Skip to main content

Digital Twin Solutions for Textile Industry: Architecture, Services, and Challenges

  • Chapter
  • First Online:
Digital Twins for Digital Transformation: Innovation in Industry

Abstract

Smart textile is a new direction in the textile domain that aims to integrate technologies in designing and manufacturing functional textiles. Fabrics. The advancement of digital textile innovation is gaining ground in textile technology. A digital twin is a promising technology for the classical textile industry and smart garments. Digital twin combines various technologies such as IoT, cloud computing, and 3D simulation, bringing innovations to design, manufacture, and deliver high-quality fabrics. This chapter starts with an introduction that outlines the state of the art of textile technologies, digital textile innovation, and digital twin technology. Then two architectures for digital twins in the textile and fashion industries are presented. Moreover, this chapter sheds light on some possible applications and challenges of using digital twins in the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020)

    Article  Google Scholar 

  2. Liu, S., Bao, J., Lu, Y., Li, J., Lu, S., Sun, X.: Digital twin modeling method based on biomimicry for machining aerospace components. J. Manuf. Syst. 58, 180–195 (2021)

    Article  Google Scholar 

  3. Tao, F., Zhang, M., Liu, Y., Nee, A.Y.: Digital twin driven prognostics and health management for complex equipment. CIRP Ann. 67(1), 169–172 (2018)

    Article  Google Scholar 

  4. Rasheed, A., San, O., Kvamsdal, T.: Digital twin: values, challenges and enablers from a modeling perspective. IEEE Access 8, 21980–22012 (2020)

    Article  Google Scholar 

  5. Laaki, H., Miche, Y., Tammi, K.: Prototyping a digital twin for real time remote control over mobile networks: application of remote surgery. IEEE Access 7, 20325–20336 (2019)

    Google Scholar 

  6. Fernández-Ruiz, I.: Computer modelling to personalize bioengineered heart valves. Nat. Rev. Cardiol. 15(8), 440–441 (2018)

    Google Scholar 

  7. Zhang, B., Korolj, A., Lai, B.F.L., Radisic, M.: Advances in organon-a-chip engineering. Nat. Rev. Mater. 3(8), 257–278 (2018)

    Google Scholar 

  8. Mukherjee, T., Debroy, T.: A digital twin for rapid qualification of 3D printed metallic components. Appl. Mater. Today 14, 59–65 (2019)

    Google Scholar 

  9. Knapp, G., Mukherjee, T., Zuback, J., Wei, H., Palmer, T., De, A., Debroy, T.: Building blocks for a digital twin of additive manufacturing. Acta Mater. 135, 390–399 (2017)

    Google Scholar 

  10. Yu, H., Miao, C., Leung, C., White, T.J.: Towards AI-powered personalization in MOOC learning. NPJ Sci. Learn. 2, 15 (2017)

    Article  Google Scholar 

  11. Peng, H., Ma, S., Spector, J.M.: Personalized adaptive learning: an emerging pedagogical approach enabled by a smart learning environment. In: Foundations and Trends in Smart Learning, pp. 171–176. Springer, Cham, Switzerland (2019)

    Google Scholar 

  12. Adu, E.K., Poo, D.C.: Smart learning: a new paradigm of learning in the smart age. In: Proceedings of the International Conference on Teaching and Learning in Higher Education (TLHE). National University of Singapore, Singapore (2014)

    Google Scholar 

  13. Batty, M.: Digital twins. Environ. Plan. B, Urban Anal. City Sci. 45, 817–820 (2018)

    Google Scholar 

  14. Mohammadi, N., Taylor, J.E.: Smart city digital twins. In: Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Nov. 2017, pp. 1–5

    Google Scholar 

  15. Kent, L., Snider, C., Hicks, B.: Early stage digital-physical twinning to engage citizens with city planning and design. In: Proceedings of the IEEE Conference on Virtual Reality 3D User Interfaces (VR), March 2019, pp. 1014–1015

    Google Scholar 

  16. Joseph, A., Cvetkovic, M., Palensky, P.: Predictive mitigation of short term voltage instability using a faster than real-time digital replica. In: Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference (ISGT-Eur.), Oct. 2018, pp. 1–6

    Google Scholar 

  17. Esch, J.: Prolog to aviation cyber physical systems: foundations for future aircraft and air transport. Proc. IEEE 101(8), 1831–1833 (2013)

    Google Scholar 

  18. Cheng, Z., Kuzmichev, V.E.: Digital twin and men’s underwear design. IOP Conf. Ser. Mater. Sci. Eng. (IOP Publishing) 012075 (2018)

    Google Scholar 

  19. Riedelsheimer, T., Dorfhuber, L., Stark, R.: User centered development of a digital twin concept with focus on sustainability in the clothing industry. Procedia CIRP 90, 660–665 (2020)

    Article  Google Scholar 

  20. Ruhland, P., Li, Y., Coutandin, S., et al.: Production of hybrid tubular metal-fibre preforms: development of a digital twin for the draping process. Procedia CIRP 99, 437–442 (2021)

    Google Scholar 

  21. Zhang, S.C., Kuzmichev, V.E.: A method of selection the textile materials for virtual reconstruction. IOP Conf. Ser. Mater. Sci. Eng. (IOP Publishing) 811(1), 012008 (2020)

    Google Scholar 

  22. Kamppuri, T., Kallio, K., Mäkelä, S.M., Harlin, A.: Finland as a forerunner in sustainable and knowledge-based textile industry-Roadmap for 2035 (2021)

    Google Scholar 

  23. Peng, X., Kuzmichev, V.E.: Virtual method of predicting the accuracy of pattern blocks. IOP Conf. Ser. Mater. Sci. Eng. (IOP Publishing) 459(1), 012084 (2018)

    Google Scholar 

  24. Scheuermann, C., Binderberger, T., von Frankenberg, N., Werner, A.: Digital twin: a machine learning approach to predict individual stress levels in extreme environments. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, pp. 657–664 (2020)

    Google Scholar 

  25. Zhang, Z., Zhu, Z., Zhang, J., Wang, J.: Construction of Intelligent Integrated Model Framework for the Workshop Manufacturing System Via Digital Twin (2021)

    Google Scholar 

  26. Hossain, M.., Shakhawat Hossain Rony, M., Faridul Hossain, K.M., Kawsar Hossain, M., Azharul Hossain, M., Zhou, Y.: Effective mechanical and chemical washing process in garment industries. Am. J. Appl. Phys. 2, 1–25 (2017)

    Google Scholar 

  27. Sarkar, P.: Garment Manufacturing Process from Fabric to Finished Product. https://www.onlineclothingstudy.com/2017/07/garment-manufacturing-process-fabric-to-fashion.html (2017)

  28. Cassidy, T., Goswami, P.: Textile and Clothing Design Technology, p. 525. Taylor & Francis Group (2018)

    Google Scholar 

  29. Behera, B.K., Hari, P.K.: Woven Textile Structure, p. 462. Woodhead Publishing Series in Textiles (2010)

    Google Scholar 

  30. Ben Abdessalem, S., Azeiez, M., Mokhtar, S.: Knitted fabric faults: inspection, causes and solutions. Indian Text. J. 4, 40–48 (2009)

    Google Scholar 

  31. Rienzo, M.D., Meriggi, P., Rizzo, F., et al.: Textile technology for the vital signs monitoring in telemedicine and extreme environments. IEEE Trans. Inf. Technol. Biomed. 14, 711–717 (2010)

    Article  Google Scholar 

  32. Billinghurst, M., Starner, T.: Wearable devices: new ways to manage informations. Computer 32, 57–64 (1999)

    Article  Google Scholar 

  33. El-Sherif, M.A., Yuan, J., Macdiarmid, A.: Fiber optic sensors and smart fabrics. J. Intell. Mater. Syst. Struct. 11, 407–414 (2016). https://doi.org/10.1106/mknk-e482-gwug-0he7

    Article  Google Scholar 

  34. Curone, D., Secco, E.L., Tognetti, A., et al.: Smart garments for emergency operators: the ProeTEX project. IEEE Trans. Inf. Technol. Biomed. 114, 694–701 (2010)

    Article  Google Scholar 

  35. Hinduja, H., Kekkar, S., Chourasia, S., et al.: Industry 4.0 digital twin and its industrial applications. Int. J. Sci. Eng. Technol. 8, 1–7 (2020)

    Google Scholar 

  36. Mattila, H.: Yarn to fabric: intelligent textiles. In: Sinclair, R. (ed.) Textiles and Fashion, pp. 355–376. Elsevier (2015)

