Skip to main content

Low Cost Player Tracking in Field Hockey

  • Conference paper
  • First Online:
Machine Learning and Data Mining for Sports Analytics (MLSA 2021)

Abstract

In the paper, we describe the technical details of a multi-player tracker system using tracking data obtained from a single low-cost stationary camera on field hockey games. Analyzing the tracking data of the players only from the transmitted video opens a multitude of applications that allows the cost of technology to be reduced. This method does not depend on the cooperation of the players (by using sensors) or their teams (by sharing data with a third party). The approach taken in this paper uses a variety of computer vision and tracking techniques. Making player tracking data more accessible lowers the barrier to entry for sports research and increases the period during which advanced analysis methods can be applied. The proposed system runs the full pipeline at 3 fps on a computer with a simple graphics card.

This work was funded by the DAIQUIRI project, cofunded by imec, a research institute founded by the Flemish Government. Project partners are Ghent University, InTheRace, Arinti, Cronos, VideoHouse, NEP Belgium, and VRT, with project support from VLAIO under grant number HBC.2019.0053.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yurko, R., et al.: Going deep: models for continuous-time within-play valuation of game outcomes in American football with tracking data. J. Quant. Anal. Sports 16(2), 163–182 (2020)

    Google Scholar 

  2. Sabirin, H., Sankoh, H., Naito, S.: Automatic soccer player tracking in single camera with robust occlusion handling using attribute matching. IEICE Trans. Inf. Syst. 98(8), 1580–1588 (2015)

    Article  Google Scholar 

  3. Linke, D., Link, D., Lames, M.: Football-specific validity of TRACAB’s optical video tracking systems. PloS one 15(3), e0230179 (2020)

    Article  Google Scholar 

  4. Zheng, S., Yue, Y., Hobbs, J.: Generating long-term trajectories using deep hierarchical networks arXiv preprint arXiv:1706.07138, 2017

  5. Macdonald, B.: Recreating the game: using player tracking data to analyze dynamics in basketball and football. In: Harvard Data Science Review, vol. 2, no. 4 (2020)

    Google Scholar 

  6. Vovk, V., Skuratovskyi, S., Vyplavin, P., Gorovyi, I.: Light-weight tracker for sports applications. Signal Process. Symposium (SPSympo). IEEE 2019, 251–255 (2019)

    Google Scholar 

  7. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2008 pp. 1–8. IEEE (2008)

    Google Scholar 

  8. Lu, W.-L., Ting, J.-A., Little, J.J., Murphy, K.P.: Learning to track and identify players from broadcast sports videos. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1704–1716 (2013)

    Article  Google Scholar 

  9. Cheshire, E., Halasz, C., Perin, J.K.: Player tracking and analysis of basketball plays. In: European Conference of Computer Vision (2013)

    Google Scholar 

  10. Csanalosi, G., Dobreff, G., Pasic, A., Molnar, M., Toka, L.: Low-cost optical tracking of soccer players. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds.) MLSA 2020. CCIS, vol. 1324, pp. 28–39. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64912-8_3

    Chapter  Google Scholar 

  11. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: IEEE International Conference on Image Processing (ICIP), vol.2017, pp. 3645–3649. IEEE (2017)

    Google Scholar 

  12. Ning, G., Zhang, Z., Huang, C., Ren, X., Wang, H., Cai, C., He, Z.: Spatially supervised recurrent convolutional neural networks for visual object tracking. In: IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2017, pp. 1–4. IEEE (2017)

    Google Scholar 

  13. Khan, G., Tariq, Z., Khan, M.U.G.:Multi-person tracking based on faster R-CNN and deep appearance features. In: Visual Object Tracking with Deep Neural Networks. IntechOpen (2019)

    Google Scholar 

  14. Komorowski, J., Kurzejamski, G., Sarwas, G.: Footandball: integrated player and ball detector arXiv preprint arXiv:1912.05445 (2019)

  15. Tong, X., Liu, J., Wang, T., Zhang, Y.: Automatic player labeling, tracking and field registration and trajectory mapping in broadcast soccer video. ACM Trans. Intell. Syst. Technol. (TIST) 2(2), 1–32 (2011)

    Article  Google Scholar 

  16. Gu, L., Ding, X., Hua, X.-S.: Online play segmentation for broadcasted American football TV programs. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3331, pp. 57–64. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30541-5_8

    Chapter  Google Scholar 

  17. Hung, M.-H., Hsieh, C.-H., Kuo, C.-M., Pan, J.-S.: Generalized playfield segmentation of sport videos using color features. Pattern Recogn. Lett. 32(7), 987–1000 (2011)

    Article  Google Scholar 

  18. Homayounfar, N., Fidler, S., Urtasun, R.: Sports field localization via deep structured models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5212–5220 (2017)

    Google Scholar 

  19. Leal-Taixé, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: Siamese CNN for robust target association. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 33–40 (2016)

