Skip to main content
Log in

New Drug Delivery Systems Developed for Brain Targeting

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSF) are two of the most complex and sophisticated concierges that defend the central nervous system (CNS) by numerous mechanisms. While they maintain the neuro-ecological homeostasis through the regulated entry of essential biomolecules, their conservative nature challenges the entry of most of the drugs intended for CNS delivery. Targeted delivery challenges for a diverse spectrum of therapeutic agents/drugs (non-small molecules, small molecules, gene-based therapeutics, protein and peptides, antibodies) are diverse and demand specialized delivery and disease-targeting strategies. This review aims to capture the trends that have shaped the current brain targeting research scenario. This review discusses the physiological, neuropharmacological, and etiological factors that participate in the transportation of various drug delivery cargoes across the BBB/BCSF and influence their therapeutic intracranial concentrations. Recent research works spanning various invasive, minimally invasive, and non-invasive brain- targeting approaches are discussed. While the pre-clinical outcomes from many of these approaches seem promising, further research is warranted to overcome the translational glitches that prevent their clinical use. Non-invasive approaches like intranasal administration, P-glycoprotein (P-gp) inhibition, pro-drugs, and carrier/targeted nanocarrier-aided delivery systems (alone or often in combination) hold positive clinical prospects for brain targeting if explored further in the right direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feigin VL, Vos T, Nichols E, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19:255–65.

    Article  PubMed  Google Scholar 

  2. Bhadada S, Bhatt J, Amin A, Development F. Getting into the brain approaches to enhance brain drug delivery. 2014. https://doi.org/10.2165/0023210-200923010-00003

  3. Gribkoff VK, Kaczmarek LK. Neuropharmacology The need for new approaches in CNS drug discovery : why drugs have failed, and what can be done to improve outcomes. Neuropharmacology. 2017;120:11–9. https://doi.org/10.1016/j.neuropharm.2016.03.021.

    Article  CAS  PubMed  Google Scholar 

  4. Little WT, Davies CH. Emerging strategies to treat the brain, behind its barrier. Neuropharmacology. 2017;120:1–3. https://doi.org/10.1016/j.neuropharm.2017.04.044.

    Article  CAS  PubMed  Google Scholar 

  5. Patel MM, Patel BM. Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs. 2017;31:109–33. https://doi.org/10.1007/s40263-016-0405-9.

    Article  CAS  PubMed  Google Scholar 

  6. Ding S, Khan AI, Cai X, et al. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater Today. 2020;37:112–25. https://doi.org/10.1016/j.mattod.2020.02.001.

    Article  CAS  Google Scholar 

  7. Patel MM, Goyal BR, Bhadada SV, et al. Getting into the brain: Approaches to enhance brain drug delivery. CNS Drugs. 2009;23:35–58. https://doi.org/10.2165/0023210-200923010-00003.

    Article  CAS  PubMed  Google Scholar 

  8. Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev. 2020;165–166:1–14. https://doi.org/10.1016/j.addr.2019.11.009.

    Article  CAS  PubMed  Google Scholar 

  9. Dohgu S, Takata F, Yamauchi A, et al. Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production. Brain Res. 2005;1038:208–15. https://doi.org/10.1016/j.brainres.2005.01.027.

    Article  CAS  PubMed  Google Scholar 

  10. Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468:557–61. https://doi.org/10.1038/nature09522.

    Article  CAS  PubMed  Google Scholar 

  11. Kisler K, Nelson AR, Rege SV, et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. 2017;20:406–16. https://doi.org/10.1038/nn.4489.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kondo T, Kinouchi H, Kawase M, Yoshimoto T. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci Lett. 1996;208:101–4. https://doi.org/10.1016/0304-3940(96)12555-6.

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64:640–65. https://doi.org/10.1016/j.addr.2011.11.010.

    Article  CAS  PubMed  Google Scholar 

  14. da Fonseca ACC, Matias D, Garcia C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362. https://doi.org/10.3389/fncel.2014.00362.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012;72:648–72. https://doi.org/10.1002/ana.23648.

    Article  CAS  PubMed  Google Scholar 

  16. Wolburg H, Lippoldt A, Ebnet K. Tight junctions in the blood-brain barrier. Handb Neurochem Mol Neurobiol Neural Membr Transp. 2007;20:1–27. https://doi.org/10.1007/978-0-387-30380-2_1.

    Article  Google Scholar 

  17. Garrido-Urbani S, Bradfield PF, Imhof BA. Tight junction dynamics: the role of junctional adhesion molecules (JAMs). Cell Tissue Res. 2014;355:701–15. https://doi.org/10.1007/s00441-014-1820-1.

    Article  CAS  PubMed  Google Scholar 

  18. Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis. 2010;37:48–57.

    Article  CAS  PubMed  Google Scholar 

  19. Buckley CD, Tan J, Anderson KL, et al. The minimal cadherin-catenin complex binds to actin filaments under force. Science (80-). 2014. https://doi.org/10.1126/science.1254211.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liebner S, Corada M, Bangsow T, et al. Wnt/β-catenin signaling controls development of the blood-brain barrier. J Cell Biol. 2008;183:409–17. https://doi.org/10.1083/jcb.200806024.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol. 2015;209:493–506. https://doi.org/10.1083/jcb.201412147.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci. 2017;38:291–304. https://doi.org/10.1016/j.tips.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  23. Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers. 2016;4: e1154641. https://doi.org/10.1080/21688370.2016.1154641.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kulkarni P, Rawtani D, Barot T. Design, development and in-vitro/in-vivo evaluation of intranasally delivered Rivastigmine and N-Acetyl Cysteine loaded bifunctional niosomes for applications in combinative treatment of Alzheimer’s disease. Eur J Pharm Biopharm. 2021;163:1–15. https://doi.org/10.1016/j.ejpb.2021.02.015.

    Article  CAS  PubMed  Google Scholar 

  25. Burek M, Förster CY. Culturing of rodent brain microvascular endothelial cells for in vitro modeling of the blood-brain barrier. NeuroMethods. 2019;142:45–54. https://doi.org/10.1007/978-1-4939-8946-1_3.

    Article  CAS  Google Scholar 

  26. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45:545–52. https://doi.org/10.1016/j.neuint.2003.11.006.

    Article  CAS  PubMed  Google Scholar 

  27. Azarmi M, Maleki H, Nikkam N, Malekinejad H. Transcellular brain drug delivery: a review on recent advancements. Int J Pharm. 2020;586:119582. https://doi.org/10.1016/j.ijpharm.2020.119582.

    Article  CAS  PubMed  Google Scholar 

  28. Mäger I, Meyer AH, Li J, et al. Targeting blood-brain-barrier transcytosis—perspectives for drug delivery. Neuropharmacology. 2017;120:4–7. https://doi.org/10.1016/j.neuropharm.2016.08.025.

    Article  CAS  PubMed  Google Scholar 

  29. Wong AD, Ye M, Levy AF, et al. The blood-brain barrier: an engineering perspective. Front Neuroeng. 2013;6:1–22. https://doi.org/10.3389/fneng.2013.00007.

    Article  CAS  Google Scholar 

  30. Mulvihill JJ, Cunnane EM, Ross AM, et al. Drug delivery across the blood- brain barrier: recent advances in the use of nanocarriers. Nanomedicine. 2020;15:205–14. https://doi.org/10.2217/nnm-2019-0367.

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Meng Y, Li C, et al. Receptor-mediated drug delivery systems targeting to glioma. Nanomaterials. 2015. https://doi.org/10.3390/nano6010003.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ye D, Zimmermann T, Demina V, et al. Trafficking of JC virus-like particles across the blood-brain barrier. Nanosc Adv. 2021;3:2488–500. https://doi.org/10.1039/d0na00879f.

    Article  CAS  Google Scholar 

  33. Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–31. https://doi.org/10.1146/annurev-pharmtox-010814-124852.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu X, Jin K, Huang Y, Pang Z (2019) 7 - Brain drug delivery by adsorption-mediated transcytosis. In: Gao H, Gao X (eds) Brain targeted drug delivery system. Academic Press, pp 159–183.

  35. Lu W. Adsorptive-mediated brain delivery systems. Curr Pharm Biotechnol. 2012;13:2340–8. https://doi.org/10.2174/138920112803341851.

    Article  CAS  PubMed  Google Scholar 

  36. Jain S, Mishra V, Singh P, et al. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm. 2003;261:43–55. https://doi.org/10.1016/S0378-5173(03)00269-2.

    Article  CAS  PubMed  Google Scholar 

  37. Mendonça DA, Bakker M, Cruz-Oliveira C, et al. Penetrating the blood-brain barrier with new peptide-porphyrin conjugates having anti-HIV activity. Bioconjug Chem. 2021;32:1067–77. https://doi.org/10.1021/acs.bioconjchem.1c00123.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Stalmans S, Bracke N, Wynendaele E, et al. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS ONE. 2015;10:1–22. https://doi.org/10.1371/journal.pone.0139652.

    Article  CAS  Google Scholar 

  39. Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide–drug conjugates to overcome the blood–brain barrier and target CNS diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13:1–34. https://doi.org/10.1002/wnan.1695.

    Article  Google Scholar 

  40. He H, Li Y, Jia XR, et al. PEGylated Poly(amidoamine) dendrimer-based dual- targeting carrier for treating brain tumors. Biomaterials. 2011;32:478–87. https://doi.org/10.1016/j.biomaterials.2010.09.002.

    Article  CAS  PubMed  Google Scholar 

  41. Strazielle N, Ghersi-Egea JF. Efflux transporters in blood-brain interfaces of the developing brain. Front Neurosci. 2015;9:21.

    Article  PubMed  Google Scholar 

  42. Willson J. Transferrin’ across the blood-brain barrier. Nat Rev Drug Discov. 2020;19:444. https://doi.org/10.1038/D41573-020-00102-3.

    Article  CAS  PubMed  Google Scholar 

  43. Smith MW, Gumbleton M (2008) Endocytosis at the blood–brain barrier: From basic understanding to drug delivery strategies. 14:191–214. https://doi.org/10.1080/10611860600650086.

  44. Jiang X, Xin H, Ren Q, et al. Nanoparticles of 2-deoxy-d-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials. 2014;35:518–29. https://doi.org/10.1016/j.biomaterials.2013.09.094.

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Li J, Shao K, et al. A leptin derived 30-amino-acid peptide modified pegylated poly-l-lysine dendrigraft for brain targeted gene delivery. Biomaterials. 2010;31:5246–57. https://doi.org/10.1016/J.BIOMATERIALS.2010.03.011.

    Article  CAS  PubMed  Google Scholar 

  46. Yang ZZ, Li JQ, Wang ZZ, et al. Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials. 2014;35:5226–39. https://doi.org/10.1016/j.biomaterials.2014.03.017.

    Article  CAS  PubMed  Google Scholar 

  47. Rip J, Schenk GJ, De Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv. 2009;6:227–37. https://doi.org/10.1517/17425240902806383.

    Article  CAS  PubMed  Google Scholar 

  48. Varela JA, Dupuis JP, Etchepare L, et al. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nat Commun. 2016;7:1–10. https://doi.org/10.1038/ncomms10947.

    Article  CAS  Google Scholar 

  49. Fenili D, Weng YQ, Aubert I, et al. Sodium/myo-inositol transporters: Substrate transport requirements and regional brain expression in the TgCRND8 mouse model of amyloid pathology. PLoS ONE. 2011;6:2–10. https://doi.org/10.1371/journal.pone.0024032.

    Article  CAS  Google Scholar 

  50. Chen YX, Wei CX, Lyu YQ, et al. Biomimetic drug-delivery systems for the management of brain diseases. Biomater Sci. 2020;8:1073–88.

    Article  CAS  PubMed  Google Scholar 

  51. Gabathuler R. Development of new peptide vectors for the transport of therapeutic across the blood-brain barrier. Ther Deliv. 2010;1:571–86. https://doi.org/10.4155/tde.10.35.

    Article  CAS  PubMed  Google Scholar 

  52. Cavaco M, Valle J, da Silva R, et al. D PepH3, an improved peptide shuttle for receptor-independent transport across the blood-brain barrier. Curr Pharm Des. 2020;26:1495–506. https://doi.org/10.2174/1381612826666200213094556.

    Article  CAS  PubMed  Google Scholar 

  53. de Lange EC. The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS. 2013;10:12. https://doi.org/10.1186/2045-8118-10-12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kalvass JC, Maurer TS. Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos. 2002;23:327–38. https://doi.org/10.1002/bdd.325.

    Article  CAS  PubMed  Google Scholar 

  55. Hammarlund-Udenaes M. Active-site concentrations of chemicals—are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol. 2010;106:215–20. https://doi.org/10.1111/j.1742-7843.2009.00517.x.

    Article  CAS  PubMed  Google Scholar 

  56. Gabrielsson J, Green AR. Quantitative pharmacology or pharmacokinetic pharmacodynamic integration should be a vital component in integrative pharmacology. J Pharmacol Exp Ther. 2009;331:767–74.

    Article  CAS  PubMed  Google Scholar 

  57. Mainprize T, Lipsman N, Huang Y, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep. 2019;9:1–7. https://doi.org/10.1038/s41598-018-36340-0.

    Article  CAS  Google Scholar 

  58. Nguyen TT, Dung Nguyen TT, Vo TK, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed Pharmacother. 2021;143: 112117. https://doi.org/10.1016/j.biopha.2021.112117.

    Article  CAS  PubMed  Google Scholar 

  59. Champeaux C, Weller J. Implantation of carmustine wafers (Gliadel®) for high- grade glioma treatment. A 9-year nationwide retrospective study. J Neurooncol. 2020;147:159–69. https://doi.org/10.1007/s11060-020-03410-1.

    Article  PubMed  Google Scholar 

  60. Bregy A, Shah AH, Diaz MV, et al. The role of Gliadel wafers in the treatment of high-grade gliomas. Expert Rev Anticancer Ther. 2013;13:1453–61. https://doi.org/10.1586/14737140.2013.840090.

    Article  CAS  PubMed  Google Scholar 

  61. Lee J, Cho HR, Cha GD, et al. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat Commun. 2019;10:1–9. https://doi.org/10.1038/s41467-019-13198-y.

    Article  CAS  Google Scholar 

  62. Ramachandran R, Junnuthula VR, Gowd GS, et al. Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci Rep. 2017;7:1–16. https://doi.org/10.1038/srep43271.

    Article  CAS  Google Scholar 

  63. Morales JO, Editor PJG, Walz W (2021) Nanomedicines for brain drug delivery

  64. Sutradhar KB, Sumi CD. Implantable microchip: The futuristic controlled drug delivery system. Drug Deliv. 2016;23:1–11. https://doi.org/10.3109/10717544.2014.903579.

    Article  CAS  PubMed  Google Scholar 

  65. Agrahari V, Agrahari V, Mitra AK. Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Ther Deliv. 2016;7:257–78.

    Article  CAS  PubMed  Google Scholar 

  66. Agrawal M, Saraf S, Saraf S, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;327:235–65. https://doi.org/10.1016/j.jconrel.2020.07.044.

    Article  CAS  PubMed  Google Scholar 

  67. Augustine R, Zahid AA, Mraiche F, et al. Gelatin-methacryloyl hydrogel based in vitro blood–brain barrier model for studying breast cancer-associated brain metastasis. Pharm Dev Technol. 2021;26:490–500. https://doi.org/10.1080/10837450.2021.1872624.

    Article  CAS  PubMed  Google Scholar 

  68. Nik FE. (2021) Blood-brain barrier-on-a-Chip-Hydrogels for Improved Biological Functionality. Methods Cell Biol. 2018;146:159–82. https://doi.org/10.1016/bs.mcb.2018.06.003.

    Article  CAS  Google Scholar 

  69. Vincent H (2021) Local sustained delivery of antibody therapeutics from injectable hydrogels for the treatment of glioblastoma (Doctoral dissertation, McMaster University).

  70. Sur S, Newcomb CJ, Webber MJ, Stupp SI. Tuning supramolecular mechanics to guide neuron development. Biomaterials. 2013;34:4749–57. https://doi.org/10.1016/J.BIOMATERIALS.2013.03.025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Norouzi M, Firouzi J, Sodeifi N, et al. Salinomycin-loaded injectable thermosensitive hydrogels for glioblastoma therapy. Int J Pharm. 2021;598: 120316. https://doi.org/10.1016/j.ijpharm.2021.120316.

    Article  CAS  PubMed  Google Scholar 

  72. Chen Z, Chen AT, Zhou J. Liposome-templated hydrogel nanoparticles for targeted delivery of CRISPR/Cas9 to brain tumors. NeuroMethods. 2021;163:245–57. https://doi.org/10.1007/978-1-0716-1052-7_10.

    Article  CAS  Google Scholar 

  73. Chen S, Qiu Q, Wang D, et al. Long acting carmustine loaded natural extracellular matrix hydrogel for inhibition of glioblastoma recurrence after tumor resection. Front Chem Sci Eng. 2021. https://doi.org/10.1007/s11705-021-2067-5.

    Article  Google Scholar 

  74. Humpel C. NGF released from blood cells or collagen hydrogels as a therapeutic target in Alzheimer's disease? Adv Exp Med Biol. 2021;1331:193–202. https://doi.org/10.1007/978-3-030-74046-7_12.

  75. Singh B, Kumar A, Rohit. Gamma radiation formation of sterculia gum- alginate-carbopol hydrogel dressing by grafting method for use in brain drug delivery. Chem Phys Lett. 2021. https://doi.org/10.1016/j.cplett.2021.138875.

    Article  PubMed  Google Scholar 

  76. Alami-Milani M, Salatin S, Rayeni FS, Jelvehgari M. Preparation and in vitro evaluation of thermosensitive and mucoadhesive hydrogels for intranasal delivery of phenobarbital sodium. Ther Deliv. 2021;12:461–75. https://doi.org/10.4155/tde-2021-0022.

    Article  CAS  PubMed  Google Scholar 

  77. Yang W, Wang Z, Zhang J, et al. Fibrin scaffolds embedded with Sonic Hedgehog/Chitosan microspheres for recovery of spinal cord injury in rats. Mater Express. 2020;10:437–45. https://doi.org/10.1166/mex.2020.1654.

    Article  CAS  Google Scholar 

  78. Sun Y, Du L, Yang M, et al. Brain-targeted drug delivery assisted by physical techniques and its potential applications in traditional Chinese medicine. J Tradit Chinese Med Sci. 2021;8:186–97. https://doi.org/10.1016/j.jtcms.2021.07.003.

    Article  CAS  Google Scholar 

  79. Bakay L, Huether TF, Ballantine JRHT, Sosa D. Ultrasonically produced changes in the blood-brain barrier. AMA Arch Neurol Psychiatry. 1956;76:457–67. https://doi.org/10.1001/archneurpsyc.1956.02330290001001.

    Article  CAS  PubMed  Google Scholar 

  80. Idbaih A, Canney M, Belin L, et al. Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin Cancer Res. 2019;25:3793–801. https://doi.org/10.1158/1078-0432.CCR-18-3643.

    Article  CAS  PubMed  Google Scholar 

  81. Patel B, Yang PH, Kim AH. The effect of thermal therapy on the blood-brain barrier and blood-tumor barrier. Int J Hyperth. 2020;37:35–43. https://doi.org/10.1080/02656736.2020.1783461.

    Article  Google Scholar 

  82. Mei J, Cheng Y, Song Y, et al. Experimental study on targeted methotrexate delivery to the rabbit brain via magnetic resonance imaging-guided focused ultrasound. J Ultrasound Med. 2009;28:871–80. https://doi.org/10.7863/jum.2009.28.7.871.

    Article  PubMed  Google Scholar 

  83. Treat LH, McDannold N, Vykhodtseva N, et al. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer. 2007;121:901–7. https://doi.org/10.1002/ijc.22732.

    Article  CAS  PubMed  Google Scholar 

  84. Park EJ, Zhang YZ, Vykhodtseva N, McDannold N. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release. 2012;163:277–84. https://doi.org/10.1016/j.jconrel.2012.09.007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Karakatsani ME, Blesa J, Konofagou EE. Blood–brain barrier opening with focused ultrasound in experimental models of Parkinson’s disease. Mov Disord. 2019;34:1252–61. https://doi.org/10.1002/mds.27804.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Cooper JM, Wiklander PBO, Nordin JZ, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord. 2014;29:1476–85. https://doi.org/10.1002/mds.25978.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Poon C, Pellow C, Hynynen K. Neutrophil recruitment and leukocyte response following focused ultrasound and microbubble mediated blood-brain barrier treatments. Theranostics. 2021;11:1655–71. https://doi.org/10.7150/thno.52710.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Rinaldi C, Wood MJA. Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14:9–22. https://doi.org/10.1038/nrneurol.2017.148.

    Article  CAS  PubMed  Google Scholar 

  89. Vince O, Peeters S, Johanssen VA, et al. Microbubbles containing lysolipid enhance ultrasound-mediated blood-brain barrier breakdown in vivo. Adv Healthc Mater. 2021;10:1–11. https://doi.org/10.1002/adhm.202001343.

    Article  CAS  Google Scholar 

  90. Chen KT, Chai WY, Lin YJ, et al. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci Adv. 2021;7:1–13. https://doi.org/10.1126/sciadv.abd0772.

    Article  CAS  Google Scholar 

  91. Wei HJ, Upadhyayula PS, Pouliopoulos AN, et al. Focused ultrasound- mediated blood-brain barrier opening increases delivery and efficacy of etoposide for glioblastoma treatment. Int J Radiat Oncol Biol Phys. 2021;110:539–50. https://doi.org/10.1016/j.ijrobp.2020.12.019.

    Article  PubMed  Google Scholar 

  92. Liu Y, Gong Y, Xie W, et al. Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood-brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer’s disease. Nanoscale. 2020;12:6498–511. https://doi.org/10.1039/c9nr09713a.

    Article  CAS  PubMed  Google Scholar 

  93. Fan CH, Chang EL, Ting CY, et al. Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood-brain barrier opening and local gene delivery. Biomaterials. 2016;106:46–57. https://doi.org/10.1016/j.biomaterials.2016.08.017.

    Article  CAS  PubMed  Google Scholar 

  94. Teng F, Shen M, Wang L, et al. Ultrasound/microbubble-mediated tetramethylpyrazine for neuroprotection against cerebral ischemia/reperfusion-injured rat brain. Appl Acoust. 2021;183: 108330. https://doi.org/10.1016/j.apacoust.2021.108330.

    Article  Google Scholar 

  95. Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site- specific brain drug delivery. J Control Release. 2020;317:195–215. https://doi.org/10.1016/J.JCONREL.2019.11.037.

    Article  CAS  PubMed  Google Scholar 

  96. Lundy DJ, Lee KJ, Peng IC, et al. Inducing a transient increase in blood-brain barrier permeability for improved liposomal drug therapy of glioblastoma multiforme. ACS Nano. 2019;13:97–113. https://doi.org/10.1021/acsnano.8b03785.

    Article  CAS  PubMed  Google Scholar 

  97. Lu L, Zhao X, Fu T, et al. An iRGD-conjugated prodrug micelle with blood- brain-barrier penetrability for anti-glioma therapy. Biomaterials. 2020. https://doi.org/10.1016/j.biomaterials.2019.119666.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Leuthardt EC, Duan C, Kim MJ, et al. Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of theperitumoral blood-brain barrier. PLoS ONE. 2016;11:1–16. https://doi.org/10.1371/journal.pone.0148613.

    Article  CAS  Google Scholar 

  99. Hood RL, Andriani RT Jr., Emch S, et al. Fiberoptic microneedle device facilitates volumetric infusate dispersion during convection-enhanced delivery in the brain. Lasers Surg Med. 2013;45:418–26. https://doi.org/10.1002/lsm.22156.

    Article  PubMed  Google Scholar 

  100. Oh J, Liu K, Medina T, et al. A novel microneedle array for the treatment of hydrocephalus. 2014;20:1169–79. https://doi.org/10.1007/s00542-013-1988-4.

    Article  CAS  Google Scholar 

  101. Matsuo K, Okamoto H, Kawai Y, et al. Vaccine efficacy of transcutaneous immunization with amyloid β using a dissolving microneedle array in a mouse model of Alzheimer’s disease. J Neuroimmunol. 2014;266:1–11. https://doi.org/10.1016/J.JNEUROIM.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  102. Kim JY, Han MR, Kim YH, et al. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur J Pharm Biopharm. 2016;105:148–55. https://doi.org/10.1016/J.EJPB.2016.06.006.

    Article  CAS  PubMed  Google Scholar 

  103. Stam R. Electromagnetic fields and the blood–brain barrier. Brain Res Rev. 2010;65:80–97. https://doi.org/10.1016/J.BRAINRESREV.2010.06.001.

    Article  PubMed  Google Scholar 

  104. Sharabi S, Last D, Daniels D, et al. The effects of point-source electroporation on the blood-brain barrier and brain vasculature in rats: An MRI and histology study. Bioelectrochemistry. 2020;134: 107521. https://doi.org/10.1016/J.BIOELECHEM.2020.107521.

    Article  CAS  PubMed  Google Scholar 

  105. Sharabi S, Kos B, Last D, et al. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption. Radiol Oncol. 2016;50:28–38. https://doi.org/10.1515/raon-2016-0009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Murthy SN, Sammeta SM, Bowers C. Magnetophoresis for enhancing transdermal drug delivery: Mechanistic studies and patch design. J Control Release. 2010;148:197–203. https://doi.org/10.1016/J.JCONREL.2010.08.015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Xi J, Zhang Z, Xiuhua AS, et al. Optimization of magnetophoretic-guided drug delivery to the olfactory region in a human nose model. Biomech Model Mechanobiol. 2016;15:877–91. https://doi.org/10.1007/s10237-015-0730-9.

    Article  PubMed  Google Scholar 

  108. Nozdriukhin D, Besedina N, Chernyshev V, et al. Gold nanoparticle-carbon nanotube multilayers on silica microspheres: Optoacoustic-Raman enhancement and potential biomedical applications. Mater Sci Eng C. 2021;120: 111736. https://doi.org/10.1016/j.msec.2020.111736.

    Article  CAS  Google Scholar 

  109. Chien C-T, Jou M-J, Cheng T-Y, et al. Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long- lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats. J Cereb blood flow Metab. 2015;35:1790–803. https://doi.org/10.1038/jcbfm.2015.126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Gao Y, Almalki WH, Afzal O, et al. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of Alzheimer’s disease. Biomed Pharmacother. 2021;141: 111829. https://doi.org/10.1016/j.biopha.2021.111829.

    Article  CAS  PubMed  Google Scholar 

  111. Shivinsky A, Bronshtein T, Haber T, Machluf M. The effect of AZD2171- or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model. Biomed Microdevices. 2015;17:69. https://doi.org/10.1007/s10544-015-9969-2.

    Article  CAS  PubMed  Google Scholar 

  112. Floyd JA, Galperin A, Ratner BD. Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy. J Biomed Mater Res Part A. 2016;104:544–52. https://doi.org/10.1002/jbm.a.35547.

    Article  CAS  Google Scholar 

  113. Zou D (2021) Fabrication and characterization of double-walled microsphere as a drug delivery system for stroke treatment (Doctoral dissertation, Université d'Ottawa/University of Ottawa).

  114. Shen Y, Yao MJ, Su Y, et al. Histochemistry of microinfarcts in the mouse brain after injection of fluorescent microspheres into the common carotid artery. Neural Regen Res. 2022;17:832–7.

    Article  PubMed  Google Scholar 

  115. Huxford RC, Della Rocca J, Lin W. Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol. 2010;14:262–8. https://doi.org/10.1016/j.cbpa.2009.12.012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Sun Z, Wang L, Wu S, et al. An electrochemical biosensor designed by using Zr-based metal-organic frameworks for the detection of glioblastoma-derived exosomes with practical application. Anal Chem. 2020;92:3819–26. https://doi.org/10.1021/acs.analchem.9b05241.

    Article  CAS  PubMed  Google Scholar 

  117. Wang Y, Zhao G, Chi H, et al. Self-luminescent lanthanide metal-organic frameworks as signal probes in electrochemiluminescence immunoassay. J Am Chem Soc. 2021;143:504–12. https://doi.org/10.1021/jacs.0c12449.

    Article  CAS  PubMed  Google Scholar 

  118. Li Z, Wang C, Chen J, et al. uPAR targeted phototheranostic metal-organic framework nanoprobes for MR/NIR-II imaging-guided therapy and surgical resection of glioblastoma. Mater Des. 2021;198: 109386. https://doi.org/10.1016/j.matdes.2020.109386.

    Article  CAS  Google Scholar 

  119. Qiao C, Zhang R, Wang Y, et al. Rabies virus-inspired metal-organic frameworks (MOFs) for targeted imaging and chemotherapy of glioma. Angew Chemie. 2020;132:17130–6. https://doi.org/10.1002/ange.202007474.

    Article  Google Scholar 

  120. Zhao J, Yin F, Ji L, et al. Development of a tau-targeted drug delivery system using a multifunctional nanoscale metal-organic framework for Alzheimer’s disease therapy. ACS Appl Mater Interfaces. 2020;12:44447–58. https://doi.org/10.1021/acsami.0c11064.

    Article  CAS  PubMed  Google Scholar 

  121. Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol. 2006;6:494–500. https://doi.org/10.1016/j.coph.2006.06.001.

    Article  CAS  PubMed  Google Scholar 

  122. Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov. 2002;1:131–9. https://doi.org/10.1038/nrd725.

    Article  CAS  PubMed  Google Scholar 

  123. Wu D, Pardridge WM. Central nervous system pharmacologic effect in conscious rats after intravenous injection of a biotinylated vasoactive intestinal peptide analog coupled to a blood-brain barrier drug delivery system. J Pharmacol Exp Ther. 1996;279:77–83.

    CAS  PubMed  Google Scholar 

  124. Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res. 2001;889:49–56. https://doi.org/10.1016/S0006-8993(00)03108-5.

    Article  CAS  PubMed  Google Scholar 

  125. Wu D, Pardridge WM. Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci USA. 1999;96:254–9. https://doi.org/10.1073/pnas.96.1.254.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Song B-W, Vinters HV, Wu D, Pardridge WM. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector. J Pharmacol Exp Ther. 2002;301:605–10. https://doi.org/10.1124/jpet.301.2.605.

    Article  CAS  PubMed  Google Scholar 

  127. Suzuki T, Wu D, Schlachetzki F, et al. Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J Nucl Med. 2004;45:1766–75.

    CAS  PubMed  Google Scholar 

  128. Kurihara A, Pardridge WM. Imaging brain tumors by targeting peptide radiopharmaceuticals through the blood-brain barrier. Cancer Res. 1999;59:6159–63.

    CAS  PubMed  Google Scholar 

  129. Zhang Y, Zhu C, Pardridge WM. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther. 2002;6:67–72. https://doi.org/10.1006/mthe.2002.0633.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang Y, Zhang YF, Bryant J, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10:3667–77. https://doi.org/10.1158/1078-0432.CCR-03-0740.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang Y, Schlachetzki F, Zhang Y-F, et al. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum Gene Ther. 2004;15:339–50. https://doi.org/10.1089/104303404322959498.

    Article  CAS  PubMed  Google Scholar 

  132. Rautio J, Laine K, Gynther M, Savolainen J. Prodrug approaches for CNS delivery. AAPS J. 2008;10:92–102. https://doi.org/10.1208/s12248-008-9009-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Chen KJ, Plaunt AJ, Leifer FG, et al. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm. 2021;165:219–43. https://doi.org/10.1016/j.ejpb.2021.04.025.

    Article  CAS  PubMed  Google Scholar 

  134. Dhokchawle BV, Gawad JB, Kamble MD, et al. Promoieties used in prodrug design: a review. Indian J Pharm Educ Res. 2014;48:35–40. https://doi.org/10.5530/ijper.48.2.5.

    Article  Google Scholar 

  135. Botti G, Dalpiaz A, Pavan B. Targeting systems to the brain obtained by merging prodrugs, nanoparticles, and nasal administration. Pharmaceutics. 2021;13:1144. https://doi.org/10.3390/pharmaceutics13081144.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Lv L, Li X, Qian W, et al. Enhanced anti-glioma efficacy by borneol combined with CGKRK-modified paclitaxel self-assembled redox-sensitive nanoparticles. Front Pharmacol. 2020;11:1–11. https://doi.org/10.3389/fphar.2020.00558.

    Article  CAS  Google Scholar 

  137. Arduino I, Depalo N, Re F, et al. PEGylated solid lipid nanoparticles for brain delivery of lipophilic kiteplatin Pt(IV) prodrugs: An in vitro study. Int J Pharm. 2020;583:119351. https://doi.org/10.1016/j.ijpharm.2020.119351.

    Article  CAS  PubMed  Google Scholar 

  138. Wang X, Liu G, Chen N, et al. Angiopep2-conjugated star-shaped polyprodrug amphiphiles for simultaneous glioma-targeting therapy and MR imaging. ACS Appl Mater Interfaces. 2020;12:12143–54. https://doi.org/10.1021/acsami.0c00509.

    Article  CAS  PubMed  Google Scholar 

  139. Vasey CE, Cavanagh RJ, Taresco V, et al. Polymer pro-drug nanoparticles for sustained release of cytotoxic drugs evaluated in patient-derived glioblastoma cell lines and in situ gelling formulations. Pharmaceutics. 2021;13:1–17. https://doi.org/10.3390/pharmaceutics13020208.

    Article  CAS  Google Scholar 

  140. Battaglia L, Muntoni E, Chirio D, et al. Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: Preliminary study for glioma treatment. Nanomedicine. 2017;12:639–56. https://doi.org/10.2217/nnm-2016-0380.

    Article  CAS  PubMed  Google Scholar 

  141. Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res. 2020. https://doi.org/10.1007/s11095-020-02826-8.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Jiang Y, Wang X, Liu X, et al. Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles. ACS Appl Mater Interfaces. 2017;9:211–7. https://doi.org/10.1021/acsami.6b13805.

    Article  CAS  PubMed  Google Scholar 

  143. Wang H, Li L, Ye J, et al. Improving the oral bioavailability of an anti-glioma prodrug cat3 using novel solid lipid nanoparticles containing oleic acid-cat3 conjugates. Pharmaceutics. 2020;12(2):126. https://doi.org/10.3390/pharmaceutics12020126.

    Article  CAS  PubMed Central  Google Scholar 

  144. Bonina F, Puglia C, Rimoli MG, et al. Glycosyl derivatives of dopamine and L-dopa as anti-Parkinson prodrugs: Synthesis, pharmacological activity and in vitro stability studies. J Drug Target. 2003;11:25–36. https://doi.org/10.1080/10611860305553.

    Article  CAS  PubMed  Google Scholar 

  145. de Oliveira Junior ER, Truzzi E, Ferraro L, et al. Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: Towards a new approach for the management of Parkinson’s disease. J Control Release. 2020;321:540–52. https://doi.org/10.1016/j.jconrel.2020.02.033.

    Article  CAS  PubMed  Google Scholar 

  146. Liu KS, Wen CJ, Yen TC, et al. Combined strategies of apomorphine diester prodrugs and nanostructured lipid carriers for efficient brain targeting. Nanotechnology. 2012;23: 095103. https://doi.org/10.1088/0957-4484/23/9/095103.

    Article  CAS  PubMed  Google Scholar 

  147. Gynther M, Pickering DS, Spicer JA, et al. Systemic and brain pharmacokinetics of perforin inhibitor prodrugs. Mol Pharm. 2016;13:2484–91. https://doi.org/10.1021/acs.molpharmaceut.6b00217.

    Article  CAS  PubMed  Google Scholar 

  148. Chen Q, Gong T, Liu J, et al. Synthesis, in vitro and in vivo characterization of glycosyl derivatives of ibuprofen as novel prodrugs for brain drug delivery. J Drug Target. 2009;17:318–28. https://doi.org/10.1080/10611860902795399.

    Article  CAS  PubMed  Google Scholar 

  149. Battaglia G, La Russa M, Bruno V, et al. Systemically administered D-glucose conjugates of 7-chlorokynurenic acid are centrally available and exert anticonvulsant activity in rodents. Brain Res. 2000;860:149–56. https://doi.org/10.1016/S0006-8993(00)01962-4.

    Article  CAS  PubMed  Google Scholar 

  150. Dalpiaz A, Pavan B, Vertuani S, et al. Ascorbic and 6-Br-ascorbic acid conjugates as a tool to increase the therapeutic effects of potentially central active drugs. Eur J Pharm Sci. 2005;24:259–69. https://doi.org/10.1016/j.ejps.2004.10.014.

    Article  CAS  PubMed  Google Scholar 

  151. Dalpiaz A, Paganetto G, Pavan B, et al. Zidovudine and ursodeoxycholic acid conjugation: design of a new prodrug potentially able to bypass the active efflux transport systems of the central nervous system. Mol Pharm. 2012;9:957–68. https://doi.org/10.1021/mp200565g.

    Article  CAS  PubMed  Google Scholar 

  152. Dalpiaz A, Ferraro L, Perrone D, et al. Brain uptake of a zidovudine prodrug after nasal administration of solid lipid microparticles. Mol Pharm. 2014;11:1550–61. https://doi.org/10.1021/mp400735c.

    Article  CAS  PubMed  Google Scholar 

  153. Dalpiaz A, Fogagnolo M, Ferraro L, et al. Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery. Eur J Pharm Biopharm. 2019;144:91–100. https://doi.org/10.1016/j.ejpb.2019.09.008.

    Article  CAS  PubMed  Google Scholar 

  154. Chmielewski J, Hrycyna C. Research spotlight: Tools for eradicating HIV in the brain: prodrug dimeric inhibitors of P-gp. Ther Deliv. 2012;3:689–92. https://doi.org/10.4155/tde.12.49.

    Article  PubMed  Google Scholar 

  155. Cox A, Vinciguerra D, Re F, et al. Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. Eur J Pharm Biopharm. 2019;142:70–82. https://doi.org/10.1016/j.ejpb.2019.06.004.

    Article  CAS  PubMed  Google Scholar 

  156. Duskey JT, Ottonelli I, Da Ros F, et al. Novel peptide-conjugated nanomedicines for brain targeting: In vivo evidence. Nanomed Nanotechnol Biol Med. 2020;28: 102226. https://doi.org/10.1016/j.nano.2020.102226.

    Article  CAS  Google Scholar 

  157. Wu LP, Ahmadvand D, Su J, et al. Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-12554-2.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Zhang H, Gerson T, Varney ML, et al. Multifunctional peptide-PEG intercalating conjugates: programmatic of gene delivery to the blood-brain barrier. Pharm Res. 2010;27:2528–43. https://doi.org/10.1007/s11095-010-0256-x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Englert C, Trützschler AK, Raasch M, et al. Crossing the blood-brain barrier: Glutathione-conjugated poly(ethylene imine) for gene delivery. J Control Release. 2016;241:1–14. https://doi.org/10.1016/j.jconrel.2016.08.039.

    Article  CAS  PubMed  Google Scholar 

  160. Fatima S, Mohammad T, Jairajpuri DS, et al. Identification and evaluation of glutathione conjugate gamma-l-glutamyl-l-cysteine for improved drug delivery to the brain. J Biomol Struct Dyn. 2020;38:3610–20. https://doi.org/10.1080/07391102.2019.1664937.

    Article  CAS  PubMed  Google Scholar 

  161. Chintamaneni PK, Krishnamurthy PT, Pindiprolu SKSS. Polysorbate-80 surface modified nano-stearylamine BQCA conjugate for the management of Alzheimer’s disease. RSC Adv. 2021;11:5325–34. https://doi.org/10.1039/d1ra00049g.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Macdonald J, Denoyer D, Henri J, et al. Bifunctional aptamer-doxorubicin conjugate crosses the blood-brain barrier and selectively delivers its payload to EpCAM-positive tumor cells. Nucleic Acid Ther. 2020;30:117–28. https://doi.org/10.1089/nat.2019.0807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Monaco I, Camorani S, Colecchia D, et al. Aptamer functionalization of nanosystems for glioblastoma targeting through the blood-brain barrier. J Med Chem. 2017;60:4510–6. https://doi.org/10.1021/acs.jmedchem.7b00527.

    Article  CAS  PubMed  Google Scholar 

  164. Xenaki KT, Dorrestijn B, Muns JA, et al. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics. 2021;11:5525–38. https://doi.org/10.7150/thno.57510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Rechberger JS, Power AE, MillesiDaniels EDJ. Antibody–drug conjugates for H3K27M-mutant diffuse midline gliomas: prospects and challenges. Ther Deliv. 2021;12:553–7. https://doi.org/10.4155/tde-2021-0045.

    Article  CAS  PubMed  Google Scholar 

  166. U.S National Library of Medicine,U.S. National Institute of Health USD of H and HS (2010) https://clinicaltrials.gov/. Accessed 12 Dec 2021.

  167. Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47. https://doi.org/10.1016/j.jconrel.2016.05.044.

    Article  CAS  PubMed  Google Scholar 

  168. Rawal S, Patel M. Bio-nanocarriers for lung cancer management: befriending the barriers. Springer. 2021;13(1):142. https://doi.org/10.1007/s40820-021-00630-6.

    Article  CAS  Google Scholar 

  169. Hu X, Li F, Xia F, et al. Dynamic nanoassembly-based drug delivery system (DNDDS): learning from nature. Adv Drug Deliv Rev. 2021. https://doi.org/10.1016/j.addr.2021.113830.

    Article  PubMed  Google Scholar 

  170. Huang L, Wan J, Wu Y, et al. Challenges in adeno-associated virus-based treatment of central nervous system diseases through systemic injection. Life Sci. 2021;270: 119142. https://doi.org/10.1016/j.lfs.2021.119142.

    Article  CAS  PubMed  Google Scholar 

  171. Chen W, Yao S, Wan J, et al. BBB-crossing adeno-associated virus vector: an excellent gene delivery tool for CNS disease treatment. J Control Release. 2021;333:129–38. https://doi.org/10.1016/j.jconrel.2021.03.029.

    Article  CAS  PubMed  Google Scholar 

  172. Samaranch L, Pérez-Cañamás A, Soto-Huelin B, et al. Adeno-associated viral vector serotype 9-based gene therapy for Niemann-Pick disease type A. Sci Transl Med. 2019;11:1–15. https://doi.org/10.1126/scitranslmed.aat3738.

    Article  CAS  Google Scholar 

  173. Nonnenmacher M, Wang W, Child MA, et al. Rapid evolution of blood-brain- barrier-penetrating AAV capsids by RNA-driven biopanning. Mol Ther Methods Clin Dev. 2021;20:366–78. https://doi.org/10.1016/j.omtm.2020.12.006.

    Article  CAS  PubMed  Google Scholar 

  174. Wang F, Wei XX, Chang LS, et al. Ultrasound combined with microbubbles loading BDNF retrovirus to open blood-brain barrier for treatment of Alzheimer’s disease. Front Pharmacol. 2021;12:1–10. https://doi.org/10.3389/fphar.2021.615104.

    Article  CAS  Google Scholar 

  175. Junghanns JUAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed. 2008;3:295–309. https://doi.org/10.2147/IJN.S595.

    Article  CAS  Google Scholar 

  176. Patel HP, Chaudhari PS, Gandhi PA, et al. Nose to brain delivery of tailored clozapine nanosuspension stabilized using (+)-alpha-tocopherol polyethylene glycol 1000 succinate: Optimization and in vivo pharmacokinetic studies. Int J Pharm. 2021;600: 120474. https://doi.org/10.1016/j.ijpharm.2021.120474.

    Article  CAS  PubMed  Google Scholar 

  177. Fan Y, Cui Y, Hao W, et al. Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma. Bioact Mater. 2021;6:4402–14. https://doi.org/10.1016/j.bioactmat.2021.04.027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Fan Y, Hao W, Cui Y, et al. Cancer cell membrane-coated nanosuspensions for enhanced chemotherapeutic treatment of glioma. Molecules. 2021;26:5103. https://doi.org/10.3390/molecules26165103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Chen Y, Liu Y, Xie J, et al. Nose-to-brain delivery by nanosuspensions-based in situ gel for breviscapine. Int J Nanomed. 2020;15:10435–51. https://doi.org/10.2147/IJN.S265659.

    Article  CAS  Google Scholar 

  180. Zhu S, Zhang S, Pang L, et al. Effects of armodafinil nanocrystal nasal hydrogel on recovery of cognitive function in sleep-deprived rats. Int J Pharm. 2021;597: 120343. https://doi.org/10.1016/j.ijpharm.2021.120343.

    Article  CAS  PubMed  Google Scholar 

  181. Rawal S, Patel M. Lipid nanoparticulate systems: Modern versatile drug carriers. In: Grumezescu AM, editor. Lipid nanocarriers for drug targeting. Oxford: William Andrew, Elsevier; 2018. p. 49–138.

    Chapter  Google Scholar 

  182. Simonazzi A, Cid AG, Villegas M, et al (2018) Chapter 3 - Nanotechnology applications in drug controlled release. In: Grumezescu AM (ed) Drug targeting and stimuli sensitive drug delivery systems. William Andrew Publishing, pp 81–116.

  183. Qu Y, Li A, Ma L, et al. Nose-to-brain delivery of disulfiram nanoemulsion in situ gel formulation for glioblastoma targeting therapy. Int J Pharm. 2021;597: 120250. https://doi.org/10.1016/j.ijpharm.2021.120250.

    Article  CAS  PubMed  Google Scholar 

  184. Bayanati M, Khosroshahi AG, Alvandi M, Mahboobian MM. Fabrication of a thermosensitive in situ gel nanoemulsion for nose to brain delivery of temozolomide. J Nanomater. 2021. https://doi.org/10.1155/2021/1546798.

    Article  Google Scholar 

  185. da Silva SJ, Diedrich C, Machado CS, et al. Intranasal administration of perillyl alcohol–loaded nanoemulsion and pharmacokinetic study of its metabolite perillic acid in plasma and brain of rats using ultra-performance liquid chromatography/tandem mass spectrometry. Biomed Chromatogr. 2021. https://doi.org/10.1002/bmc.5037.

    Article  PubMed  Google Scholar 

  186. Ramires Júnior OV, da Alves BS, Barros PAB, et al. Nanoemulsion improves the neuroprotective effects of curcumin in an experimental model of Parkinson’s disease. Neurotox Res. 2021;39:787–99. https://doi.org/10.1007/s12640-021-00362-w.

    Article  CAS  PubMed  Google Scholar 

  187. Nehal N, Nabi B, Rehman S, et al. Chitosan coated synergistically engineered nanoemulsion of Ropinirole and nigella oil in the management of Parkinson’s disease: formulation perspective and In vitro and In vivo assessment. Int J Biol Macromol. 2021;167:605–19. https://doi.org/10.1016/j.ijbiomac.2020.11.207.

    Article  CAS  PubMed  Google Scholar 

  188. Song Y, Wang X, Wang X, et al. Osthole-loaded nanoemulsion enhances brain target in the treatment of Alzheimer’s disease via intranasal administration. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/8844455.

    Article  PubMed Central  PubMed  Google Scholar 

  189. Kotta S, Mubarak Aldawsari H, Badr-Eldin SM, et al. Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chem. 2021;357: 129721. https://doi.org/10.1016/j.foodchem.2021.129721.

    Article  CAS  PubMed  Google Scholar 

  190. Gadhave D, Tupe S, Tagalpallewar A, et al. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: in vitro and in vivo pharmacological studies. Int J Ph. 2021;607: 121050.

    Article  CAS  Google Scholar 

  191. Kumbhar SA, Kokare CR, Shrivastava B, et al. Antipsychotic potential and safety profile of TPGS-based mucoadhesive aripiprazole nanoemulsion: development and optimization for nose-to-brain delivery. J Pharm Sci. 2021;110:1761–78. https://doi.org/10.1016/j.xphs.2021.01.021.

    Article  CAS  PubMed  Google Scholar 

  192. Ashhar MU, Kumar S, Ali J, Baboota S. CCRD based development of bromocriptine and glutathione nanoemulsion tailored ultrasonically for the combined anti-parkinson effect. Chem Phys Lipids. 2021;235: 105035. https://doi.org/10.1016/j.chemphyslip.2020.105035.

    Article  CAS  PubMed  Google Scholar 

  193. Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release. 2019;301:76–109.

    Article  CAS  PubMed  Google Scholar 

  194. Wu S, Fu J, Liu D, et al. The blood-brain barrier cell-targeted gene delivery system to enhance nerve growth factor protein secretion in the brain. ACS Biomater Sci Eng. 2020;6:6207–16. https://doi.org/10.1021/acsbiomaterials.0c01113.

    Article  CAS  PubMed  Google Scholar 

  195. Rodrigues BDS, Kanekiyo T, Singh J. Nerve growth factor gene delivery across the blood-brain barrier to reduce beta amyloid accumulation in AD mice. Mol Pharm. 2020;17:2054–63. https://doi.org/10.1021/acs.molpharmaceut.0c00218.

    Article  CAS  PubMed  Google Scholar 

  196. dos Dos Santos Rodrigues B, Oue H, Banerjee A, et al. Dual functionalized liposome-mediated gene delivery across triple co-culture blood-brain barrier model and specific in vivo neuronal transfection. Elsevier B.V; 2018.

    Book  Google Scholar 

  197. Arora S, Layek B, Singh J. Design and validation of liposomal ApoE2 gene delivery system to evade blood-brain barrier for effective treatment of Alzheimer’s disease. Mol Pharm. 2021;18:714–25. https://doi.org/10.1021/acs.molpharmaceut.0c00461.

    Article  CAS  PubMed  Google Scholar 

  198. Kang S, Duan W, Zhang S, et al. Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood–brain barrier and targeting glioma. Theranostics. 2020;10:4308–22. https://doi.org/10.7150/thno.41322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Yue PJ, He L, Qiu SW, et al. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol Cancer. 2014;13:1–13. https://doi.org/10.1186/1476-4598-13-191.

    Article  CAS  Google Scholar 

  200. Kuo YC, Chen IY, Rajesh R. Astragaloside IV- and nesfatin-1-encapsulated phosphatidylserine liposomes conjugated with wheat germ agglutinin and leptin to activate anti-apoptotic pathway and block phosphorylated tau protein expression for Parkinson’s disease treatment. Mater Sci Eng C. 2021;129:1–3. https://doi.org/10.1016/j.msec.2021.112361.

    Article  CAS  Google Scholar 

  201. Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21:789–801.

    Article  CAS  PubMed  Google Scholar 

  202. Elsenosy FM, Abdelbary GA, Elshafeey AH, et al. Brain targeting of duloxetine hcl via intranasal delivery of loaded cubosomal gel: In vitro characterization, ex vivo permeation, and in vivo biodistribution studies. Int J Nanomed. 2020;15:9517–37. https://doi.org/10.2147/IJN.S277352.

    Article  CAS  Google Scholar 

  203. Flak DK, Adamski V, Nowaczyk G, et al. At101-loaded cubosomes as an alternative for improved glioblastoma therapy. Int J Nanomed. 2020;15:7415–31. https://doi.org/10.2147/IJN.S265061.

    Article  CAS  Google Scholar 

  204. Hosny KM. Nanosized cubosomal thermogelling dispersion loaded with saquinavir mesylate to improve its bioavailability: preparation, optimization, in vitro and in vivo evaluation. Int J Nanomed. 2020;15:5113–29. https://doi.org/10.2147/IJN.S261855.

    Article  CAS  Google Scholar 

  205. Chettupalli AK, Ananthula M, Amarachinta PR, et al. Design, formulation, in-vitro and ex-vivo evaluation of atazanavir loaded cubosomal gel. Biointerface Res Appl Chem. 2021;11:12037–54. https://doi.org/10.33263/BRIAC114.1203712054.

    Article  Google Scholar 

  206. Azhari, H (2018) Surface modified cubosomes for drug delivery across the blood-brain barrier (Doctoral dissertation, University of Otago).

  207. Singh TG, Sharma N. Nanobiomaterials in cosmetics: Current status and future prospects. Nanobiomater Galen Formul Cosmet Appl Nanobiomater. 2016. https://doi.org/10.1016/B978-0-323-42868-2.00007-3.

    Article  Google Scholar 

  208. Sita VG, Jadhav D, Vavia P. Niosomes for nose-to-brain delivery of bromocriptine: formulation development, efficacy evaluation and toxicity profiling. J Drug Deliv Sci Technol. 2020. https://doi.org/10.1016/j.jddst.2020.101791.

    Article  Google Scholar 

  209. Fahmy UA, Badr-Eldin SM, Ahmed OAA, et al. Intranasal niosomal in situ gel as a promising approach for enhancing flibanserin bioavailability and brain delivery: in vitro optimization and ex vivo/in vivo evaluation. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12060485.

    Article  PubMed Central  PubMed  Google Scholar 

  210. Mani M, Balasubramanian S, Manikandan KR, Kulandaivel B. Neuroprotective potential of Naringenin-loaded solid-lipid nanoparticles against rotenone-induced Parkinson’s disease model. J Appl Pharm Sci. 2021;11:019–28. https://doi.org/10.7324/JAPS.2021.110203.

    Article  CAS  Google Scholar 

  211. Prajapati JB, Patel GC. Nose to brain delivery of Rotigotine loaded solid lipid nanoparticles: Quality by design based optimization and characterization. J Drug Deliv Sci Technol. 2021. https://doi.org/10.1016/j.jddst.2021.102377.

    Article  Google Scholar 

  212. Hasan N, Imran M, Kesharwani P, et al. Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int J Pharm. 2021;599: 120428. https://doi.org/10.1016/j.ijpharm.2021.120428.

    Article  CAS  PubMed  Google Scholar 

  213. Buzyurova DN, Pashirova TN, Zueva IV, et al. Surface modification of pralidoxime chloride-loaded solid lipid nanoparticles for enhanced brain reactivation of organophosphorus-inhibited AChE: Pharmacokinetics in rat. Toxicology. 2020;444: 152578. https://doi.org/10.1016/j.tox.2020.152578.

    Article  CAS  PubMed  Google Scholar 

  214. Huang R, Zhu Y, Lin L, et al. Solid lipid nanoparticles enhanced the neuroprotective role of curcumin against epilepsy through activation of Bcl-2 family and P38 MAPK pathways. ACS Chem Neurosci. 2020;11:1985–95. https://doi.org/10.1021/acschemneuro.0c00242.

    Article  CAS  PubMed  Google Scholar 

  215. Ramalingam P, Ganesan P, Prabakaran DS, et al. Lipid nanoparticles improve the uptake of α-asarone into the brain parenchyma: formulation, characterization, in vivo pharmacokinetics, and brain delivery. AAPS PharmSciTech 2. 2020;21(8):299. https://doi.org/10.1208/s12249-020-01832-8.

    Article  CAS  Google Scholar 

  216. Topal GR, Mészáros M, Porkoláb G, et al. ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood–brain barrier. Pharmaceutics. 2021;13:1–19. https://doi.org/10.3390/pharmaceutics13010038.

    Article  CAS  Google Scholar 

  217. Pinheiro RGR, Granja A, Loureiro JA, et al. RVG29-functionalized lipid nanoparticles for quercetin brain delivery and Alzheimer’s disease. Pharm Res. 2020;37:1–12. https://doi.org/10.1007/s11095-020-02865-1.

    Article  CAS  Google Scholar 

  218. Jnaidi R, Almeida AJ, Gonçalves LM. Solid lipid nanoparticles and nanostructured lipid carriers as smart drug delivery systems in the treatment of glioblastoma multiforme. Pharmaceutics. 2020;12:1–19. https://doi.org/10.3390/pharmaceutics12090860.

    Article  CAS  Google Scholar 

  219. Agbo CP, Ugwuanyi TC, Ugwuoke WI, et al. Intranasal artesunate-loaded nanostructured lipid carriers: a convenient alternative to parenteral formulations for the treatment of severe and cerebral malaria. J Control Release. 2021;334:224–36. https://doi.org/10.1016/j.jconrel.2021.04.020.

    Article  CAS  PubMed  Google Scholar 

  220. Şen Ö, Emanet M, Marino A, et al. Evaluation of the therapeutic potential of resveratrol-loaded nanostructured lipid carriers on autosomal recessive spastic ataxia of Charlevoix-Saguenay patient-derived fibroblasts. Mater Des. 2021;209: 110012. https://doi.org/10.1016/j.matdes.2021.110012.

    Article  CAS  Google Scholar 

  221. Rubab S, Naeem K, Rana I, et al. Enhanced neuroprotective and antidepressant activity of curcumin-loaded nanostructured lipid carriers in lipopolysaccharide- induced depression and anxiety rat model. Int J Pharm. 2021;603: 120670. https://doi.org/10.1016/j.ijpharm.2021.120670.

    Article  CAS  PubMed  Google Scholar 

  222. Matarazzo AP, Elisei LMS, Carvalho FC, et al. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain. Eur J Pharm Sci. 2021. https://doi.org/10.1016/j.ejps.2020.105698.

    Article  PubMed  Google Scholar 

  223. Patel HP, Gandhi PA, Chaudhari PS, et al. Clozapine loaded nanostructured lipid carriers engineered for brain targeting via nose-to-brain delivery: optimization and in vivo pharmacokinetic studies. J Drug Deliv Sci Technol. 2021;64: 102533. https://doi.org/10.1016/j.jddst.2021.102533.

    Article  CAS  Google Scholar 

  224. Cunha S, Forbes B, Lobo JMS, Silva AC. Improving drug delivery for alzheimer’s disease through nose-to-brain delivery using nanoemulsions, nanostructured lipid carriers (NLC) and in situ hydrogels. Int J Nanomed. 2021;16:4373–90. https://doi.org/10.2147/IJN.S305851.

    Article  Google Scholar 

  225. Hartl N, Adams F, Merkel OM. From adsorption to covalent bonding: apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood-brain barrier. Adv Ther. 2021;4:1–21. https://doi.org/10.1002/adtp.202000092.

    Article  CAS  Google Scholar 

  226. Omar SH, Osman R, Mamdouh W, et al. Bioinspired lipid-polysaccharide modified hybrid nanoparticles as a brain-targeted highly loaded carrier for a hydrophilic drug. Int J Biol Macromol. 2020;165:483–94. https://doi.org/10.1016/j.ijbiomac.2020.09.170.

    Article  CAS  PubMed  Google Scholar 

  227. Ishak RAH, Mostafa NM, Kamel AO. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery—comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv. 2017;24:1874–90. https://doi.org/10.1080/10717544.2017.1410263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Zhi K, Raji B, Nookala AR, et al. Plga nanoparticle-based formulations to cross the blood-brain barrier for drug delivery: From r&d to cgmp. Pharmaceutics. 2021;13:1–17. https://doi.org/10.3390/pharmaceutics13040500.

    Article  CAS  Google Scholar 

  229. Kuplennik N, Lang K, Steinfeld R, Sosnik A. Folate receptor α-modified nanoparticles for targeting of the central nervous system. ACS Appl Mater Interfaces. 2019;11:39633–47. https://doi.org/10.1021/acsami.9b14659.

    Article  CAS  PubMed  Google Scholar 

  230. Gong Y, Chowdhury P, Nagesh PKB, et al. Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Sci Rep. 2020;10:1–16. https://doi.org/10.1038/s41598-020-60684-1.

    Article  CAS  Google Scholar 

  231. Xu R, Wang J, Xu J, et al. Rhynchophylline loaded-mPEG-PLGA nanoparticles coated with tween-80 for preliminary study in Alzheimer’s disease. Int J Nanomed. 2020;15:1149–60. https://doi.org/10.2147/IJN.S236922.

    Article  CAS  Google Scholar 

  232. Yusuf M, Khan M, Alrobaian MM, et al. Brain targeted Polysorbate-80 coated PLGA thymoquinone nanoparticles for the treatment of Alzheimer’s disease, with biomechanistic insights. J Drug Deliv Sci Technol. 2021;61: 102214. https://doi.org/10.1016/j.jddst.2020.102214.

    Article  CAS  Google Scholar 

  233. Ruan H, Yao S, Wang S, et al. Stapled RAP12 peptide ligand of LRP1 for micelles-based multifunctional glioma-targeted drug delivery. Chem Eng J. 2021;403: 126296. https://doi.org/10.1016/j.cej.2020.126296.

    Article  CAS  Google Scholar 

  234. Lei L, Zou Z, Liu J, et al. Multifunctional peptide-assembled micelles for simultaneously reducing amyloid-β and reactive oxygen species. Chem Sci. 2021;12:6449–57. https://doi.org/10.1039/d1sc00153a.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Piazzini V, Landucci E, Urru M, et al. Enhanced dissolution, permeation and oral bioavailability of aripiprazole mixed micelles: In vitro and in vivo evaluation. Int J Pharm. 2020;583: 119361. https://doi.org/10.1016/j.ijpharm.2020.119361.

    Article  CAS  PubMed  Google Scholar 

  236. Infante P, Malfanti A, Quaglio D, et al. Glabrescione B delivery by self- assembling micelles efficiently inhibits tumor growth in preclinical models of Hedgehog-dependent medulloblastoma. Elsevier B.V.; 2021.

    Book  Google Scholar 

  237. Najmi A, Wang S, Huang Y, et al. 2-(2-Cholesteroxyethoxyl)ethyl 3′-S- glutathionylpropionate and its self-assembled micelles for brain delivery: Design, synthesis and evaluation. Int J Pharm. 2021;600: 120520. https://doi.org/10.1016/j.ijpharm.2021.120520.

    Article  CAS  PubMed  Google Scholar 

  238. Chauhan PS, Kumarasamy M, Carcaboso AM, et al. Multifunctional silica- coated mixed polymeric micelles for integrin-targeted therapy of pediatric patient- derived glioblastoma. Mater Sci Eng C. 2021;128: 112261. https://doi.org/10.1016/j.msec.2021.112261.

    Article  CAS  Google Scholar 

  239. Sayed S, Elsharkawy FM, Amin MM, et al. Brain targeting efficiency of intranasal clozapine-loaded mixed micelles following radio labeling with Technetium- 99m. Drug Deliv. 2021;28:1524–38. https://doi.org/10.1080/10717544.2021.1951895.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  240. Xu J, Yang X, Ji J, et al. RVG-functionalized reduction sensitive micelles for the effective accumulation of doxorubicin in brain. J Nanobiotechnol. 2021;19:1–16. https://doi.org/10.1186/s12951-021-00997-z.

    Article  CAS  Google Scholar 

  241. Olsman M, Mühlenpfordt M, Olsen EB, et al. Acoustic Cluster Therapy (ACT®) enhances accumulation of polymeric micelles in the murine brain. J Control Release. 2021;337:285–95. https://doi.org/10.1016/j.jconrel.2021.07.019.

    Article  CAS  PubMed  Google Scholar 

  242. Gauro R, Nandave M, Jain VK, Jain K. Advances in dendrimer-mediated targeted drug delivery to the brain. J Nanoparticle Res. 2021;23(3):1–20. https://doi.org/10.1007/s11051-021-05175-8.

    Article  CAS  Google Scholar 

  243. Li Y, Zhang X, Qi Z, et al. The enhanced protective effects of salvianic acid A: a functionalized nanoparticles against ischemic stroke through increasing the permeability of the blood-brain barrier. Nano Res. 2020;13:2791–802. https://doi.org/10.1007/s12274-020-2930-6.

    Article  CAS  Google Scholar 

  244. Ke W, Shao K, Huang R, et al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials. 2009;30:6976–85. https://doi.org/10.1016/j.biomaterials.2009.08.049.

    Article  CAS  PubMed  Google Scholar 

  245. Kim ES, Kim D, Nyberg S, et al. LRP-1 functionalized polymersomes enhance the efficacy of carnosine in experimental stroke. Sci Rep. 2020;10:1–8. https://doi.org/10.1038/s41598-020-57685-5.

    Article  CAS  Google Scholar 

  246. Goyal K, Konar A, Kumar A, Koul V. Bacosides encapsulated in lactoferrin conjugated PEG-PLA-PCL-OH based polymersomes act as epigenetic modulator in chemically induced amnesia. Neurochem Res. 2020;45:796–808. https://doi.org/10.1007/s11064-020-02953-z.

    Article  CAS  PubMed  Google Scholar 

  247. Goyal K (2020) Synthesis and evaluation of polymersomes for brain targeting to reverse amnesia (Doctoral dissertation, IIT Delhi)

  248. Bikhezar F, de Kruijff RM, van der Meer AJGM, et al. Preclinical evaluation of binimetinib (MEK162) delivered via polymeric nanocarriers in combination with radiation and temozolomide in glioma. J Neurooncol. 2020;146:239–46. https://doi.org/10.1007/s11060-019-03365-y.

    Article  CAS  PubMed  Google Scholar 

  249. Ouyang J, Jiang Y, Deng C, et al. Doxorubicin delivered via apoe-directed reduction-sensitive polymersomes potently inhibit orthotopic human glioblastoma xenografts in nude mice. Int J Nanomed. 2021;16:4105–15. https://doi.org/10.2147/IJN.S314895.

    Article  Google Scholar 

  250. He C, Zhang Z, Ding Y, et al. LRP1-mediated pH-sensitive polymersomes facilitate combination therapy of glioblastoma in vitro and in vivo. J Nanobiotechnol. 2021;19:1–17. https://doi.org/10.1186/s12951-020-00751-x.

    Article  CAS  Google Scholar 

  251. Fan Q, Liu Y, Cui G, et al. Brain delivery of Plk1 inhibitor via chimaeric polypeptide polymersomes for safe and superb treatment of orthotopic glioblastoma. J Control Release. 2021;329:1139–49. https://doi.org/10.1016/j.jconrel.2020.10.043.

    Article  CAS  PubMed  Google Scholar 

  252. Wei Y, Sun Y, Wei J, et al. Selective transferrin coating as a facile strategy to fabricate BBB-permeable and targeted vesicles for potent RNAi therapy of brain metastatic breast cancer in vivo. J Control Release. 2021;337:521–9. https://doi.org/10.1016/j.jconrel.2021.07.048.

    Article  CAS  PubMed  Google Scholar 

  253. Jani K, Kaushal N, Sadoqi M, et al. Formulation and characterization of oleic acid magnetic PEG PLGA nanoparticles for targeting glioblastoma multiforme. J Magn Magn Mater. 2021;533: 167970. https://doi.org/10.1016/j.jmmm.2021.167970.

    Article  CAS  Google Scholar 

  254. Wei R, Liu Y, Gao J, et al. Small functionalized iron oxide nanoparticles for dual brain magnetic resonance imaging and fluorescence imaging. RSC Adv. 2021;11:12867–75. https://doi.org/10.1039/d0ra10392f.

    Article  CAS  Google Scholar 

  255. Arias-Ramos N, Ibarra LE, Serrano-Torres M, et al. Iron oxide incorporated conjugated polymer nanoparticles for simultaneous use in magnetic resonance and fluorescent imaging of brain tumors. Pharmaceutics. 2021;13:1258. https://doi.org/10.3390/pharmaceutics13081258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  256. Sanati M, Aminyavari S, Khodagholi F, et al. PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer’s disease: potential participation of STIMs. Neurotoxicology. 2021;85:145–59. https://doi.org/10.1016/j.neuro.2021.05.013.

    Article  CAS  PubMed  Google Scholar 

  257. Aboushoushah S, Alshammari W, Darwesh R, Elbaily N. Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: Multidose administration. Life Sci. 2021;277: 119625. https://doi.org/10.1016/j.lfs.2021.119625.

    Article  CAS  PubMed  Google Scholar 

  258. Luque-Michel E, Lemaire L, Blanco-Prieto MJ. SPION and doxorubicin-loaded polymeric nanocarriers for glioblastoma theranostics. Drug Deliv Transl Res. 2021;11:515–23. https://doi.org/10.1007/s13346-020-00880-8.

    Article  CAS  PubMed  Google Scholar 

  259. Lu X, Zhang Y, Wang L, et al. Development of L-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood-brain barrier crossing and ischemic stroke treatment. Drug Deliv. 2021;28:380–9. https://doi.org/10.1080/10717544.2021.1883158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  260. Huang R-Y, Liu Z-H, Weng W-H, Chang C-W. Magnetic nanocomplexes for gene delivery applications. J Mater Chem B. 2021;9:4267–86. https://doi.org/10.1039/c3tb20870b.

    Article  CAS  PubMed  Google Scholar 

  261. Anand BG, Wu Q, Karthivashan G, et al. Mimosine functionalized gold nanoparticles (Mimo-AuNPs) suppress β-amyloid aggregation and neuronal toxicity. Bioact Mater. 2021;6:4491–505. https://doi.org/10.1016/j.bioactmat.2021.04.029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  262. Báez DF, Gallardo-Toledo E, Oyarzún MP, et al. The influence of size and chemical composition of silver and gold nanoparticles on in vivo toxicity with potential applications to central nervous system diseases. Int J Nanomed. 2021;16:2187–201. https://doi.org/10.2147/IJN.S260375.

    Article  Google Scholar 

  263. Chintalacharuvu KR, Matolek ZA, Pacheco B, et al. Complexing amphotericin B with gold nanoparticles improves fungal clearance from the brains of mice infected with Cryptococcal neoformans. Med Mycol. 2021. https://doi.org/10.1093/mmy/myab042.

    Article  PubMed  Google Scholar 

  264. Danish F, Khan MA, Ashraf GM, et al. New horizons in the treatment of neurological disorders with tailorable gold nanoparticles. Curr Drug Metab. 2021. https://doi.org/10.2174/1389200222666210525123416.

    Article  Google Scholar 

  265. Saimuang K, Suttisintong K, Kaewchangwat N, et al. A model of modifiedmeta-iodobenzylguanidine conjugated gold nanoparticles for neuroblastoma treatment. RSC Adv. 2021;11:25199–206. https://doi.org/10.1039/d1ra04054e.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  266. Zhang J, Liu R, Zhang D, et al. Neuroprotective effects of maize tetrapeptide- anchored gold nanoparticles in Alzheimer’s disease. Colloids Surfaces B Biointerfaces. 2021. https://doi.org/10.1016/j.colsurfb.2021.111584.

    Article  PubMed  Google Scholar 

  267. Li Y, Teng X, Wang Y, et al. Neutrophil delivered hollow titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy. Adv Sci. 2021;2004381:1–7. https://doi.org/10.1002/advs.202004381.

    Article  CAS  Google Scholar 

  268. Janjua TI, Ahmed-Cos A, Meka A, et al. Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma. Nanoscale. 2016;13(40):16909–22. https://doi.org/10.1039/D1NR03553C.

    Article  Google Scholar 

  269. Morales V, McConnell J, Pérez-Garnes M, et al. L-Dopa release from mesoporous silica nanoparticles engineered through the concept of drug-structure- directing agents for Parkinson’s disease. J Mater Chem B. 2021;9:4178–89. https://doi.org/10.1039/d1tb00481f.

    Article  CAS  PubMed  Google Scholar 

  270. Singh AK, Sen SS, Rathore AS, et al. Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomater Sci Eng. 2021;7:3737–53. https://doi.org/10.1021/acsbiomaterials.1c00514.

    Article  CAS  PubMed  Google Scholar 

  271. Bittner A, Gosselet F, Sevin E, et al. Time-dependent internalization of polymer-coated silica nanoparticles in brain endothelial cells and morphological and functional effects on the blood-brain barrier. Int J Mol Sci. 2021;22:1–25. https://doi.org/10.3390/ijms22041657.

    Article  CAS  Google Scholar 

  272. Zhu J, Zhang Y, Chen X, et al. Angiopep-2 modified lipid-coated mesoporous silica nanoparticles for glioma targeting therapy overcoming BBB. Biochem Biophys Res Commun. 2021;534:902–7. https://doi.org/10.1016/j.bbrc.2020.10.076.

    Article  CAS  PubMed  Google Scholar 

  273. Tam DY, Ho JWT, Chan MS, et al. Penetrating the blood-brain barrier by self- assembled 3D DNA nanocages as drug delivery vehicles for brain cancer therapy. ACS Appl Mater Interfaces. 2020;12:28928–40. https://doi.org/10.1021/acsami.0c02957.

    Article  CAS  PubMed  Google Scholar 

  274. Tesarova B, Musilek K, Rex S, Heger Z. Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J Control Release. 2020;325:176–90. https://doi.org/10.1016/j.jconrel.2020.06.026.

    Article  CAS  PubMed  Google Scholar 

  275. Liu X, Gaihre B, George MN, et al. 2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomater Sci. 2021;9:2768–803. https://doi.org/10.1039/d0bm01972k.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  276. Li Y, Tang H, Zhu H, et al. Ultrasmall molybdenum disulfide quantum dots cage Alzheimer’s amyloid beta to restore membrane fluidity. ACS Appl Mater Interfaces. 2021;13:29936–48. https://doi.org/10.1021/acsami.1c06478.

    Article  CAS  PubMed  Google Scholar 

  277. Kang I, Yoo JM, Kim D, et al. Graphene quantum dots alleviate impaired functions in niemann-pick disease type C in vivo. Nano Lett. 2021;21:2339–46. https://doi.org/10.1021/acs.nanolett.0c03741.

    Article  CAS  PubMed  Google Scholar 

  278. Guo X, Lie Q, Liu Y, et al. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Appl Mater Interfaces. 2021;13:30261–73. https://doi.org/10.1021/acsami.1c00690.

    Article  CAS  PubMed  Google Scholar 

  279. Lin D, Li M, Gao Y, et al. Brain-targeted gene delivery of ZnO quantum dots nanoplatform for the treatment of Parkinson disease. Chem Eng J. 2022;429:132210. https://doi.org/10.1016/j.cej.2021.132210.

  280. Zhang X, Gong B, Zhai J, et al. A perspective: electrospun fibers for repairing spinal cord injury. Chem Res Chinese Univ. 2021;37:404–10. https://doi.org/10.1007/s40242-021-1162-y.

    Article  CAS  Google Scholar 

  281. Siafaka PI, Özcan Bülbül E, Dilsiz P, et al. Detecting and targeting neurodegenerative disorders using electrospun nanofibrous matrices: current status and applications. Taylor & Francis; 2021.

    Google Scholar 

  282. Xie R, Wu Z, Zeng F, et al. Retro-enantio isomer of angiopep-2 assists nanoprobes across the blood-brain barrier for targeted magnetic resonance/fluorescence imaging of glioblastoma. Signal Transduct Target Ther. 2021;6:1–13. https://doi.org/10.1038/s41392-021-00724-y.

    Article  CAS  Google Scholar 

  283. Gupta N, Kamath SM, Rao SK, et al. Kaempferol loaded albumin nanoparticles and dexamethasone encapsulation into electrospun polycaprolactone fibrous mat—concurrent release for cartilage regeneration. J Drug Deliv Sci Technol. 2021;64: 102666. https://doi.org/10.1016/j.jddst.2021.102666.

    Article  CAS  Google Scholar 

  284. Kim S-H, Hwang K, Lee H, et al. Pastable, adhesive, injectable, nano?brous, and tunable (PAINT) biphasic hybrid matrices as versatile therapeutic carriers. Appl Mater interfaces. 2021;13:42429–41.

    Article  CAS  Google Scholar 

  285. Zare H, Ahmadi S, Ghasemi A, et al. Carbon nanotubes: Smart drug/gene delivery carriers. Int J Nanomedicine. 2021;16:1681–706. https://doi.org/10.2147/IJN.S299448.

    Article  PubMed Central  PubMed  Google Scholar 

  286. Barani M, Mukhtar M, Rahdar A, et al. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections. Molecules. 2021. https://doi.org/10.3390/molecules26010186.

    Article  PubMed Central  PubMed  Google Scholar 

  287. Xiong S, Li Z, Liu Y, et al. Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson’s disease. Biomaterials. 2020;260: 120339. https://doi.org/10.1016/j.biomaterials.2020.120339.

    Article  CAS  PubMed  Google Scholar 

  288. Zhai K, Duan H, Wang W, et al. Ginsenoside Rg1 ameliorates blood–brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release. Acta Pharm Sin B. 2021. https://doi.org/10.1016/j.apsb.2021.03.032.

    Article  PubMed Central  PubMed  Google Scholar 

  289. Wang J, Tang W, Yang M, et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials. 2021;273: 120784. https://doi.org/10.1016/j.biomaterials.2021.120784.

    Article  CAS  PubMed  Google Scholar 

  290. Shen J, Lu Z, Wang J, et al. Traceable nano-biohybrid complexes by one-step synthesis as CRISPR-chem vectors for neurodegenerative diseases synergistic treatment. Adv Mater. 2021;33:1–10. https://doi.org/10.1002/adma.202101993.

    Article  CAS  Google Scholar 

  291. Joshi BS, Zuhorn IS. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood–brain barrier model. Eur J Neurosci. 2021;53:706–19. https://doi.org/10.1111/ejn.14974.

    Article  PubMed  Google Scholar 

  292. Liu Y, Zou Y, Feng C, et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 2020;20:1637–46. https://doi.org/10.1021/acs.nanolett.9b04683.

    Article  CAS  PubMed  Google Scholar 

  293. Ji W, Li Y, Liu R, et al. Synaptic vesicle-inspired nanoparticles with spatiotemporally controlled release ability as a “nanoguard” for synergistic treatment of synucleinopathies. Mater Horizons. 2021;8:1199–206. https://doi.org/10.1039/d0mh01542c.

    Article  CAS  Google Scholar 

  294. Han Y, Gao C, Wang H, et al. Macrophage membrane-coated nanocarriers Co-Modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer’s disease mice. Bioact Mater. 2021;6:529–42. https://doi.org/10.1016/j.bioactmat.2020.08.017.

    Article  CAS  PubMed  Google Scholar 

  295. Elliott RO, He M. Unlocking the power of exosomes for crossing biological barriers in drug delivery. Pharmaceutics. 2021;13:1–20. https://doi.org/10.3390/pharmaceutics13010122.

    Article  Google Scholar 

  296. Niu W, Xiao Q, Wang X, et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021;21:1484–92. https://doi.org/10.1021/acs.nanolett.0c04.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayur M. Patel.

Ethics declarations

Funding

No funding or assistance was utilized in the preparation of this manuscript.

Conflicts of interest

Mayur Patel, Shruti Rawal and Bhoomika Patel declare no conflicts of interest.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

Not applicable

Code availability

Not applicable

Author’s contributions

RS: Writing the original draft, data curation, visualization, editing, and revision, PB, and PM: Writing, visualization, editing, and supervision. All the authors have read and approved the final version of the manuscript and agree to be accountable for the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawal, S.U., Patel, B.M. & Patel, M.M. New Drug Delivery Systems Developed for Brain Targeting. Drugs 82, 749–792 (2022). https://doi.org/10.1007/s40265-022-01717-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-022-01717-z

Navigation