Skip to main content

Biopolymers: Regulatory and Legislative Issues

  • Chapter
  • First Online:
Biopolymers

Abstract

The European Green Deal is working towards zero waste and pollution through the well organized use of natural resources, as obtaining and disposing of conventional polymer-based materials is considerably challenging in this respect. With the negative influence of conventional polymer-based materials on the environment and climate change (greenhouse gases emissions, particularly carbon dioxide emissions; waste; leakage in biosphere; incineration with a strong negative environmental influence through carbon dioxide) the use of bioplastics has become a top priority. In the development and adoption of biological degradable and compostable materials, the standards and regulatory aspects are an important driving force. This chapter offers an overview of the important standards used to assess the biodegradability and compostability of biopolymers, and discusses some aspects related to potential migration from biopolymer-based formulations. The data presented in this chapter can be useful for researchers who want to develop and adopt bioplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe MM, Branciforti MC, Brienzo M (2021) Biodegradation of hemicellulose-cellulose-starch-based bioplastics and microbial polyesters. Recycling 6:22. https://doi.org/10.3390/recycling6010022

    Article  Google Scholar 

  2. Akinmulewo AB, Nwinyi OC (2019) Polyhydroxyalkanoate: a biodegradable polymer (a mini review). J Phys Conf Ser 1378:042007. https://doi.org/10.1088/1742-6596/1378/4/042007

  3. Alashwal BY, Bala MS, Gupta A, Sharma S, Mishra P (2020) Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: a comparative analysis. J King Saud Univ Sci 32(1):853–857

    Article  Google Scholar 

  4. Altaee N, El GA, Fahdil A, Sudesh K, Yousif E (2016) Biodegradation of different formulations of polyhydroxybutyrate films in soil. Springer Plus 5(1):762. https://doi.org/10.1186/s40064-016-2480-2

  5. Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58:2119–2132. https://doi.org/10.1002/pen.24855

    Article  CAS  Google Scholar 

  6. ASTM D5338–15(2021) (2021) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures. https://www.astm.org/Standards/D5338. Accessed 2 Oct 2021

  7. ASTM D5511–18 (2018) standard test method for determining anaerobic biodegradation of plastic materials under high-solids anaerobic-digestion conditions. https://www.astm.org/Standards/D5511.htm. Accessed 2 Oct 2021

  8. ASTM D5526–18 (2018) Standard test method for determining anaerobic biodegradation of plastic materials under accelerated landfill conditions. https://www.astm.org/Standards/D5526.htm. Accessed 2 Oct 2021

  9. ASTM D5929–18 (2018) Standard test method for determining biodegradability of materials exposed to source-separated organic municipal solid waste mesophilic composting conditions by respirometry. https://www.astm.org/Standards/D5929.htm. Accessed 2 Oct 2021

  10. ASTM D5988–18 (2018) Standard test method for determining aerobic biodegradation of plastic materials in soil. https://www.astm.org/Standards/D5988.htm. Accessed 2 Oct 2021

  11. ASTM D6400–12 (2012) Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. https://www.astm.org/DATABASE.CART/HISTORICAL/D6400-04.htm. Accessed 2 Oct 2021

  12. ASTM D6691–17 (2017) Standard test method for determining aerobic biodegradation of plastic materials in the marine environment by a defined microbial consortium or natural sea water inoculum. https://www.astm.org/Standards/D6691.htm. Accessed 2 Oct 2021

  13. ASTM D6868–17 (2017) Standard specification for labeling of end items that incorporate plastics and polymers as coatings or additives with paper and other substrates designed to be aerobically composted in municipal or industrial facilities. https://www.astm.org/DATABASE.CART/HISTORICAL/D6868-17.htm. Accessed 2 Oct 2021

  14. ASTM D6954–18 (2018) Standard guide for exposing and testing plastics that degrade in the environment by a combination of oxidation and biodegradation. https://www.astm.org/Standards/D6954.htm. Accessed 2 Oct 2021

  15. ASTM D7473–12 (2012) Standard test method for weight attrition of plastic materials in the marine environment by open system aquarium incubations. https://www.astm.org/DATABASE.CART/HISTORICAL/D7473-12.htm. Accessed 2 Oct 2021

  16. ASTM D7475–11 (2011) Standard test method for determining the aerobic degradation and anaerobic biodegradation of plastic materials under accelerated bioreactor landfill conditions. https://www.astm.org/DATABASE.CART/HISTORICAL/D7475-11.htm. Accessed 2 Oct 2021