    Google Scholar 

  20. Schulter, S. Vernaza, P. Choi, W. Chandraker, M.: Deep network flow for multi-object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6951–6960 (2017)

    Google Scholar 

  21. Sharma, S., Ansari, J.A. Murthy, J.K., Krishna, K.M.: Beyond pixels: leveraging geometry and shape cues for online multi-object tracking. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3508–3515. IEEE (2018)

    Google Scholar 

  22. Fang, K., Xiang, Y., Li, X., Savarese, S.: Recurrent autoregressive networks for online multi-object tracking. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 466–475. IEEE (2018)

    Google Scholar 

  23. Xu, Y., Zhou, X., Chen, S., Li, F.: Deep learning for multiple object tracking: a survey. IET Comput. Vis. 13(4), 355–368 (2019)

    Article  Google Scholar 

  24. Fu, H., Wu, L., Jian, M., Yang, Y., Wang, X.: MF-SORT: simple online and realtime tracking with motion features. In: Zhao, Y., Barnes, N., Chen, B., Westermann, R., Kong, X., Lin, C. (eds.) ICIG 2019. LNCS, vol. 11901, pp. 157–168. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34120-6_13

    Chapter  Google Scholar 

  25. Ciaparrone, G., Sánchez, F.L., Tabik, S., Troiano, L., Tagliaferri, R., Herrera, F.: Deep learning in video multi-object tracking: a survey. Neurocomputing 381, 61–88 (2020)

    Article  Google Scholar 

  26. Nasseri, M.H., Moradi, H., Hosseini, R., Babaee, M.: Simple online and real-time tracking with occlusion handling arXiv preprint arXiv:2103.04147 (2021)

  27. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: IEEE International Conference on Image Processing (ICIP), vol. 2016, pp. 3464–3468. IEEE (2016)

    Google Scholar 

  28. Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  29. Manafifard, M., Ebadi, H., Moghaddam, H.A.: A survey on player tracking in soccer videos. Comput. Vis. Image Understand. 159, 19–46 (2017)

    Article  Google Scholar 

  30. Murray, S.: Real-time multiple object tracking-a study on the importance of speed arXiv preprint arXiv:1709.03572 (2017)

  31. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)

    Article  Google Scholar 

  32. Liang, Q., Wu, W., Yang, Y., Zhang, R., Peng, Y., Xu, M.: Multi-player tracking for multi-view sports videos with improved k-shortest path algorithm. Appl. Sci. 10(3), 864 (2020)

    Article  Google Scholar 

  33. Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: 2011 International Conference on Computer Vision, pp. 1195–1202. IEEE (2011)

    Google Scholar 

  34. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.: End-to-end representation learning for correlation filter based tracking. In: Proceedings of the IEEE Conference on Computer Vision and pattern Recognition, pp. 2805–2813 (2017)

    Google Scholar 

  35. Shitrit, H.B., Berclaz, J., Fleuret, F., Fua, P.: Tracking multiple people under global appearance constraints. In: International Conference on Computer Vision, vol. 2011, pp. 137–144. IEEE (2011)

    Google Scholar 

  36. Kang, T., Mo, Y., Pae, D., Ahn, C., Lim, M.: Robust visual tracking framework in the presence of blurring by arbitrating appearance-and feature-based detection. Measurement 95, 50–69 (2017)

    Article  Google Scholar 

  37. Liu, J.: Carr, P., Collins, R.T., Liu, Y.: Tracking sports players with context-conditioned motion models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1830–1837 (2013)

    Google Scholar 

  38. Li, Z., Gao, S., Nai, K.: Robust object tracking based on adaptive templates matching via the fusion of multiple features. J. Vis. Commun. Image Represent. 44, 1–20 (2017)

    Article  Google Scholar 

  39. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2010). https://doi.org/10.1007/978-1-84882-935-0

  40. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969 (2017)

    Google Scholar 

  41. Abdulla, W.:Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow (2017). https://github.com/matterport/Mask_RCNN

  42. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. (TODS) 42(3), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  43. Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96(34), 226–231 (1996)

    Google Scholar 

  44. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistic. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  45. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28

    Chapter  Google Scholar 

  47. Ultralytics: YOLOv5 in PyTorch, January 2021. https://github.com/ultralytics/yolov5/tree/v4.0

  48. Lin, T.-Y., et al.: Coco common object in context - 2017 dataset. https://cocodataset.org/

  49. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  50. Shah, M.P.: Semantic segmentation architectures implemented in pytorch (2017). https://github.com/meetshah1995/pytorch-semseg

  51. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Duarte Moura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duarte Moura, H. et al. (2022). Low Cost Player Tracking in Field Hockey. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds) Machine Learning and Data Mining for Sports Analytics. MLSA 2021. Communications in Computer and Information Science, vol 1571. Springer, Cham. https://doi.org/10.1007/978-3-031-02044-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02044-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02043-8

  • Online ISBN: 978-3-031-02044-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics