Skip to main content
Log in

Cost Effectiveness of Dapagliflozin Added to Standard of Care for the Management of Diabetic Nephropathy in the USA

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background

Angiotensin-converting enzyme inhibitors have been used as the standard of care for the treatment of diabetic nephropathy. Recently, dapagliflozin has been shown to reduce diabetic nephropathy when added to the standard of care.

Objective

The objective of this study was to determine the cost effectiveness of dapagliflozin added to the standard of care in diabetic nephropathy in the United States of America (USA).

Methods

A Markov model was developed to determine the cost-effectiveness outcomes from the Medicare/Medicaid health coverage perspective. Model inputs were derived from the literature. The primary outcomes were total costs, quality-adjusted life-years (QALYs), and the incremental cost-effectiveness ratio. Deterministic and probabilistic sensitivity analyses were performed to determine the robustness of our results. A willingness-to-pay threshold of $100,000 per QALY was applied, which is based on previous studies.

Results

Dapagliflozin yielded a lifetime QALY of 2.8. The discounted QALY associated with the standard of care was 2.6. The standard of care was the less costly treatment with a lifetime cost of $106,150.25 as compared with dapagliflozin, which costs $110,689.25. Dapagliflozin demonstrated an incremental cost-effectiveness ratio of $21,141.51 per additional QALY. The most influential parameters of the incremental cost-effectiveness ratio were the adverse drug reaction-related cost of the standard of care and dapagliflozin, the acquisition cost, and the adverse drug reaction-related cost of dapagliflozin. The effects and costs of the interventions were consistent between base-case analyses and the probabilistic model (incremental cost-effectiveness ratio: $19,023.35 [$13,637.8–$27,483.1]).

Conclusions

Dapagliflozin added to the standard of care was cost effective relative to the standard of care alone in the USA for patients with diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deng Y, Li N, Wu Y, Wang M, Yang S, Zheng Y, et al. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front Endocrinol. 2021;12:1–15.

    Article  Google Scholar 

  2. Basi S, Fesler P, Mimran A, Lewis JB. Microalbuminuria in type 2 diabetes and hypertension: a marker, treatment target, or innocent bystander? Diabetes Care. 2008;31(Suppl_2):S194-201.

    Article  CAS  PubMed  Google Scholar 

  3. Lim AK. Diabetic nephropathy: complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361–81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Collins AJ. Cardiovascular mortality in end-stage renal disease. Am J Med Sci. 2003;325(4):163–7.

    Article  PubMed  Google Scholar 

  5. Centers for Disease Control Prevention. Chronic kidney disease surveillance system: United States. website. https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html. Accessed 7 Apr 2022.

  6. Center for Disease Prevention and Control. Chronic kidney disease basics. https://www.cdc.gov/kidneydisease/basics.html. Accessed 16 Dec 2021.

  7. Gordois A, Scuffham P, Shearer A, Oglesby A. The health care costs of diabetic nephropathy in the United States and the United Kingdom. J Diabetes Complicat. 2004;18(1):18–26.

    Article  Google Scholar 

  8. Mathiesen ER, Hommel E, Hansen HP, Smidt UM, Parving H-H. Randomised controlled trial of long term efficacy of captopril on preservation of kidney function in normotensive patients with insulin dependent diabetes and microalbuminuria. BMJ. 1999;319(7201):24–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gross JL, De Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–76.

    Article  PubMed  Google Scholar 

  10. de Boer IH, Caramori ML, Chan JC, Heerspink HJ, Hurst C, Khunti K, et al. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020;98(4):S1-115.

    Article  Google Scholar 

  11. Hsia DS, Grove O, Cefalu WT. An update on SGLT2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2017;24(1):73.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJ, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  13. Heerspink HJ, Johnsson E, Gause-Nilsson I, Cain VA, Sjöström CD. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes Obes Metab. 2016;18(6):590–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pollock C, Stefánsson B, Reyner D, Rossing P, Sjöström CD, Wheeler DC, et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(6):429–41.

    Article  CAS  PubMed  Google Scholar 

  15. McEwan P, Darlington O, Wheeler D, Heerspink H, Bergenheim K, Sanchez JG. POS-335 Cost-effectiveness of dapagliflozin as a treatment for chronic kidney disease: a health-economic analysis of DAPA-CKD. Kidney Int Rep. 2021;6(4):S145–6.

    Article  Google Scholar 

  16. Tisdale RL, Cusick MM, Aluri KZ, Handley TJ, Joyner AK, Salomon JA, et al. Cost-effectiveness of dapagliflozin for non-diabetic chronic kidney disease. J Gen Intern Med. 2022. https://doi.org/10.1007/s11606-021-07311-5.

    Article  PubMed  Google Scholar 

  17. Palmer AJ, Roze S, Valentine WJ, Minshall ME, Foos V, Lurati FM, et al. The CORE Diabetes Model: projecting long-term clinical outcomes, costs and costeffectiveness of interventions in diabetes mellitus (types 1 and 2) to support clinical and reimbursement decision-making. Curr Med Res Opin. 2004;20(sup1):S5-26.

    Article  PubMed  Google Scholar 

  18. Sugrue DM, Ward T, Rai S, McEwan P, van Haalen HG. Economic modelling of chronic kidney disease: a systematic literature review to inform conceptual model design. Pharmacoeconomics. 2019;37(12):1451–68.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341(23):1725–30.

    Article  CAS  PubMed  Google Scholar 

  20. Nathan DM; DCCT/EDIC Research Group. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014;37(1):9–16.

    Article  CAS  Google Scholar 

  21. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63(1):225–32.

    Article  PubMed  Google Scholar 

  22. Ritz E, Stefanski A. Diabetic nephropathy in type II diabetes. Am J Kidney Dis. 1996;27(2):167–94.

    Article  CAS  PubMed  Google Scholar 

  23. Johansen KL, Chertow GM, Foley RN, Gilbertson DT, Herzog CA, Ishani A, et al. US renal data system 2020 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2021;77(4 Suppl. 1):A7-8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kussman MJ, Goldstein HH, Gleason RE. The clinical course of diabetic nephropathy. JAMA. 1976;236(16):1861–3.

    Article  CAS  PubMed  Google Scholar 

  25. TreeAge Pro 2021, R1. TreeAge software, Williamstown, MA. http://www.treeage.com. Accessed 17 May 2022.

  26. Boersma C, Gansevoort RT, Pechlivanoglou P, Visser ST, van Toly FF, de Jong PE, et al. Screen-and-treat strategies for albuminuria to prevent cardiovascular and renal disease: cost-effectiveness of nationwide and targeted interventions based on analysis of cohort data from the Netherlands. Clin Ther. 2010;32(6):1103–21.

    Article  PubMed  Google Scholar 

  27. Kiberd BA, Jindal KK. Screening to prevent renal failure in insulin dependent diabetic patients: an economic evaluation. BMJ. 1995;311(7020):1595–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu B, Zhang S, Lin H, Mou S. Prevention of renal failure in Chinese patients with newly diagnosed type 2 diabetes: a cost-effectiveness analysis. J Diabetes Investig. 2018;9(1):152–61.

    Article  CAS  PubMed  Google Scholar 

  29. Beckwith J, Nyman JA, Flanagan B, Schrover R, Schuurman HJ. A health economic analysis of clinical islet transplantation. Clin Transplant. 2012;26(1):23–33.

    Article  PubMed  Google Scholar 

  30. Campbell HM, Boardman KD, Dodd MA, Raisch DW. Pharmacoeconomic analysis of angiotensin-converting enzyme inhibitors in type 2 diabetes: a Markov model. Ann Pharmacother. 2007;41(7–8):1101–10.

    Article  PubMed  Google Scholar 

  31. Thokala P, Kruger J, Brennan A, Basarir H, Duenas A, Pandor A, et al. Assessing the cost-effectiveness of type 1 diabetes interventions: the Sheffield Type 1 Diabetes Policy Model. Diabet Med. 2014;31(4):477–86.

    Article  CAS  PubMed  Google Scholar 

  32. Airoldi M, Bevan G, Morton A, Oliveira M, Smith J. Requisite models for strategic commissioning: the example of type 1 diabetes. Health Care Manag Sci. 2008;11(2):89–110.

    Article  PubMed  Google Scholar 

  33. Ferguson TW, Tangri N, Tan Z, James MT, Lavallee BD, Chartrand CD, et al. Screening for chronic kidney disease in Canadian indigenous peoples is cost-effective. Kidney Int. 2017;92(1):192–200.

    Article  PubMed  Google Scholar 

  34. Gonzalez-Perez JG, Vale L, Stearns SC, Wordsworth S. Hemodialysis for end-stage renal disease: a cost-effectiveness analysis of treatment options. Int J Technol Assess Health Care. 2005;21(1):32–9.

    Article  PubMed  Google Scholar 

  35. Howard K, Salkeld G, White S, Mcdonald S, Chadban S, Craig JC, et al. The cost-effectiveness of increasing kidney transplantation and home-based dialysis. Nephrology. 2009;14(1):123–32.

    Article  PubMed  Google Scholar 

  36. Zhou H, Isaman DJ, Messinger S, Brown MB, Klein R, Brandle M, et al. A computer simulation model of diabetes progression, quality of life, and cost. Diabetes Care. 2005;28(12):2856–63.

    Article  PubMed  Google Scholar 

  37. Palmer AJ, Annemans L, Roze S, Lamotte M, Lapuerta P, Chen R, et al. Cost-effectiveness of early irbesartan treatment versus control (standard antihypertensive medications excluding ACE inhibitors, other angiotensin-2 receptor antagonists, and dihydropyridine calcium channel blockers) or late irbesartan treatment in patients with type 2 diabetes, hypertension, and renal disease. Diabetes Care. 2004;27(8):1897–903.

    Article  PubMed  Google Scholar 

  38. Okubo R, Kondo M, Hoshi SL, Yamagata K. Cost-effectiveness of obstructive sleep apnea screening for patients with diabetes or chronic kidney disease. Sleep Breath. 2015;19(3):1081–92.

    Article  PubMed  Google Scholar 

  39. Kirby L, Vale L. Dialysis for end-stage renal disease: determining a cost-effective approach. Int J Technol Assess Health Care. 2001;17(2):181–9.

    Article  CAS  PubMed  Google Scholar 

  40. Pike E, Hamidi V, Ringerike T, Wisloff T, Klemp M. More use of peritoneal dialysis gives significant savings: a systematic review and health economic decision model. J Clin Med Res. 2017;9(2):104.

    Article  PubMed  Google Scholar 

  41. Yang F, Lau T, Luo N. Cost-effectiveness of haemodialysis and peritoneal dialysis for patients with end-stage renal disease in Singapore. Nephrology. 2016;21(8):669–77.

    Article  PubMed  Google Scholar 

  42. Erickson KF, Japa S, Owens DK, Chertow GM, Garber AM, Goldhaber-Fiebert JD. Cost-effectiveness of statins for primary cardiovascular prevention in chronic kidney disease. J Am Coll Cardiol. 2013;61(12):1250–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Littlewood KJ, Greiner W, Baum D, Zoellner Y. Adjunctive treatment with moxonidine versus nitrendipine for hypertensive patients with advanced renal failure: a cost-effectiveness analysis. BMC Nephrol. 2007;8(1):1–8.

    Article  CAS  Google Scholar 

  44. Ishii H, Nakajima H, Kamei N, Niiya T, Hiyoshi T, Hiramori Y, et al. Quality-of-life comparison of dapagliflozin versus dipeptidyl peptidase 4 inhibitors in patients with type 2 diabetes mellitus: a randomized controlled trial (J-BOND study). Diabetes Ther. 2020;11(12):2959–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grandy S, Langkilde AM, Sugg JE, Parikh S, Sjöström CD. Health-related quality of life (EQ-5D) among type 2 diabetes mellitus patients treated with dapagliflozin over 2 years. Int J Clin Pract. 2014;68(4):486–94.

    Article  CAS  PubMed  Google Scholar 

  46. Jesky MD, Dutton M, Dasgupta I, Yadav P, Ng KP, Fenton A, et al. Health-related quality of life impacts mortality but not progression to end-stage renal disease in pre-dialysis chronic kidney disease: a prospective observational study. PLoS ONE. 2016;11(11): e0165675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wyld M, Morton RL, Hayen A, Howard K, Webster AC. A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS ONE. 2012;9: e1001307.

    Google Scholar 

  48. Lee AJ, Morgan CL, Conway P, Currie CJ. Characterisation and comparison of health-related quality of life for patients with renal failure. Curr Med Res Opin. 2005;21(11):1777–83.

    Article  PubMed  Google Scholar 

  49. Lin WQ, Cai ZJ, Chen T, Liu MB, Li N, Zheng B. Cost-effectiveness of dipeptidylpeptidase-4 inhibitors added to metformin in patients with type 2 diabetes in China. Front Endocrinol. 2021;12: 684960.

    Article  Google Scholar 

  50. Harris S, Mamdani M, Galbo-Jørgensen CB, Bøgelund M, Gundgaard J, Groleau D. The effect of hypoglycemia on health-related quality of life: Canadian results from a multinational time trade-off survey. Can J Diabetes. 2014;38(1):45–52.

    Article  PubMed  Google Scholar 

  51. Paracha N, Abdulla A, MacGilchrist KS. Systematic review of health state utility values in metastatic non-small cell lung cancer with a focus on previously treated patients. Health Qual Life Outcomes. 2018;16(1):1–30.

    Article  Google Scholar 

  52. Evans M, Khunti K, Mamdani M, Galbo-Jørgensen CB, Gundgaard J, Bøgelund M, et al. Health-related quality of life associated with daytime and nocturnal hypoglycaemic events: a time trade-off survey in five countries. Health Qual Life Outcomes. 2013;11(1):1–9.

    Article  Google Scholar 

  53. Tarride JE, Burke N, Leslie WD, Morin SN, Adachi JD, Papaioannou A, et al. Loss of health-related quality of life following low-trauma fractures in the elderly. BMC Geriatr. 2016;16(1):1–1.

    Article  Google Scholar 

  54. Willis M, Nilsson A, Kellerborg K, Ball P, Roe R, Traina S, et al. Cost-effectiveness of canagliflozin added to standard of care for treating diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM) in England: estimates using the CREDEM-DKD model. Diabetes Ther. 2021;12(1):313–28.

    Article  PubMed  Google Scholar 

  55. Peasgood T, Brennan A, Mansell P, Elliott J, Basarir H, Kruger J. The impact of diabetes-related complications on preference-based measures of health-related quality of life in adults with type I diabetes. Med Decis Making. 2016;36(8):1020–33.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Medicare Part D: drug spending and utilization, calendar years 2015–2019.

  57. World Bank, Constant GDP per capita for the United States [NYGDPPCAPKDUSA], retrieved from Federal Reserve Economic Data (FRED), Federal Reserve Bank of St. Louis. https://fred.stlouisfed.org/series/NYGDPPCAPKDUSA. Accessed 23 May 2022.

  58. United States Department of Labor, Bureau of Labor Statistics. Medical care component. Consumer price index. https://www.bls.gov/cpi/. Accessed 7 Apr 2022.

  59. Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016;316(10):1093–103.

    Article  PubMed  Google Scholar 

  60. Gordon EJ, Prohaska TR, Sehgal AR. The financial impact of immunosuppressant expenses on new kidney transplant recipients. Clin Transplant. 2008;22(6):738–48.

    Article  PubMed  PubMed Central  Google Scholar 

  61. McEwan P, Darlington O, McMurray JJ, Jhund PS, Docherty KF, Böhm M, et al. Cost-effectiveness of dapagliflozin as a treatment for heart failure with reduced ejection fraction: a multinational health-economic analysis of DAPA-HF. Eur J Heart Fail. 2020;22(11):2147–56.

    Article  PubMed  Google Scholar 

  62. Goeree R, Manalich J, Grootendorst P, Beecroft ML, Churchill DN. Cost analysis of dialysis treatments for end-stage renal disease (ESRD). Clin Invest Med. 1995;18(6):455–64.

    CAS  PubMed  Google Scholar 

  63. Statista. Average amount charged for a kidney transplant in the U.S. as of 2020, by category (in U.S. dollars): average amount charged for kidney transplant sub-procedures in the U.S. 2020. https://www.statista.com/statistics/1100710/organ-transplantation-costs-breakdown-us/. Accessed 7 Apr 2022.

  64. National Average Drug Acquisition Cost (NADAC) weekly reference data. https://data.medicaid.gov/Drug-Pricing-and-Payment/NADAC-National-Average-Drug-Acquisition-Cost-/a4y5-998d. Accessed 30 June 2021.

  65. United States Renal Data System. 2020 Annual data report: epidemiology of kidney disease in the United States. Bethesda (MD): National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2020.

  66. United States Renal Data System (USRDS). Healthcare expenditures for persons with CKD. https://adr.usrds.org/2020/chronic-kidney-disease/6-healthcare-expenditures-for-persons-with-ckd. Accessed 13 Feb 2022.

  67. Ozieh MN, Bishu KG, Dismuke CE, Egede LE. Trends in healthcare expenditure in United States adults with chronic kidney disease: 2002–2011. BMC Health Serv Res. 2017;17(1):1–9.

    Article  Google Scholar 

  68. Institute for Health Metrics and Evaluation. Average outpatients visit in US approaching $500. ScienceDaily. 17 December 2018. www.sciencedaily.com/releases/2018/12/181217081825.htm. Accessed 7 Apr 2022.

  69. Krittayaphong R, Permsuwan U. Cost-utility analysis of add-on dapagliflozin treatment in heart failure with reduced ejection fraction. Int J Cardiol. 2021;322:183–90.

    Article  PubMed  Google Scholar 

  70. Desai D, Mehta D, Mathias P, Menon G, Schubart UK. Health care utilization and burden of diabetic ketoacidosis in the US over the past decade: a nationwide analysis. Diabetes Care. 2018;41(8):1631–8.

    Article  PubMed  Google Scholar 

  71. Bergenheim K, Williams SA, Bergeson JG, Stern L, Sriprasert M. US cost-effectiveness of saxagliptin in type 2 diabetes mellitus. Am J Pharm Benefits. 2012;4(1):20–8.

    Google Scholar 

  72. Amos TB, Montejano L, Juneau P, Bolge SC. Healthcare costs of urinary tract infections and genital mycotic infections among patients with type 2 diabetes mellitus initiated on canagliflozin: a retrospective cohort study. J Med Econ. 2017;20(3):303–13.

    Article  PubMed  Google Scholar 

  73. Williams SA, Chastek B, Sundquist K, Barrera-Sierra S, Leader D Jr, Weiss RJ, et al. Economic burden of osteoporotic fractures in US managed care enrollees. Am J Manag Care. 2020;26:e142–9.

    Article  PubMed  Google Scholar 

  74. Weycker D, Li X, Barron R, Bornheimer R, Chandler D. Hospitalizations for osteoporosis-related fractures: economic costs and clinical outcomes. Bone Rep. 2016;5:186–91.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nguyen E, Coleman CI, Nair S, Weeda ER. Cost-utility of empagliflozin in patients with type 2 diabetes at high cardiovascular risk. J Diabetes Complicat. 2018;32(2):210–5.

    Article  Google Scholar 

  76. Heerspink HJ, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46.

    Article  CAS  PubMed  Google Scholar 

  77. Physicians’ fee & coding guide 2015. Atlanta (GA): InGauge Health Solutions; 2015.

  78. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38(9):1638–42.

    Article  CAS  PubMed  Google Scholar 

  79. Statista. Gross domestic product (GDP) per capita in the United States in current prices from 1986 to 2026 (in U.S. dollars). https://www.statista.com/statistics/263601/gross-domestic-product-gdp-per-capita-in-the-united-states. Accessed 7 Apr 2022.

Download references

Acknowledgments

We acknowledge Florida A&M University for overall support. The authors acknowledge Title III for financial assistance. The authors extend their gratitude to the patients and investigators involved in the DELIGHT study and in the other supporting clinical studies who made this cost-effectiveness analysis possible. We thank Dr. Deepak L. Bhatt (MD, MPH), Professor of Medicine at Harvard Medical School for his valuable comments on the design of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askal Ayalew Ali.

Ethics declarations

Funding

This research did not receive any external funding.

Conflict of interest

The authors have no conflicts of interest that are directly relevant to the contents of this study.

Ethics approval

The present study did not involve a direct collection of primary data from humans or animals by any investigator. Therefore, ethics approval was not required by an institutional review board.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The major inputs used to parametrize the model were included in the main article. Supporting information is provided as Electronic Supplementary Material.

Code availability

Not applicable.

Author contributions

All authors equally contributed to the study concept, design, data analysis, and interpretation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 228 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abegaz, T.M., Diaby, V., Sherbeny, F. et al. Cost Effectiveness of Dapagliflozin Added to Standard of Care for the Management of Diabetic Nephropathy in the USA. Clin Drug Investig 42, 501–511 (2022). https://doi.org/10.1007/s40261-022-01160-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-022-01160-8

Navigation