  17. Avella M, Martuscelli E, Raimo M (2000) Review properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545

    Article  CAS  Google Scholar 

  18. Bastioli C (ed) (2020) Handbook of biodegradable polymers. De Gruyter, pp 115–146

    Google Scholar 

  19. Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S (2021) A Review of the applications and biodegradation of polyhydroxyalkanoates and poly(lactic acid) and its composites. Polymers 13:1544. https://doi.org/10.3390/polym13101544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110:621–632. https://doi.org/10.1016/j.jbiosc.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  21. 21CFR184.1061 (2021) Code of federal regulations e-CFR 184.1061. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1061. Accessed 7 Oct 2021

  22. David G, Michel J, Gastaldi E, Gontard N, Angellier-Coussy H (2020) How vine shoots as fillers impact the biodegradation of phbv-based composites. Int J Mol Sci 21(1):228. https://doi.org/10.3390/ijms21010228

    Article  CAS  Google Scholar 

  23. De Wilde B (2020) International norms on biodegradability and certification procedures. In: Di Bartolo A, Infurna G, Dintcheva NT (2021) A review of bioplastics and their adoption in the circular economy. Polymers 13:1229. https://doi.org/10.3390/polym13081229

  24. Duncan TV, Pillai K (2014) Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl Mater Inter 7(1):2–19. https://doi.org/10.1021/am5062745

    Article  CAS  Google Scholar 

  25. EC, 2011 (2011) Commission regulation (EU) no 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union L12:1–89. Accessed 1 Oct 2021

    Google Scholar 

  26. EN 13432:2001/AC:2005 (2005) Packaging−requirements for packaging recoverable through composting and biodegradation−test scheme and evaluation criteria for the final acceptance of packaging. https://standards.iteh.ai/catalog/standards/cen/e0eff7ab-2e79-47d5-89c3-edaba8570c14/en-13432-2000-ac-2005. Accessed 3 Oct 2021

  27. EN 14995:2007 (2007) Plastics-evaluation of compostability-test scheme and specifications. https://standards.iteh.ai/catalog/standards/cen/b636a964-ba6f-487c-8b17-15b7ae47b374/en-14995-2006. Accessed 3 Oct 2021

  28. EN 17033:2018 (2018) Plastics-biodegradable mulch films for use in agriculture and horticulture-requirements and test methods. https://standards.iteh.ai/catalog/standards/cen/b09b1982-efd3-45fe-9d87-7798699e5c3c/en-17033-2018. Accessed 3 Oct 2021

  29. Endres HJ, Siebert A (2011) The regulatory framework for biopolymers. In: Endres HJ, Siebert A (eds) Engineering biopolymers. Markets, manufacturing, properties and applications. Hanser Publications, pp 45–70

    Google Scholar 

  30. Ferreira FV, Cividanes LS, Gouveia RF, Lona LMF (2017) An overview on properties and applications of poly(butylene adipate co-terephthalate)-PBAT based composites. Polym Eng Sci 59:E7–E15. https://doi.org/10.1002/pen.24770

    Article  CAS  Google Scholar 

  31. Filiciotto L, Rothenberg G (2021) Biodegradable plastics: standards, policies, and impacts. Chemsuschem 14:56–72. https://doi.org/10.1002/cssc.202002044

    Article  CAS  PubMed  Google Scholar 

  32. Folino A, Karageorgiou A, Calabrò PS, Komilis D (2020) Biodegradation of wasted bioplastics in natural and industrial environments: a review. Sustainability 12(15):6030. https://doi.org/10.3390/su12156030

  33. Garlotta D (2001) A literature review of poly(Lactic Acid). J Polym Environ 9:63–84. https://doi.org/10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  34. George A, Sanjay MR, Srisuk R, Parameswaranpillai J, Siengchin S (2020) A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol 154:329–338. https://doi.org/10.1016/j.ijbiomac.2020.03.120

    Article  CAS  PubMed  Google Scholar 

  35. Ghosh K, Jones BH (2021) Roadmap to biodegradable plastics- current state and research needs. ACS Sustain Chem Eng. 9(18):6170–6187. https://doi.org/10.1021/acssuschemeng.1c00801

