Skip to main content

Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials

  • Chapter
  • First Online:
Nanotoxicology in Safety Assessment of Nanomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1357))

Abstract

Nanotechnology is often praised as the future technology that will revolutionize the world as we know it, because nanomaterials (NMs) offer numerous practical applications for a wide range of fields such as medicine, cosmetics, food preservation, paintings, and industry. Produced by nanotechnology, NMs are in the front line of this innovative applied science, while nanoparticles (NPs) refer to materials existing in the natural world and measuring 1–100 nanometers in at least one dimension. The recent surge in the number of endeavors to utilize NMs makes it imperative to identify hazards and risk factors involved as we have yet to know harmful effects of this uncharted territory on the environment and public health. While researchers generally choose to carry out in vitro experiments in an effort to assess toxicity of NMs, in vivo approaches seem to yield better evidence that is more relevant to risk assessment. In that context, Drosophila melanogaster stands out as the most dynamic model organism for biological experiments, since 75% of the genes responsible for human diseases are known to have homologs in D. melanogaster, which facilitates research into various pathologies. This book chapter aims to present the full picture of studies on separate NMs that employed in vivo approaches (toxicity, genotoxicity, internalization, cell uptake, tissue distribution, etc.) using D. melanogaster, attempting to offer an in-depth analysis of risks involved in exposure to NMs, as well as many advantages of other animal models used by nanogenotoxicology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adolfsson K, Schneider M, Hammarin G et al (2013) Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function. Nanotechnology 24(28):285101. https://doi.org/10.1088/0957-4484/24/28/285101

    Article  CAS  PubMed  Google Scholar 

  2. Ahamed M, Posgai R, Gorey TJ et al (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharm 242:263–269. https://doi.org/10.1016/j.taap.2009.10.016

    Article  CAS  Google Scholar 

  3. Akhtar M, Ahamed M, Kumar S et al (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 7:845–857. https://doi.org/10.2147/IJN.S29129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alaraby M, Annangi B, Hernández A et al (2015a) A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. J Hazard Mater 296:166–174. https://doi.org/10.1016/j.jhazmat.2015.04.053

    Article  CAS  PubMed  Google Scholar 

  5. Alaraby M, Demir E, Hernández A et al (2015b) Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. Sci Total Environ 530-531:66–75. https://doi.org/10.1016/j.scitotenv.2015.05.069

    Article  CAS  PubMed  Google Scholar 

  6. Alaraby M, Hernández A, Annangi B et al (2015c) Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology 9:749–759. https://doi.org/10.3109/17435390.2014.976284

    Article  CAS  PubMed  Google Scholar 

  7. Alaraby M, Annangi B, Marcos R et al (2016a) Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: a review. J Toxicol Environ Health B Crit Rev 19(2):65–104. https://doi.org/10.1080/10937404.2016.1166466

    Article  CAS  PubMed  Google Scholar 

  8. Alaraby M, Hernández A, Marcos R (2016b) New insights in the acute toxic/genotoxic effects of CuO nanoparticles in the in vivo Drosophila model. Nanotoxicology 10(6):749–760. https://doi.org/10.3109/17435390.2015.1121413

    Article  CAS  PubMed  Google Scholar 

  9. Alaraby M, Hernández A, Marcos R (2017) Copper oxide nanoparticles and copper sulphate act as antigenotoxic agents in Drosophila melanogaster. Environ Mol Mutagen 58(1):46–55. https://doi.org/10.1002/em.22068

    Article  CAS  PubMed  Google Scholar 

  10. Alaraby M, Hernández A, Marcos R (2018) Systematic in vivo study of NiO nanowires and nanospheres: biodegradation, uptake and biological impacts. Nanotoxicology 12(9):1027–1044. https://doi.org/10.1080/17435390.2018.1513091

    Article  CAS  PubMed  Google Scholar 

  11. Alaraby M, Romero S, Hernández A et al (2019) Toxic and genotoxic effects of silver nanoparticles in Drosophila. Environ Mol Mutagen 60(3):277–285. https://doi.org/10.1002/em.22262

    Article  CAS  PubMed  Google Scholar 

  12. Alaraby M, Demir E, Domenech J et al (2020) In vivo evaluation of the toxic and genotoxic effects of exposure to cobalt nanoparticles in Drosophila melanogaster. Environ Sci Nano 7:610–622

    Article  CAS  Google Scholar 

  13. Alkilany AM, Murphy CJ (2010) Toxicity and cold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333. https://doi.org/10.1007/s11051-010-9911-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ambegaokar SS, Roy B, Jackson GR (2010) Neurodegenerative models in Drosophila: Polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis 40:29–39. https://doi.org/10.1016/j.nbd.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anand AS, Prasad DN, Singh SB et al (2017) Chronic exposure of zinc oxide nanoparticles causes deviant phenotype in Drosophila melanogaster. J Hazard Mater 327:180–186. https://doi.org/10.1016/j.jhazmat.2016.12.040

    Article  CAS  PubMed  Google Scholar 

  16. Anand AS, Gahlot U, Prasad DN et al (2019) Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 13(7):977–989. https://doi.org/10.1080/17435390.2019.1602680

    Article  CAS  PubMed  Google Scholar 

  17. Arami H, Khandhar A, Liggitt D et al (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44:8576–8607. https://doi.org/10.1039/C5CS00541H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Armstrong N, Ramamoorthy M, Lyon D et al (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8:e53186. https://doi.org/10.1371/journal.pone.0053186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asakura M, Sasaki T, Sugiyama T et al (2010) Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile a fibers. J Occup Health 52:155–166. https://doi.org/10.1539/joh.L9150

    Article  CAS  PubMed  Google Scholar 

  20. Austin LA, Mackey MA, Dreaden EC et al (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88:1391–1417. https://doi.org/10.1007/s00204-014-1245-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ávalos A, Haza AI, Drosopoulou E et al (2015) In vivo genotoxicity assesment of silver nanoparticles of different sizes by the somatic mutation and recombination test (SMART) on Drosophila. Food Chem Toxicol 85:114–119. https://doi.org/10.1016/j.fct.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  22. Ávalos A, Haza AI, Mateo D et al (2018) In vitro and in vivo genotoxicity assessment of gold nanoparticles of different sizes by comet and SMART assays. Food Chem Toxicol 120:81–88. https://doi.org/10.1016/j.fct.2018.06.061

    Article  CAS  PubMed  Google Scholar 

  23. Baeg E, Sooklert K, Sereemaspun A (2018) Copper oxide nanoparticles cause a dose-dependent toxicity via inducing reactive oxygen species in Drosophila. Nanomaterials (Basel) 8(10):824. https://doi.org/10.3390/nano8100824

    Article  CAS  Google Scholar 

  24. Baeza A, Vallet-Regí M (2015) Smart mesoporous silica nanocarriers for antitumoral therapy. Curr Top Med Chem 15:2306–2315. https://doi.org/10.2174/1568026615666150605114826

    Article  CAS  PubMed  Google Scholar 

  25. Balakrishnan V, Ab Wab HA, Razak KA et al (2013) In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J Nanomater 2013:8. https://doi.org/10.1155/2013/729306

    Article  CAS  Google Scholar 

  26. Barandeh F, Nguyen PL, Kumar R et al (2012) Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS One 7:e29424. https://doi.org/10.1371/journal.pone.0029424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Basak AK, Chatterjee T, Chakravarty A et al (2019) Silver nanoparticle–induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. Environ Monit Assess 191:497. https://doi.org/10.1007/s10661-019-7630-x

    Article  CAS  PubMed  Google Scholar 

  28. Bharali DJ, Klejbor I, Stachowiak EK et al (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. PNAS 102:11539–11544. https://doi.org/10.1073/pnas.0504926102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679. https://doi.org/10.1016/j.cbpa.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  30. Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23. https://doi.org/10.1038/nrg1503

    Article  CAS  PubMed  Google Scholar 

  31. Bolshakova O, Borisenkova A, Suyasova M et al (2019) In vitro and in vivo study of the toxicity of fullerenols С60, С70 and С120О obtained by an original two step method. Mater Sci Eng C 104:109945. https://doi.org/10.1016/j.msec.2019.109945

    Article  Google Scholar 

  32. Brunetti V, Chibli H, Fiammengo R et al (2013) InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 5(1):307–317. https://doi.org/10.1039/c2nr33024e

    Article  CAS  PubMed  Google Scholar 

  33. Buerki-Thurnherr T, Xiao L, Diener L et al (2013) In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7:402–416. https://doi.org/10.3109/17435390.2012.666575

    Article  CAS  PubMed  Google Scholar 

  34. Cardozo TR, De Carli RF, Seeber A et al (2019) Genotoxicity of zinc oxide nanoparticles: an in vivo and in silico study. Toxicol Res (Camb) 8(2):277–286. https://doi.org/10.1039/c8tx00255j

    Article  CAS  Google Scholar 

  35. Carmona ER, Escobar B, Vales G et al (2015a) Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Mutat Res Genet Toxicol Environ Mutagen 778:12–21. https://doi.org/10.1016/j.mrgentox.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  36. Carmona ER, Inostroza-Blancheteau C, Rubio L et al (2015b) Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicol Ind Health 32(12):1987–2001. https://doi.org/10.1177/0748233715599472

    Article  CAS  PubMed  Google Scholar 

  37. Carmona ER, Inostroza-Blancheteau C, Rubio L et al (2015c) Genotoxic effects of copper oxide nanoparticles in Drosophila melanogaster. Mutat Res 791:1–11. https://doi.org/10.1016/j.mrgentox.2015.07.006

    Article  CAS  Google Scholar 

  38. Carmona ER, García-Rodríguez A, Marcos R (2018) Genotoxicity of copper and nickel nanoparticles in somatic cells of Drosophila melanogaster. J Toxicol 2018:7278036. https://doi.org/10.1155/2018/7278036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588. https://doi.org/10.1016/j.tibtech.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  40. Charroux B, Royet J (2012) Gut-microbiota interactions in non-mammals: what can we learn from Drosophila? Semin Immunol 24:17–24. https://doi.org/10.1016/j.smim.2011.11.003

    Article  PubMed  Google Scholar 

  41. Chatterjee N, Yang J, Kim HM (2014a) Potential toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans. J Toxicol Environ Health A 77(22–24):1399–1408. https://doi.org/10.1080/15287394.2014.951756

    Article  CAS  PubMed  Google Scholar 

  42. Chatterjee N, Eom HJ, Choi J (2014b) Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen 55:122–133. https://doi.org/10.1002/em.v55.2

    Article  CAS  PubMed  Google Scholar 

  43. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  44. Chen J, Dong X, Zhao J et al (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol 29:330–337. https://doi.org/10.1002/jat.v29:4

    Article  CAS  PubMed  Google Scholar 

  45. Chen T, Yan J, Li Y (2014) Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal 22:95–104. https://doi.org/10.1016/j.jfda.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  46. Chen H, Wang B, Feng W et al (2015) Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence. Nanotoxicology 9:302–312. https://doi.org/10.3109/17435390.2014.929189

    Article  CAS  PubMed  Google Scholar 

  47. Chen L, Li J, Chen Z et al (2020) Toxicological evaluation of graphene-family nanomaterials. J Nanosci Nanotechnol 20(4):1993–2006. https://doi.org/10.1166/jnn.2020.17364

    Article  CAS  PubMed  Google Scholar 

  48. Chifiriuc MC, Ratiu AC, Popa M et al (2016) Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci 17(2):36. https://doi.org/10.3390/ijms17020036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chin CD, Laksanasopin T, Cheung YK et al (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17:1015–1019. https://doi.org/10.1038/nm.2408

    Article  CAS  PubMed  Google Scholar 

  50. Clift MJD, Boyles MSP, Brown DM et al (2010) An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signaling in vitro. Nanotoxicology 4:139–149. https://doi.org/10.3109/17435390903276925

    Article  CAS  PubMed  Google Scholar 

  51. Clutton-Brock TH (1988) Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press. https://doi.org/10.1046/j.1420-9101.1990.3050478.x

  52. Code of Federal Regulations (2016) Title 21, updated April 1, 2016. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm

  53. Cohen CA, Karfakis JA, Kurnick MD et al (2008) Cerium oxide nanoparticles reduce free radical-mediated toxicity in Drosophila melanogaster. FASEB J 22:624. https://doi.org/10.1096/fasebj.22.1_supplement.624.1

    Article  Google Scholar 

  54. Collins FS, Gray GM, Bucher JR (2008) Transforming environmental health protection. Science 319(5865):906–907. https://doi.org/10.1126/science.1154619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Contado C (2015) Nanomaterials in consumer products: a challenging analytical problem. Front Chem 3:48. https://doi.org/10.3389/fchem.2015.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Contreras EQ, Cho M, Zhu H et al (2012) Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environ Sci Technol 47:1148–1154. https://doi.org/10.1021/es3036785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cvetković VJ, Jovanović B, Lazarević M et al (2020) Changes in the wing shape and size in Drosophila melanogaster treated with food grade titanium dioxide nanoparticles (E171)-a multigenerational study. Chemosphere 261:127787. https://doi.org/10.1016/j.chemosphere.2020.127787

    Article  CAS  PubMed  Google Scholar 

  58. Dan P, Sundararajan V, Ganeshkumar H et al (2019) Evaluation of hydroxyapatite nanoparticles - induced in vivo toxicity in Drosophila melanogaster. Appl Surf Sci 484:568–577. https://doi.org/10.1016/j.apsusc.2019.04.120

    Article  CAS  Google Scholar 

  59. de Andrade LR, Brito AS, Melero AM et al (2014) Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test. Ecotoxicol Environ Saf 99:92–97. https://doi.org/10.1016/j.ecoenv.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  60. De Carli RF, Chaves DDS, Cardozo TR et al (2018) Evaluation of the genotoxic properties of nickel oxide nanoparticles in vitro and in vivo. Mutat Res Genet Toxicol Environ Mutagen 836:47–53. https://doi.org/10.1016/j.mrgentox.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  61. Dedeh A, Ciutat A, Treguer-Delapierre M et al (2015) Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 9:71–80. https://doi.org/10.3109/17435390.2014.889238

    Article  CAS  PubMed  Google Scholar 

  62. Demir E (2020a) An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. J Toxicol Environ Health A 83(11–12):456–469. https://doi.org/10.1080/15287394.2020.1777236

    Article  CAS  PubMed  Google Scholar 

  63. Demir E (2020b) A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J Appl Toxicol. https://doi.org/10.1002/jat.4061

  64. Demir E (2020c) Drosophila as a model for assessing nanopesticide toxicity. Nanotoxicology. https://doi.org/10.1080/17435390.2020.1815886

  65. Demir E, Marcos R (2018) Antigenotoxic potential of boron nitride nanotubes. Nanotoxicology 12(8):868–884. https://doi.org/10.1080/17435390.2018.1482379

    Article  CAS  PubMed  Google Scholar 

  66. Demir E, Vales G, Kaya B et al (2011) Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5:417–424. https://doi.org/10.3109/17435390.2010.529176

    Article  CAS  PubMed  Google Scholar 

  67. Demir E, Turna F, Vales G et al (2013) In vivo genotoxicity assessment of titanium, zirconium and aluminium nanoparticles, and their microparticulated forms, in Drosophila. Chemosphere 93:2304–2310. https://doi.org/10.1016/j.chemosphere.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  68. Demir E, Aksakal S, Turna F et al (2015) In vivo genotoxic effects of four different nanosizes forms of silica nanoparticles in Drosophila melanogaster. J Hazard Mater 283:260–266. https://doi.org/10.1016/j.jhazmat.2014.09.029

    Article  CAS  PubMed  Google Scholar 

  69. Donaldson K, Murphy F, Schinwald A et al (2011) Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine 6(1):143–156. https://doi.org/10.2217/nnm.10.139

    Article  CAS  PubMed  Google Scholar 

  70. Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278. https://doi.org/10.1146/annurev.matsci.34.040203.114607

    Article  CAS  Google Scholar 

  71. Ema M, Okuda H, Gamo M et al (2017) A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 67:149–164. https://doi.org/10.1016/j.reprotox.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  72. Ertuğrul H, Yalçın B, Güneş M et al (2020) Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug Chem Toxicol 43(3):279–286. https://doi.org/10.1080/01480545.2019.1585444

    Article  CAS  PubMed  Google Scholar 

  73. Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877–R883. https://doi.org/10.1016/j.cub.2011.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Foriel S, Willems P, Smeitink J et al (2015) Mitochondrial diseases: Drosophila melanogaster as a model to evaluate potential therapeutics. Int J Biochem Cell Biol 63:60–65. https://doi.org/10.1016/j.biocel.2015.01.024

    Article  CAS  PubMed  Google Scholar 

  75. Franklin NM, Rogers NJ, Apte SC et al (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490. https://doi.org/10.1021/es071445r

    Article  CAS  PubMed  Google Scholar 

  76. Gagné F, Auclair J, Turcotte P et al (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86:333–340. https://doi.org/10.1016/j.aquatox.2007.11.013

    Article  CAS  PubMed  Google Scholar 

  77. Galeone A, Vecchio G, Malvindi MA et al (2012) In vivo assessment of CdSe–ZnS quantum dots: coating dependent bioaccumulation and genotoxicity. Nanoscale 4:6401–6407. https://doi.org/10.1039/c2nr31826a

    Article  CAS  PubMed  Google Scholar 

  78. Gautam A, Gautam C, Mishra M et al (2019) Enhanced mechanical properties of hBN–ZrO2 composites and their biological activities on Drosophila melanogaster: synthesis and characterization. RSC Adv 9:40977–40996

    Article  CAS  Google Scholar 

  79. Giljohann DA, Seferos DS, Daniel WL et al (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49:3280–3294. https://doi.org/10.1002/anie.200904359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gliga AR, Skoglund S, OdnevallWallinder I et al (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(1):11. https://doi.org/10.1186/1743-8977-11-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Godwin H, Nameth C, Avery D et al (2015) Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9:3409–3417. https://doi.org/10.1021/acsnano.5b00941

    Article  CAS  PubMed  Google Scholar 

  82. Golbamaki N, Rasulev B, Cassano A et al (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7:2154–2198. https://doi.org/10.1039/C4NR06670G

    Article  CAS  PubMed  Google Scholar 

  83. Gorth DJ, Rand DM, Webster TJ (2011) Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomedicine 6:343–350. https://doi.org/10.2147/IJN.S16881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  85. Han X, Geller B, Moniz K et al (2014) Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. Sci Total Environ 487:822–829. https://doi.org/10.1016/j.scitotenv.2013.12.129

    Article  CAS  PubMed  Google Scholar 

  86. Handy RD, Van Den Brink N, Chappell M et al (2012) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21:933–972. https://doi.org/10.1007/s10646-012-0862-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hawkins AD, Thornton C, Kennedy AJ et al (2015) Gill histopathologies following exposure to nanosilver or silver nitrate. J Toxicol Environ Health A 78(5):301–315. https://doi.org/10.1080/15287394.2014.971386

    Article  CAS  PubMed  Google Scholar 

  88. Hayashi Y, Engelmann P, Foldbjerg R et al (2012) Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ Sci Technol 46:4166–4173. https://doi.org/10.1021/es3000905

    Article  CAS  PubMed  Google Scholar 

  89. He X, Aker WG, Hwang H-M (2014) An in vivo study on the photo-enhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage. Nanotoxicology 8:185–195. https://doi.org/10.3109/17435390.2013.874050

    Article  CAS  PubMed  Google Scholar 

  90. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859. https://doi.org/10.1002/1521-3773(20020603)

    Article  CAS  Google Scholar 

  91. Hong H, Shi J, Yang Y et al (2011) Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett 11(9):3744–3750. https://doi.org/10.1021/nl201782m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang N, Yan Y, Xu Y et al (2013) Alumina nanoparticles alter rhythmic activities of local interneurons in the antennal lobe of Drosophila. Nanotoxicology 7:212–220. https://doi.org/10.3109/17435390.2011.648668

    Article  CAS  PubMed  Google Scholar 

  93. Hunt PR, Marquis BJ, Tyner KM et al (2013) Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. J Appl Toxicol 33:1131–1142. https://doi.org/10.1002/jat.v33.10

    Article  CAS  PubMed  Google Scholar 

  94. Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983. https://doi.org/10.1016/j.tiv.2005.06.034

    Article  CAS  PubMed  Google Scholar 

  95. IARC (2010) Carbon black, titanium dioxide, and talc. IARC monographs on the evaluation of carcinogenic risks to humans, vol 93. World Health Organization, Lyon, p 275

    Google Scholar 

  96. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  97. Jennings BH (2011) Drosophila -a versatile model in biology & medicine. Mater Today 14(5):190–195

    Article  Google Scholar 

  98. Ji X, Peng F, Zhong Y et al (2014) Fluorescent quantum dots: synthesis, biomedical optical imaging, and biosafety assessment. Colloids Surf B Biointerfaces 124:132–139. https://doi.org/10.1016/j.colsurfb.2014.08.036

    Article  CAS  PubMed  Google Scholar 

  99. Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383. https://doi.org/10.1021/es048729l

    Article  CAS  PubMed  Google Scholar 

  100. Jovanović B, Cvetković VJ, Mitrović TL (2015) Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes. Chemosphere 144:43–49. https://doi.org/10.1016/j.chemosphere.2015.08.054

    Article  CAS  PubMed  Google Scholar 

  101. Jovanović B, Jovanović N, Cvetković VJ et al (2018) The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster -a 20 generation dietary exposure experiment. Sci Rep 8(1):17922. https://doi.org/10.1038/s41598-018-36174-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Karlsson HL, Cronholm P, Gustafsson J et al (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732. https://doi.org/10.1021/tx800064j

    Article  CAS  PubMed  Google Scholar 

  103. Karlsson HL, Gustafsson J, Cronholm P et al (2009) Size dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol Lett 188:112–118. https://doi.org/10.1016/j.toxlet.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  104. Karunakaran G, Suriyaprabha R, Manivasakan P et al (2013) Screening of in vitro cytotoxicity, antioxidant potential and bioactivity of nano- and micro-ZrO2 and -TiO2 particles. Ecotoxicol Environ Safe 93:191–197. https://doi.org/10.1016/j.ecoenv.2013.04.004

    Article  CAS  Google Scholar 

  105. Kaygisiz ŞY, Ciğerci İH (2017) Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, allium and comet assay. Toxicol Ind Health 33(10):802–809. https://doi.org/10.1177/0748233717722907

    Article  CAS  PubMed  Google Scholar 

  106. Kermanizadeh A, Gosens I, MacCalman L et al (2016) A multi-laboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health-ENPRA project-the highlights, limitations and current and future challenges. J Toxicol Environ Health B Crit Rev 19:1–28. https://doi.org/10.1080/10937404.2015.1126210

    Article  CAS  PubMed  Google Scholar 

  107. Key SCS, Reaves D, Turner F et al (2011) Impacts of silver nanoparticle ingestion on pigmentation and developmental progression in Drosophila. Atlas J Biol 1:52–61. https://doi.org/10.5147/ajb.2011.0048

    Article  Google Scholar 

  108. Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101. https://doi.org/10.1016/j.nano.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  109. Kim JS, Song KS, Yu IJ (2016) Multiwall carbon nanotube-induced DNA damage and cytotoxicity in male human peripheral blood lymphocytes. Int J Toxicol 35(1):27–37. https://doi.org/10.1177/1091581815598749

    Article  CAS  PubMed  Google Scholar 

  110. Kumar S, Gautam C, Mishra VK et al (2019) Fabrication of graphene nanoplatelet-incorporated porous hydroxyapatite composites: improved mechanical and in vivo imaging performances for emerging biomedical applications. ACS Omega 4(4):7448–7458. https://doi.org/10.1021/acsomega.8b03473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Latouche M, Lasbleiz C, Martin E et al (2007) A conditional pan-neuronal Drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for ıdentifying modifier genes. J Neurosci 27:2483–2492. https://doi.org/10.1523/JNEUROSCI.5453-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Leeuw TK, Reith RM, Simonette RA et al (2007) Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Lett 7:2650–2654. https://doi.org/10.1021/nl0710452

    Article  CAS  PubMed  Google Scholar 

  113. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49. https://doi.org/10.1002/(ISSN)16136829

    Article  CAS  PubMed  Google Scholar 

  114. Li WR, Xie XB, Shi QS et al (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biot 85:1115–1122. https://doi.org/10.1007/s00253-009-2159-5

    Article  CAS  Google Scholar 

  115. Lin W, Huang YW, Zhou XD et al (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259. https://doi.org/10.1016/j.taap.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  116. Liong M, Lu J, Kovochich M et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896. https://doi.org/10.1021/nn800072t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu X, Vinson D, Abt D et al (2009a) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43:6357–6363. https://doi.org/10.1021/es901079z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu Y, He L, Mustapha A et al (2009b) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107:1193–1201. https://doi.org/10.1111/j.1365-2672.2009.04303.x

    Article  CAS  PubMed  Google Scholar 

  119. Liu S, Xu L, Zhang T et al (2010) Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267:172–177. https://doi.org/10.1016/j.tox.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  120. Liu Y, Zhao Y, Sun B et al (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713. https://doi.org/10.1021/ar300028m

    Article  CAS  PubMed  Google Scholar 

  121. Liu B, Campo EM, Bossing T (2014) Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms. PLoS One 9:e88681. https://doi.org/10.1371/journal.pone.0088681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lloyd TE, Taylor JP (2010) Flightless flies: Drosophila models of neuromuscular disease. Ann N Y Acad Sci 1184:1–20. https://doi.org/10.1111/j.17496632.2010.05432.x

    Article  Google Scholar 

  123. Lux Research (2014) Nanotechnology update: Corporations up their spending as revenues for nano-enabled products increase. https://portal.luxresearchinc.com/research/report_excerpt/16215

  124. Macaroff PP, Simioni AR, Lacava et al (2006) Studies of cell toxicity and binding of magnetic nanoparticles with blood stream macromolecules. J Appl Phys 99(8):08S102. https://doi.org/10.1063/1.2165923

    Article  CAS  Google Scholar 

  125. Machado NM, Lopes JC, Saturnino RS et al (2013) Lack of mutagenic effect by multiwalled functionalized carbon nanotubes in the somatic cells of Drosophila melanogaster. Food Chem Toxicol 62:355–360. https://doi.org/10.1016/j.fct.2013.08.051

    Article  CAS  PubMed  Google Scholar 

  126. Magdolenova Z, Collins A, Kumar A et al (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278. https://doi.org/10.3109/17435390.2013.773464

    Article  CAS  PubMed  Google Scholar 

  127. Manshian BB, Soenen SJ, Brown A et al (2016) Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries. Mutagenesis 31:97–106. https://doi.org/10.1093/mutage/gev061

    Article  CAS  PubMed  Google Scholar 

  128. Mao B, Chen Z, Wang Y et al (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8:2445. https://doi.org/10.1038/s41598-018-20728-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Massarsky A, Trudeau VL, Moon TW (2014) Predicting the environmental impact of nanosilver. Environ Toxicol Pharmacol 38:861–873. https://doi.org/10.1016/j.etap.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  130. Maximino C, Silva RX, Da Silva SN et al (2015) Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci 9:233. https://doi.org/10.3389/fnbeh.2015.00233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Meng SS, Wang B, Lin XD et al (2019) Effects of silver nanoparticles on pupation, eclosion, life span, apoptosis and protein expression in Drosophila melanogaster. Ying Yong Sheng Tai Xue Bao 30(10):3579–3588. https://doi.org/10.13287/j.1001-9332.201910.036

    Article  PubMed  Google Scholar 

  132. Meyer D, Williams PL (2014) Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. J Toxicol Environ Health B Crit Rev 17:284–306. https://doi.org/10.1080/10937404.2014.933722

    Article  CAS  PubMed  Google Scholar 

  133. Mikhaylov VI, Kryuchkova AV, Sitnikov PA et al (2020) Magnetite hydrosols with positive and negative surface charge of nanoparticles: stability and effect on the lifespan of Drosophila melanogaster. Langmuir 36(16):4405–4415. https://doi.org/10.1021/acs.langmuir.0c00605

    Article  CAS  PubMed  Google Scholar 

  134. Mishra M, Sabat D, Ekka B et al (2017) Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J Nanopart Res 19:282. https://doi.org/10.1007/s11051-017-3971-y

    Article  CAS  Google Scholar 

  135. Mishra PK, Ekielski A, Mukherjee S et al (2019) Wood-based cellulose nanofibrils: Haemocompatibility and impact on the development and behaviour of Drosophila melanogaster. Biomol Ther 9(8):363. https://doi.org/10.3390/biom9080363

    Article  CAS  Google Scholar 

  136. Mitra S, Patra P, Chandra S et al (2012) Porous ZnO nanorod for targeted delivery of doxorubicin: in vitro and in vivo response for therapeutic applications. J Mater Chem 22(45):24145–24154. https://doi.org/10.1039/C2JM35013K

    Article  CAS  Google Scholar 

  137. Moloney A, Sattelle DB, Lomas DA et al (2010) Alzheimer’s disease: insights from Drosophila melanogaster models. Trends Biochem Sci 35:228–235. https://doi.org/10.1016/j.tibs.2009.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Montazer M, Maali Amiri M (2014) ZnO nano reactor on textiles and polymers: Ex situ and in situ synthesis, application, and characterization. J Phys Chem B 118:1453–1470. https://doi.org/10.1021/jp408532r

    Article  CAS  PubMed  Google Scholar 

  139. Morones JR, Elechiguerra J, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  PubMed  Google Scholar 

  140. Mu Q, David CA, Galceran J et al (2014) Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles. Chem Res Toxicol 27:558–567. https://doi.org/10.1021/tx4004243

    Article  CAS  PubMed  Google Scholar 

  141. Naves MPC, de Morais CR, Silva ACA et al (2018) Assessment of mutagenic, recombinogenic and carcinogenic potential of titanium dioxide nanocristals in somatic cells of Drosophila melanogaster. Food Chem Toxicol 112:273–281. https://doi.org/10.1016/j.fct.2017.12.040

    Article  CAS  Google Scholar 

  142. Ng CT, Yong LQ, Hande MP et al (2017) Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine 12:1621–1637. https://doi.org/10.2147/IJN.S124403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ng CT, Ong CN, Yu LE et al (2019) Toxicity study of zinc oxide nanoparticles in cell culture and in Drosophila melanogaster. J Vis Exp 151. https://doi.org/10.3791/59510

  144. Nobre FX, Muniz R, Martins F et al (2020) Calcium molybdate: toxicity and genotoxicity assay in Drosophila melanogaster by SMART test. J Mol Struct 1200:127096. https://doi.org/10.1016/j.molstruc.2019.127096

    Article  CAS  Google Scholar 

  145. Oesch F, Landsiedel R (2012) Genotoxicity investigations on nanomaterials. Arch Toxicol 86:985–994. https://doi.org/10.1007/s00204-012-0838-y

    Article  CAS  PubMed  Google Scholar 

  146. Ong C, Lee QY, Cai Y et al (2016) Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci Rep 6:20632. https://doi.org/10.1038/srep20632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Osborne OJ, Johnston BD, Moger J et al (2013) Effects of particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) embryos. Nanotoxicology 7(8):1315–1324. https://doi.org/10.3109/17435390.2012.737484

    Article  CAS  PubMed  Google Scholar 

  148. Panacek A, Prucek R, Safarova D et al (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–4979. https://doi.org/10.1021/es104216b

    Article  CAS  PubMed  Google Scholar 

  149. Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436. https://doi.org/10.1124/pr.110.003293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pandey A, Chandra SL, Chauhan KS et al (2013) Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. BBA-Gen Subjects 1830:2256–2266. https://doi.org/10.1016/j.bbagen.2012.10.001

    Article  CAS  Google Scholar 

  151. Pandey H, Saini S, Singh SP et al (2019) Candle soot derived carbon nanoparticles: an assessment of cellular and progressive toxicity using Drosophila melanogaster model. Comp Biochem Physiol C Toxicol Pharmacol 228:108646. https://doi.org/10.1016/j.cbpc.2019.108646

    Article  CAS  PubMed  Google Scholar 

  152. Pappus SA, Ekka B, Sahu S et al (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanopart Res 19:136. https://doi.org/10.1007/s11051-017-3824-8

    Article  CAS  Google Scholar 

  153. Parimi D, Sundararajan V, Sadak O et al (2019) Synthesis of positively and negatively charged CeO2 nanoparticles: ınvestigation of the role of surface charge on growth and development of Drosophila melanogaster. ACS Omega 4(1):104–113. https://doi.org/10.1021/acsomega.8b02747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Parvathi VD, Rajagopal K, Sumitha R (2016) Standardization of alternative methods for nanogenotoxicity testing in Drosophila melanogaster using iron nanoparticles: a promising link to nanodosimetry. J Nanotechnol 2016:1–10. https://doi.org/10.1155/2016/2547467

    Article  CAS  Google Scholar 

  155. Peng F, Su Y, Wei X et al (2013) Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew Chem 125(5):1497–1501. https://doi.org/10.1002/ange.201206737

    Article  Google Scholar 

  156. Pereira MT, Malik M, Nostro JA et al (2018) Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture. Dis Model Mech 11(12):dmm034520. https://doi.org/10.1242/dmm.034520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Phatak KA, Khanna PK, Nath BB (2016) Particle size-independent induction of leucism in Drosophila melanogaster by silver: nano vs. micro. Metallomics 8(12):1243–1254. https://doi.org/10.1039/c6mt00152a

    Article  CAS  PubMed  Google Scholar 

  158. Philbrook NA, Winn LM, Afrooz AN et al (2011a) The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257:429–436. https://doi.org/10.1016/j.taap.2011.09.027

    Article  CAS  PubMed  Google Scholar 

  159. Philbrook NA, Walker VK, Afrooz AN et al (2011b) Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod Toxicol 32:442–448. https://doi.org/10.1016/j.reprotox.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  160. Plantié E, Migocka-Patrzałek M, Daczewska M et al (2015) Model organisms in the fight against muscular dystrophy: lessons from Drosophila and zebrafish. Molecules 20:6237–6253. https://doi.org/10.3390/molecules20046237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pompa PP, Vecchio G, Galeone A et al (2011) In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res 4:405–413. https://doi.org/10.1007/s12274-011-0095-z

    Article  CAS  Google Scholar 

  162. Posgai R, Ahamed M, Hussain SM et al (2009) Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Sci Total Environ 408:439–443. https://doi.org/10.1016/j.scitotenv.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  163. Posgai R, Cipolla-McCulloch CB, Murphy KR et al (2011) Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85:34–42. https://doi.org/10.1016/j.chemosphere.2011.06.040

    Article  CAS  PubMed  Google Scholar 

  164. Priyadarsini S, Sahoo SK, Sahu S et al (2019) Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ Sci Pollut Res Int 26(19):19560–19574. https://doi.org/10.1007/s11356-019-05357-x

    Article  CAS  PubMed  Google Scholar 

  165. Raj A, Shah P, Agrawal N (2017a) Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: an in-vivo study. PLoS One 12(5):e0178051. https://doi.org/10.1371/journal.pone.0178051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Raj A, Shah P, Agrawal N (2017b) Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Sci Rep 7(1):15617. https://doi.org/10.1038/s41598-017-15645-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rajh T, Dimitrijevic NM, Bissonnette M et al (2014) Titanium dioxide in the service of the biomedical revolution. Chem Rev 114:10177–10216. https://doi.org/10.1021/cr500029g

    Article  CAS  PubMed  Google Scholar 

  168. Rajiv S, Jerobin J, Saranya V et al (2016) Comparative cytotoxicity and genotoxicity of cobalt(II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol 35:170–183. https://doi.org/10.1177/0960327115579208

    Article  CAS  PubMed  Google Scholar 

  169. Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83. https://doi.org/10.1016/j.ntt.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  170. Rand MD, Dao JC, Clason TA (2009) Methylmercury disruption of embryonic neural development in Drosophila. Neurotoxicology 30(5):794–802. https://doi.org/10.1016/j.neuro.2009.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Reis Éde M, Rezende AA, Oliveira PF et al (2016) Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test. Food Chem Toxicol 96:309–319. https://doi.org/10.1016/j.fct.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  172. Richter JW, Shull GM, Fountain JH et al (2018) Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster. Nanotoxicology 12(5):390–406. https://doi.org/10.1080/17435390.2018.1457189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rubilar O, Rai M, Tortella G et al (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35:1365–1375. https://doi.org/10.1007/s10529-013-1239-x

    Article  CAS  PubMed  Google Scholar 

  174. Sabat D, Patnaik A, Ekka B et al (2016) Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol Behav 167:76–85. https://doi.org/10.1016/j.physbeh.2016.08.032

    Article  CAS  PubMed  Google Scholar 

  175. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433. https://doi.org/10.1016/j.tibtech.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  176. Sapre N, Chakraborty R, Purohit P et al (2020) Enteric pH responsive cargo release from PDA and PEG coated mesoporous silica nanoparticles: a comparative study in Drosophila melanogaster. RSC Adv 20(10):11716–11172. https://doi.org/10.1039/C9RA11019D

    Article  Google Scholar 

  177. Saptarshi SR, Duschl A, Lopata AL (2015) Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. Nanomedicine (London) 10:2075–2092. https://doi.org/10.2217/nnm.15.44

    Article  CAS  Google Scholar 

  178. Sario S, Silva AM, Gaivão I (2018) Titanium dioxide nanoparticles: toxicity and genotoxicity in Drosophila melanogaster (SMART eye-spot test and comet assay in neuroblasts). Mutat Res Genet Toxicol Environ Mutagen 831:19–23. https://doi.org/10.1016/j.mrgentox.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  179. Sau TK, Rogach AL, Jäckel F et al (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825. https://doi.org/10.1002/adma.200902557

    Article  CAS  PubMed  Google Scholar 

  180. Schanen BC, Karakoti AS, Seal S et al (2009) Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano 3:2523–2532. https://doi.org/10.1021/nn900403h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68(2):447S–463S. https://doi.org/10.1093/ajcn/68.2.447S

    Article  CAS  PubMed  Google Scholar 

  182. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870. https://doi.org/10.1007/s10495-012-0705-6

    Article  CAS  PubMed  Google Scholar 

  183. Sharma A, Sood K, Kaur J et al (2019) Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatal Agric Biotechnol 18:101079. https://doi.org/10.1016/j.bcab.2019.101079

    Article  Google Scholar 

  184. Siddique YH, Fatima A, Jyoti S et al (2013) Evaluation of the toxic potential of graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. PLoS One 8:e80944. https://doi.org/10.1371/journal.pone.0080944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Siddique YH, Khan W, Khanam S et al (2014) Toxic potential of synthesized graphene zinc oxide nanocomposite in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Biomed Res Int 2014:1–10. https://doi.org/10.1155/2014/382124

    Article  CAS  Google Scholar 

  186. Siddique YH, Haidari M, Khan W et al (2015) Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R). Toxicol Mech Methods 25:425–432. https://doi.org/10.3109/15376516.2015.1045653

    Article  CAS  PubMed  Google Scholar 

  187. Siddiqui L, Bag J, Seetha et al (2020) Assessing the potential of lignin nanoparticles as drug carrier: synthesis, cytotoxicity and genotoxicity studies. Int J Biol Macromol 152:786–802. doi:https://doi.org/10.1016/j.ijbiomac.2020.02.311

  188. Siegrist M, Wiek A, Helland A et al (2007) Risks and nanotechnology: the public is more concerned than experts and industry. Nature Nanotechnol 2:67. https://doi.org/10.1038/nnano.2007.10

    Article  CAS  Google Scholar 

  189. Silva RM, Teesy C, Franzi L et al (2013) Biological response to nano-scale titanium dioxide (TiO2): role of particle dose, shape, and retention. J Toxicol Environ Health A 76:953–972. https://doi.org/10.1080/15287394.2013.826567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Snyder-Talkington BN, Qian Y, Castranova V et al (2012) New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: application of coculture and bioinformatics. J Toxicol Environ Health B Crit Rev 15:468–492. https://doi.org/10.1080/10937404.2012.736856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sood K, Kaur J, Singh H et al (2019) Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicol Rep 6:768–781. https://doi.org/10.1016/j.toxrep.2019.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Stocker H, Gallant P (2008) Getting started: an overview on raising and handling Drosophila. Methods Mol Biol 420:27–44

    Article  Google Scholar 

  193. Strawn ET, Courtney AC, Beverly AR (2006) Cerium oxide nanoparticles increase lifespan and protect against free radical-mediated toxicity. FASEB J A1356-A1356. https://doi.org/10.1096/fasebj.20.5.A1356-c

  194. Su Y, He Y, Lu H et al (2009) The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25. https://doi.org/10.1016/j.biomaterials.2008.09.029

    Article  CAS  PubMed  Google Scholar 

  195. Sundararajan V, Dan P, Kumar A et al (2019) Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles. Appl Surf Sci 490:70–80. https://doi.org/10.1016/j.apsusc.2019.06.017

    Article  CAS  Google Scholar 

  196. Teow Y, Asharani PV, Hande MP et al (2011) Health impact and safety of engineered nanomaterials. Chem Commun 47(25):7025–7038. https://doi.org/10.1039/C0CC05271J

    Article  CAS  Google Scholar 

  197. Thiyagarajan K, Bharti VK, Tyagi S et al (2018) Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application. RSC Adv 41(8):23213–23229. https://doi.org/10.1039/C8RA03649G

    Article  Google Scholar 

  198. Tian H, Eom HJ, Moon S Jet al (2013) Development of biomarker for detecting silver nanoparticles exposure using a GAL4 enhancer trap screening in Drosophila. Environ Toxicol Pharmacol 36:548–556. doi:https://doi.org/10.1016/j.etap.2013.05.013

  199. Tsyusko OV, Hardas SS, Shoults-Wilson WA et al (2012) Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. Environ Pollut 171:249–255. https://doi.org/10.1016/j.envpol.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  200. Vales G, Demir E, Kaya B et al (2013) Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7:462–468. https://doi.org/10.3109/17435390.2012.689882

    Article  CAS  PubMed  Google Scholar 

  201. Valizadeh A, Mikaeili H, Samiei M et al (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7:480. https://doi.org/10.1186/1556276X-7-480

    Article  PubMed  PubMed Central  Google Scholar 

  202. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118. https://doi.org/10.1152/physrev.1993.73.1.79

    Article  CAS  PubMed  Google Scholar 

  203. Vecchio G, Galeone A, Brunetti V et al (2012a) Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine 8:1–7

    Article  CAS  Google Scholar 

  204. Vecchio G, Galeone A, Brunetti V et al (2012b) Concentrationdependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS One 7:e29980. https://doi.org/10.1371/journal.pone.0029980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Vega-Alvarez S, Herrera A, Rinaldi C et al (2014) Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment. Int J Nanomedicine 9:2031–2041

    PubMed  PubMed Central  Google Scholar 

  206. Venken KJ, Sarrion-Perdigones A, Vandeventer PJ et al (2016) Genome engineering: Drosophila melanogaster and beyond. Wiley Interdiscip Rev Dev Biol 5:233–267. https://doi.org/10.1002/wdev.2016.5.issue-2

    Article  CAS  PubMed  Google Scholar 

  207. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Condens Matter Phys 16(25):R829. https://doi.org/10.1088/0953-8984/16/25/R01

    Article  CAS  Google Scholar 

  208. Wang B, Chen N, Wei Y et al (2012) Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila. Sci Rep 2:563. https://doi.org/10.1038/srep00563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Willhite CC, Karyakina NA, Yokel RA et al (2014) Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol 44(4):1–8. https://doi.org/10.3109/10408444.2014.934439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wu VM, Uskoković V (2017) Population effects of calcium phosphate nanoparticles in Drosophila melanogaster: the effects of phase composition, crystallinity, and the pathway of formation. ACS Biomater Sci Eng 3(10):2348–2357. https://doi.org/10.1021/acsbiomaterials.7b00540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wu VM, Uskoković V (2020) Fruit fly as a model organism for blood-brain barrier penetration and infectious disease in the nanomedical niche. J Bionic Eng 17:553–569. https://doi.org/10.1007/s42235-020-0044-1

    Article  Google Scholar 

  212. Wu J, Sun J, Xue Y (2010) Involvement of JNK and p53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett 199:269–276

    Article  CAS  Google Scholar 

  213. Wu VM, Huynh E, Tang S et al (2019) Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater 88:422–447. https://doi.org/10.1016/j.actbio.2019.01.064

    Article  CAS  PubMed  Google Scholar 

  214. Yasinskyi Y, Protsenko O, Maistrenko O et al (2019) Reconciling the controversial data on the effects of C60 fullerene at the organismal and molecular levels using as a model Drosophila melanogaster. Toxicol Lett 310:92–98. https://doi.org/10.1016/j.toxlet.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  215. Zhang XX, Wen GH, Huang S et al (2001) Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. J Magn Magn Mater 231(1):9–12. https://doi.org/10.1016/S0304-8853(01)00134-2

    Article  Google Scholar 

  216. Zhang WD, Jiang LC, Yu YX et al (2014) Electrodeposition of polyaniline onto TiO2 nanoparticles/ multiwalled carbon nanotubes for visible light photoelectrocatalysis. J Nanosci Nanotechnol 14:7032–7037. https://doi.org/10.1166/jnn.2014.8980

    Article  CAS  PubMed  Google Scholar 

  217. Zhang Y, Wang Z, Li X et al (2016) Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv Mater 28(7):1387–1393. https://doi.org/10.1002/adma.201503893

    Article  CAS  PubMed  Google Scholar 

  218. Zhao MX, Zeng EZ (2015) Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res Lett 10:171. https://doi.org/10.1186/s11671-015-0873-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhou J, Xu NS, Wang ZL (2006) Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv Mater 18(18):2432–2435. https://doi.org/10.1002/adma.200600200

    Article  CAS  Google Scholar 

  220. Zou HY, Zhao F, Zhu WF et al (2016) In vivo toxicity evaluation of graphene oxide in Drosophila melanogaster after oral administration. J Nanosci Nanotechno1 6(7):7472–7478. https://doi.org/10.1166/jnn.2016.11126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard Marcos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demir, E., Demir, F.T., Marcos, R. (2022). Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. In: Louro, H., Silva, M.J. (eds) Nanotoxicology in Safety Assessment of Nanomaterials. Advances in Experimental Medicine and Biology, vol 1357. Springer, Cham. https://doi.org/10.1007/978-3-030-88071-2_12

Download citation

Publish with us

Policies and ethics