Skip to main content
Log in

Transposable Element Diversity Remains High in Gigantic Genomes

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are repetitive sequences of DNA that replicate and proliferate throughout genomes. Taken together, all the TEs in a genome form a diverse community of sequences, which can be studied to draw conclusions about genome evolution. TE diversity can be measured using models for ecological community diversity that consider species richness and evenness. Several models predict TE diversity decreasing as genomes expand because of selection against ectopic recombination and/or competition among TEs to garner host replicative machinery and evade host silencing mechanisms. Salamanders have some of the largest vertebrate genomes and highest TE loads. Salamanders of the genus Plethodon, in particular, have genomes that range in size from 20 to 70 Gb. Here, we use Oxford Nanopore sequencing to generate low-coverage genomic sequences for four species of Plethodon that encompass two independent genome expansion events, one in the eastern clade (Plethodon cinereus, 29.3 Gb vs. Plethodon glutinosus, 38.9 Gb) and one in the western clade (Plethodon vehiculum, 46.4 Gb vs Plethodon idahoensis, 67.0 Gb). We classified the TEs in these genomes and found > 40 TE superfamilies, accounting for 22–27% of the genomes. We calculated Simpson’s and Shannon’s diversity indices to quantify overall TE diversity. In both pairwise comparisons, the diversity index values for the smaller and larger genome were almost identical. This result indicates that, when genomes reach extremely large sizes, they maintain high levels of TE diversity at the superfamily level, in contrast to predictions made by previous studies on smaller genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Sequence data are deposited in the NCBI Sequence Read Archive (SRA) under accession number PRJNA749318.

Code Availability

Not applicable.

References

  • Abrusán G, Krambeck H-J (2006) Competition may determine the diversity of transposable elements. Theor Pop Biol 70:364–375

    Article  Google Scholar 

  • Ambrozova K, Mandakova T, Bures P, Neumann P, Leitch IJ, Koblizkova A, Macas J, Lysak MA (2011) Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Annal Bot 107:255

    Article  CAS  Google Scholar 

  • Amorim I, Melo E, Moura R, Wallau G (2020) Diverse mobilome of Dichotomius (Luederwaldtinia) schiffleri (Coleoptera: Scarabaeidae) reveals long-range horizontal transfer events of DNA transposons. Molec Genet Genom 295:1339–1353

    Article  CAS  Google Scholar 

  • AmphibiaWeb: information on amphibian biology and conservation [Internet]. 2022. Berkeley, California. http://amphibiaweb.org/.

  • Arkhipova IR (2017) Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories. Mob DNA 8:1–14

    Article  CAS  Google Scholar 

  • Boissinot S, Sookdeo A (2016) The evolution of LINE-1 in vertebrates. Genome Biol Evol 8:3485–3507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castanera R, Borgognone A, Pisabarro AG, Ramírez L (2017) Biology, dynamics, and applications of transposable elements in basidiomycete fungi. App Microbiol Biotech 101:1337–1350

    Article  CAS  Google Scholar 

  • Decena-Segarra LP, Bizjak-Mali L, Kladnik A, Sessions SK, Rovito SM (2020) Miniaturization, genome size, and biological size in a diverse clade of salamanders. Am Nat 196:634–648

    Article  PubMed  Google Scholar 

  • Elliott TA, Gregory TR (2015a) Do larger genomes contain more diverse transposable elements? BMC Evol Biol 15:1–10

    Article  CAS  Google Scholar 

  • Elliott TA, Gregory TR (2015b) What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos Trans R Soc B 370:20140331

    Article  CAS  Google Scholar 

  • Frahry MB, Sun C, Chong R, Mueller RL (2015) Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders. J Mol Evol 80:120–129

    Article  CAS  PubMed  Google Scholar 

  • Furano AV, Duvernell DD, Boissinot S (2004) L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20:9–14

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2022) Animal genome size database. http://www.genomesize.com

  • Itgen MW, Siegel DS, Sessions SK, Mueller RL (2022) Genome size drives morphological evolution in organ-specific ways. Evol. Press.

  • Jurka J, Vapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Gen Res 110:462–467

    Article  CAS  Google Scholar 

  • Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ (2015) Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing. Sci Rep 5:16413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, Neumann P, Lysak MA, Day PD, Berger M, Fay MF (2015) Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol 208:596–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819

    Article  CAS  PubMed  Google Scholar 

  • Lamichhaney S, Catullo R, Keogh JS, Clulow S, Edwards SV, Ezaz T. 2021. A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, Platyplectrum ornatum. Proc Nat Acad Sci 118.

  • Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B (1988) On the role of unequal exchange in the containment of transposable element copy number. Genet Res 52:223–235

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Nguyen LT, Hayes BJ, Ross EM (2021) Prowler: a novel trimming algorithm for Oxford Nanopore sequence data. Bioinformatics 37:3936–3937

    Article  CAS  Google Scholar 

  • Linquist S, Cottenie K, Elliott TA, Saylor B, Kremer SC, Gregory TR (2015) Applying ecological models to communities of genetic elements: the case of neutral theory. Molec Ecol 24:3232–3242

    Article  Google Scholar 

  • Menegon M, Cantaloni C, Rodriguez-Prieto A, Centomo C, Abdelfattah A, Rossato M, Bernardi M, Xumerle L, Loader S, Delledonne M (2017) On site DNA barcoding by nanopore sequencing. PLoS ONE 12:e0184741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizuno S, Macgregor HC (1974) Chromosomes, DNA sequences, and evolution in salamanders of the genus Plethodon. Chromosoma 48:239–296

    Article  CAS  PubMed  Google Scholar 

  • Mouillot D, Leprêtre A (1999) A comparison of species diversity estimators. Res Pop Ecol 41:203–215

    Article  Google Scholar 

  • Muñoz-López M, García-Pérez JL (2010) DNA transposons: nature and applications in genomics. Curr Genom 11:115–128

    Article  Google Scholar 

  • Newman CE, Gregory R, Austin CC (2016) The dynamic evolutionary history of genome size in North American woodland salamanders. Genome 60:285–292

    Article  PubMed  Google Scholar 

  • Niu S, Li J, Bo W, Yang W, Zuccolo A, Giacomello S, Chen X, Han F, Yang J, Song Y et al (2022) The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185:204-217.e214

    Article  CAS  PubMed  Google Scholar 

  • Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S, Kovařík A, Pellicer J, Wang W (2020) Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants 6:1325–1329

    Article  PubMed  CAS  Google Scholar 

  • Nowoshilow S, Schloissnig S, Fei J-F, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR, Young G, Roscito JG et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55

    Article  CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15

    Article  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  • Petrov DA, Aminetzach YT, Davis J, Bensasson D, Hirsch AE (2003) Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 20:880–892

    Article  CAS  PubMed  Google Scholar 

  • Pomerantz A, Peñafiel N, Arteaga A, Bustamante L, Pichardo F, Coloma L, Barrio-Amorós C, Salazar-Valenzuela D, Prost S (2018) Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigasci 7:4

    Article  CAS  Google Scholar 

  • Sessions SK (2008) Evolutionary cytogenetics in salamanders. Chromosome Res 16:183–201

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688–688

    Article  Google Scholar 

  • Sotero-Caio CG, Platt RN II, Suh A, Ray DA (2017) Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol Evol 9:161–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Mueller RL (2014) Hellbender genome sequences shed light on genome expansion at the base of crown salamanders. Genome Biol Evol 6:1818–1829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun C, Arriaza JRL, Mueller RL (2012a) Slow DNA loss in the gigantic genomes of salamanders. Genome Biol Evol 4:1340–1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun C, Shepard DB, Chong RA, Arriaza JL, Hall K, Castoe TA, Feschotte C, Pollock DD, Mueller RL (2012b) LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 4:168–183

    Article  PubMed  Google Scholar 

  • Venner S, Feschotte C, Biemont C (2009) Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet 25:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Itgen MW, Wang H, Gong Y, Jiang J, Li J, Sun C, Sessions SK, Mueller RL (2021) Gigantic genomes provide empirical tests of transposable element dynamics models. Genom Proteom Bioinform 19:123–139

    Article  CAS  Google Scholar 

  • Wells JN, Feschotte C (2020) A field guide to eukaryotic transposable elements. Ann Rev Genet 54:539–561

    Article  CAS  PubMed  Google Scholar 

  • Wick R, Volkening J, Loman N (2017) Porechop. Github https://github.com/rrwick/Porechop.

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge members of A. Haley’s Master’s Degree committee, D. Sloan and M. Stenglein, for valuable assistance. We thank members of the Mueller and Sloan labs for discussion. We thank M. Itgen for Plethodon tissues. We thank E. Anderson for assistance running Prowler. Funding was provided by the National Science Foundation (1911585 to RLM) and Colorado State University.

Funding

Funding was provided by the National Science Foundation (1911585 to RLM) and Colorado State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Lockridge Mueller.

Ethics declarations

Conflict of interest

Not applicable.

Consent to Participate

NA.

Consent for Publication

NA.

Ethical Approval

Animal use was done in accordance with Colorado State University’s IACUC protocol number 17-7189A.

Additional information

Handling editor: John Bracht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haley, A.L., Mueller, R.L. Transposable Element Diversity Remains High in Gigantic Genomes. J Mol Evol 90, 332–341 (2022). https://doi.org/10.1007/s00239-022-10063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-022-10063-3

Keywords

Navigation