    Article  CAS  Google Scholar 

  36. Giubilini A, Bondioli F, Messori M, Nyström G, Siqueira G (2021) Advantages of additive manufacturing for biomedical applications of polyhydroxyalkanoates. Bioengineering 8(2):29. https://doi.org/10.3390/bioengineering8020029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonçalves C, Gonçalves IC, Magalhães FD, Pinto AM (2017) Poly(lactic acid) composites containing carbon-based nanomaterials: a review. Polymers 9(7):269. https://doi.org/10.3390/polym9070269

    Article  CAS  PubMed Central  Google Scholar 

  38. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  39. Haider TP, Vçlker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? the impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed 58:50–62. https://doi.org/10.1002/anie.201805766

    Article  CAS  Google Scholar 

  40. http://www.hybridgreen.com.my/index.php/en-13432. Accessed 2 Oct 2021

  41. https://standards.cen.eu/dyn/www/f?p=CENWEB:105::RESET. Accessed 2 Oct 2021

  42. https://www.astm.org/. Accessed 2 Oct 2021

  43. https://www.astm.org/Standard/standards-and-publications.html. Accessed 2 Oct 2021

  44. https://www.bioplasticsmagazine.com/en/news/meldungen/20201029-Bioplastics-successfully-meet-all-EU-safety-standards.php. Accessed 2 Oct 2021

  45. https://www.bsigroup.com/. Accessed 2 Oct 2021

  46. https://www.cencenelec.eu/about-cen/. Accessed 2 Oct 2021

  47. https://www.din.de/en. Accessed 2 Oct 2021

  48. https://www.european-bioplastics.org/. Accessed 2 Oct 2021

  49. https://www.ftc.gov/sites/default/files/documents/public_comments/guides-use-environmental-marketing-claims-project-no.p954501-00181%C2%A0/00181-56737.pdf. Accessed 10 Oct 2021

  50. https://www.icheme.org/media/13560/standards-for-bio-based-biodegradable-and-compostable-plastics-v1.pdf. Accessed 2 Oct 2021

  51. https://www.iso.org/home.html. Accessed 2 Oct 2021

  52. https://www.iso.org/sites/ConsumersStandards/1_standards.html. Accessed 1 Oct 2021

  53. https://www.iso.org/standards.html. Accessed 1 Oct 2021

  54. https://www.jsa.or.jp/en/ (accessed on 2 October 2021).

  55. https://www.oecd.org/. Accessed 2 Oct 2021

  56. https://www.standards.org.au/. Accessed 2 Oct 2021

  57. https://www.switchtogreen.eu/the-eu-green-deal-promoting-a-green-notable-circular-economy/. Accessed 2 Oct 2021

  58. ISO 10210:2012 (2012) Plastics–methods for the preparation of samples for biodegradation testing of plastic materials. https://www.iso.org/standard/45851.html. Accessed 1 Oct 2021

  59. ISO 13975:2012 (2012) Plastics-determination of the ultimate anaerobic biodegradation of plastic materials in controlled slurry digestion systems-method by measurement of biogas production. https://www.iso.org/standard/54396.html. Accessed 1 Oct 2021

  60. ISO 13975:2019 (2019) Plastics-determination of the ultimate anaerobic biodegradation of plastic materials in controlled slurry digestion systems-method by measurement of biogas production. https://www.iso.org/standard/74992.html. Accessed 1 Oct 2021

  61. ISO 14851:1999 (1999) Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium-method by measuring the oxygen demand in a closed respirometer. https://www.iso.org/standard/25765.html. Accessed 1 Oct 2021

  62. ISO 14852:2018 (2018) Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium–method by analysis of evolved carbon dioxid. https://www.iso.org/standard/72051.html. Accessed 1 Oct 2021

  63. ISO 14853:2016 (2016) Plastics-determination of the ultimate anaerobic biodegradation of plastic materials in an aqueous system-method by measurement of biogas production. https://www.iso.org/standard/67804.html. Accessed 1 Oct 2021

  64. ISO 14855–1:2012 (2012) Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions-method by analysis of evolved carbon dioxide-Part 1: general method. https://www.iso.org/standard/57902.html. Accessed 1 Oct 2021

  65. ISO 14855–2:2018 (2018) Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions–method by analysis of evolved carbon dioxide–Part 2: gravimetric measurement of carbon dioxide evolved in a laboratory-scale test. https://www.iso.org/standard/72046.html. Accessed 1 Oct 2021

  66. ISO 15985:2014 (2014) Plastics-determination of the ultimate anaerobic biodegradation under high-solids anaerobic-digestion conditions-method by analysis of released biogas. https://www.iso.org/standard/63366.html. Accessed 1 Oct 2021

  67. ISO 16929:2013 (2013) Plastics-determination of the degree of disintegration of plastic materials under defined composting conditions in a pilot-scale test. https://www.iso.org/standard/62948.html. Accessed 1 Oct 2021

  68. ISO 16929:2019 (2019) Plastics–determination of the degree of disintegration of plastic materilas under defined composting conditions in a pilot-scale test. https://www.iso.org/standard/72473.html. Accessed 1 Oct 2021

  69. ISO 16929:202 (2021) Plastics-soil biodegradable materials for mulch film for use in agriculture and horticulture–requirements and test methods regarding biodegradation, ecotoxicity and control of constituents. https://www.iso.org/standard/75894.html. Accessed 1 Oct 2021

  70. ISO 16929:2021 (2021) Plastics–determination of the degree of disintegration of plastic materials under defined composting conditions in a pilot-scale test. https://www.iso.org/standard/80302.html. Accessed 1 Oct 2021

  71. ISO 17088:2012 (2012) Specifications for compostable plastics. https://www.iso.org/obp/ui/#iso:std:iso:17088:ed-2:v1:en. Accessed 1 Oct 2021

  72. ISO 17556:2012 (2012) Plastics-determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. https://www.iso.org/standard/56089.html. Accessed 3 Oct 2021

  73. ISO 18830:2016 (2016) Plastics-determination of aerobic biodegradation of non-floating plastic materials in a seawater/sandy sediment interface-method by measuring the oxygen demand in closed respirometer. https://www.iso.org/standard/63515.html. Accessed 1 Oct 2021

  74. ISO 19679:2016 (2016) Plastics-determination of aerobic biodegradation of non-floating plastic materials in a seawater/sediment interface-method by analysis of evolved carbon dioxide. https://www.iso.org/standard/66003.html. Accessed 1 Oct 2021

  75. ISO 20200:2015 (2015) Plastics-determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test. https://www.iso.org/standard/63367.html. Accessed 1 Oct 2021

  76. ISO 22404:2019 (2019) Plastics-determination of the aerobic biodegradation of non-floating materials exposed to marine sediment-method by analysis of evolved carbon dioxide. https://www.iso.org/standard/73123.html. Accessed 1 Oct 2021

  77. ISO 23517:2020 (2021) Plastics-soil biodegradable materials for mulch film for use in agriculture and horticulture–requirements and test methods regarding biodegradation, ecotoxicity and control of constituents. https://www.iso.org/standard/77499.html. Accessed 1 Oct 2021

  78. ISO 23977 1:2020 (2020) Plastics-determination of the aerobic biodegradation of plastic materials exposed to seawater-Part 1: method by analysis of evolved carbon dioxide. https://www.iso.org/standard/77499.html. Accessed 1 Oct 2021

  79. ISO 23977–2:2020 (2020) Plastics-determination of the aerobic biodegradation of plastic materials exposed to seawater-Part 2: method by measuring the oxygen demand in closed respirometer. https://www.iso.org/standard/77503.html. Accessed 1 Oct 2021

  80. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215. https://doi.org/10.1002/anie.201410770

    Article  CAS  Google Scholar 

  81. Kawashima N, Yagi T, Kojima K (2019) How do bioplastics and fossil-based plastics play in a circular economy? Macromol Mater Eng 304:1–14. https://doi.org/10.1002/mame.201900383

    Article  CAS  Google Scholar 

  82. Khosravi-Darani K, Bucci DZ (2015) Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chem Biochem Eng Q 29(2):275–285. https://doi.org/10.15255/CABEQ.2014.2260

    Article  CAS  Google Scholar 

  83. Kliem S, Kreutzbruck M, Bonten C (2020) Review on the biological degradation of polymers in various environments. Materials 13:4586. https://doi.org/10.3390/ma13204586

    Article  CAS  PubMed Central  Google Scholar 

  84. Lajarrige A, Gontard N, Gaucel S, Peyron S (2020) Evaluation of the food contact suitability of aged bio-nanocomposite materials dedicated to food packaging applications. Appl Sci 10:877. https://doi.org/10.3390/app10030877

    Article  CAS  Google Scholar 

  85. Madhavan K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

  86. Mergaert J, Anderson C, Wouters A, Swings J, Kersters K (1992) Biodegradation of polyhydroxyalkanoates. FEMS Microbiol Lett 103:317–321

    Article  CAS  Google Scholar 

  87. Mtibe A, Motloung MP, Bandyopadhyay J, Ray SS (2021) Synthetic biopolymers and their composites: advantages and limitations—an overview. Macromol Rapid Commun 42(15):2100130. https://doi.org/10.1002/marc.202100130

    Article  CAS  Google Scholar 

  88. Muncke J, Andersson A-M, Backhaus T, Boucher JM, Carney B, Castillo A, Chevrier J, Demeneix BA, Emmanuel JA, Fini J-B, Gee D, Geueke B, Groh K, Heindel JJ, Houlihan J, Kassotis CD, Kwiatkowski CF, Lefferts LY, Maffini MV, Martin OV, Myers JP, Nadal A, Nerin C, Pelch KE, Fernandez SR, Sargis RM, Soto AM, Trasande L, Vandenberg LN, Wagner M, Wu C, Zoeller RT, Scheringer M (2020) Impacts of food contact chemicals on human health: a consensus statement. Environ Health 19(1):25. https://doi.org/10.1186/s12940-020-0572-5

  89. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46. https://doi.org/10.1016/j.addr.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  90. Narancic F, Cerrone NB, O’Connor KE (2020) Recent advances in bioplastics: application and biodegradation. Polymers 12(4):920. https://doi.org/10.3390/polym12040920

    Article  CAS  PubMed Central  Google Scholar 

  91. Naser AZ, Deiab I, Darras BM (2021) Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 11(28):17151–17196. https://doi.org/10.1039/d1ra02390j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Niaounakis M (2013) Biopolymers: reuse, recycling, and disposal. Elsevier, Oxford, UK

    Google Scholar 

  93. Nieto MB (2009) Structure and function of polysaccharide gum-based edible films and coatings. In: Huber K, Embuscado M (eds) Edible films and coatings for food applications. Springer, pp 57–112

    Google Scholar 

  94. Ong SY, Chee JY, Sudesh K (2017) Degradation of Polyhydroxyalkanoate (PHA): a review. J Sib Fed Univ Biol 10(2):211–225

    Article  Google Scholar 

  95. Pellis A, Malinconico M, Guarneri A, Gardossi L (2021) Renewable polymers and plastics: performance beyond the green. New Biotechnol 60:146–158. https://doi.org/10.1016/j.nbt.2020.10.003

    Article  CAS  Google Scholar 

  96. Philibert T, Lee BH, Fabien N (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol 181:1314–1337. https://doi.org/10.1007/s12010-016-2286-2

    Article  CAS  PubMed  Google Scholar 

  97. Pischedda A, Degli-Innocenti MTF (2019) Biodegradation of plastics in soil: the effect of temperature. Polym Degrad Stab 170:1090174. https://doi.org/10.1016/j.polymdegradstab.2019.109017

    Article  CAS  Google Scholar 

  98. Polman EMN, Gruter GJM, Parsons JR, Tietema A (2021) Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: a review. Sci Total Environ 753:141953. https://doi.org/10.1016/j.scitotenv.2020.141953

  99. prEN 17427:2020 (2020) Packaging-requirements and test scheme for carrier bags suitable for treatment in well-managed home composting installations. https://standards.iteh.ai/catalog/standards/cen/53ff637d-f64b-4e33-8271-89c77acfa94f/pren-17427. Accessed 3 Oct 2021

  100. Ramakrishnan N, Sharma S, Gupta A, Alashwal BY (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358. https://doi.org/10.1016/j.ijbiomac.2018.01.037

  101. Scarfato P, Di Maio L, Incarnato L (2015) Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. J Appl Polym 132(48). https://doi.org/10.1002/app.42597

  102. Shaikh S, Yaqoob M, Aggarwal P (2021) An overview of biodegradable packaging in food industry. Current Res Food Sci 4:503–520. https://doi.org/10.1016/j.crfs.2021.07.005

    Article  CAS  Google Scholar 

  103. Sharma S, Gupta A (2016) Sustainable management of Keratin waste biomass: applications and Future perspectives. Braz Arch Biol Technol 59:e16150684. https://doi.org/10.1590/1678-4324-2016150684

  104. Sharma S, Gupta A, Kumar A (2019) Keratin: an Introduction. In: Sharma S, Kumar A (eds) Keratin as a protein biopolymer. Springer, pp 1–18

