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Lasinskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danilčenko, H., Jarienė, E., Lasinskas, M., Vaitkevičienė, N. (2022). Processing Technologies. In: Sawicka, B., Krochmal-Marczak, B. (eds) Jerusalem Artichoke Food Science and Technology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-0805-7_5

Download citation

Publish with us

Policies and ethics