    Google Scholar 

  105. Sharma S, Gupta A, Kumar A, Kee CG, Kamyab H, Saufi SM (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Techn Environ Policy 20:2157–2167. https://doi.org/10.1007/s10098-018-1498-2

    Article  CAS  Google Scholar 

  106. Sharma S, Kumar A (2018) Keratin as protein biopolymer: extraction from waste biomass and applications. Springer Nature Publishing, Switzerland

    Google Scholar 

  107. Siracusa V, Blanco I (2020) Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 12:1641. https://doi.org/10.3390/polym12081641

    Article  CAS  PubMed Central  Google Scholar 

  108. Stoica M (2020) Biodegradable nanomaterials for drink packaging. In: Abdeltif A, Ranjendran S, Nguyen TA, Assadi A, Mahdy Sharoba A (eds) Nanotechnology in the beverage industry: fundamentals and applications. Publisher Elsevier, pp 609–632

    Google Scholar 

  109. Stoica M (2020a) Polymer nanocomposites for drink bottles. In: Abdeltif A, Ranjendran S, Nguyen TA, Assadi A, Mahdy Sharoba A (eds) Nanotechnology in the beverage industry: fundamentals and applications. Publisher Elsevier, pp 633–655

    Google Scholar 

  110. Stoica M, Antohi VM, Sorici M, Stoica D (2020) The financial impact of replacing plastic packaging by biodegradable biopolymers-a smart solution for the food industry. J Clean Prod 277:124013. https://doi.org/10.1016/j.jclepro.2020.124013

  111. Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G (2019) Natural polysaccharide nanomaterials: an overview of their immunological properties. Int J Mol Sci 20:5092. https://doi.org/10.3390/ijms20205092

    Article  CAS  PubMed Central  Google Scholar 

  112. Ubeda S, Aznar M, Alfaro P, Nerin C (2019) Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Anal Bioanal Chem 411:3521–3532. https://doi.org/10.1007/s00216-019-01831-0

    Article  CAS  PubMed  Google Scholar 

  113. Urbanek AK, Rymowicz W, Strzelecki MC, Kociuba W, Franczak Ł, Mironczuk AM (2017) Isolation and characterization of Arctic microorganisms decomposing bioplastics. AMB Express 7:148. https://doi.org/10.1186/s13568-017-0448-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vasile C, Baican M (2021) Progresses in food packaging, food quality, and safety-controlled-release antioxidant and/or antimicrobial packaging. Molecules 26(5):1263. https://doi.org/10.3390/molecules26051263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Volova TG, Boyandin AN, Vasilev AD, Karpov VA, Kozhevnikov IV, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Bui Ba X, Vu Viet D, Gitelson II (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 95(12):2350–2359

    Article  CAS  Google Scholar 

  116. Wang GX, Huang D, Ji JH, Völker C, Wurm FR (2021) Seawater-degradable polymers-fighting the marine plastic pollution. Adv Sci 8:2001121. https://doi.org/10.1002/advs.202001121

    Article  CAS  Google Scholar 

  117. Wojnowska-Baryła I, Kulikowska D, Bernat K (2020) Effect of bio-based products on waste management. Sustainability 12(5):2088. https://doi.org/10.3390/su12052088

    Article  CAS  Google Scholar 

  118. Xu J, Guo BH (2010) Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5:1149–1163. https://doi.org/10.1002/biot.201000136

    Article  CAS  PubMed  Google Scholar 

  119. Zaidi Z, Mawad D, Crosky A (2019) Soil biodegradation of unidirectional Polyhydroxybutyrate-Co-Valerate (PHBV) Biocomposites Toughened With Polybutylene-Adipate-Co-Terephthalate (PBAT) and Epoxidized Natural Rubber (ENR). Front Mater. https://doi.org/10.3389/fmats.2019.00275

    Article  Google Scholar 

  120. Zimmermann L, Dombrowski A, Volker C, Wagner M (2020) Are bioplastics and plant-based materials safer than conventional plastics? In vitro toxicity and chemical composition. Environ Int 145:106066. https://doi.org/10.1016/j.envint.2020.106066

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maricica Stoica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoica, M., Stoica, D., Ivan, A.S., Dragomir, C.M.B. (2022). Biopolymers: Regulatory and Legislative Issues. In: Nadda, A.K., Sharma, S., Bhat, R. (eds) Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98392-5_4

Download citation

Publish with us

Policies and ethics