    Chapter  Google Scholar 

  37. Grieves, M., Vickers, J.: Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems, pp. 85–113. Springer (2017)

    Google Scholar 

  38. Khajavi, S.H., Motlagh, N.H., Jaribion, A., Werner, L.C., Holmström, J.: Digital twin: vision, benefits, boundaries, and creation for buildings. IEEE Access 7, 147406–147419 (2019)

    Article  Google Scholar 

  39. Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication (2017)

  40. Barhanpurka, K., Barhanpurka, S.: Applications of big data in textile industry. Textile Value Chain. https://textilevaluechain.in/in-depth-analysis/articles/textile-articles/applications-of-big-data-in-textile-industry/ (2019)

  41. Wang, Y., Kung, L., Byrd, T.A.: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 126, 3–13 (2018)

    Article  Google Scholar 

  42. Lv, Y., Yue, X., Chen, Q., Wang, M.: Fabric defect detection with cartoon–texture decomposition. In: International Conference on Artificial Intelligence on Textile and Apparel, pp. 277–283. Springer, Cham (2018)‏

    Google Scholar 

  43. Tong, L., Zhou, X., Wen, J., Gao, C.: Optimal gabor filtering for the inspection of striped fabric. In: International Conference on Artificial Intelligence on Textile and Apparel, pp. 291–297. Springer, Cham (2018)‏

    Google Scholar 

  44. Gao, C., Zhou, J., Wong, W.K., Gao, T.: Woven fabric defect detection based on convolutional neural network for binary classification. In: International Conference on Artificial Intelligence on Textile and Apparel, pp. 307–313. Springer, Cham (2018)‏

    Google Scholar 

  45. Wang, F., Jin, X., Luo, W.: Intelligent cashmere/wool classification with convolutional neural network. In: International Conference on Artificial Intelligence on Textile and Apparel, pp. 17–25. Springer, Cham (2018)‏

    Google Scholar 

  46. Zeng, X., Xing, P.: Yarn quality prediction for spinning production using the improved apriori algorithms. In: International Conference on Artificial Intelligence on Textile and Apparel, pp. 27–36, Springer, Cham (2018)‏

    Google Scholar 

  47. Hui, C.L., Ng, S.F.: Predicting seam performance of commercial woven fabrics using multiple logarithm regression and artificial neural networks. Text. Res. J. 79(18), 1649–1657 (2009)

    Article  Google Scholar 

  48. Abd Jelil, R.: Review of artificial intelligence applications in garment manufacturing. In: Artificial Intelligence for Fashion Industry in the Big Data Era, pp. 97–123. Springer, Singapore (2018)‏

    Google Scholar 

  49. Aivaliotis, P., Georgoulias, K., Chryssolouris, G.: The use of digital twin for predictive maintenance in manufacturing. Int. J. Comput. Integr. Manuf. 32(11), 1067–1080 (2019)

    Article  Google Scholar 

  50. Leng, J., Yan, D., Liu, Q., Zhang, H., Zhao, G., Wei, L., Chen, X., et al.: Digital twin-driven joint optimisation of packing and storage assignment in large-scale automated high-rise warehouse product-service system. Int. J. Comput. Integr. Manuf. 1–18 (2019)‏

    Google Scholar 

  51. Liu, K., Zeng, X., Bruniaux, P., Tao, X., Kamalha, E., Wang, J.: Garment fit evaluation using machine learning technology. In: Artificial Intelligence for Fashion Industry in the Big Data Era, pp. 273–288. Springer, Singapore (2018)‏

    Google Scholar 

  52. Hong, Y., Zeng, X., Brunixaux, P., Chen, Y.: Evaluation of fashion design using artificial intelligence tools. In: Artificial Intelligence for Fashion Industry in the Big Data Era, pp. 245–256. Springer, Singapore (2018)‏

    Google Scholar 

  53. Ren, S., Hui, C.L.P., Choi, T.M.J.: AI-based fashion sales forecasting methods in big data era. In: Artificial Intelligence for Fashion Industry in the Big Data Era, pp. 9–26. Springer, Singapore (2018)

    Google Scholar 

  54. Pal, K.: Internet of things and blockchain technology in apparel manufacturing supply chain data management. Proc. Comput. Sci. 170, 450–457 (2020)

    Article  Google Scholar 

  55. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, challenges and open research. IEEE Access 8, 108952–108971 (2020)

    Article  Google Scholar 

  56. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman H. Alkhammash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alkhammash, E.H., Karaa, W.b.A., Bhouri, N., Abdessalem, S.B., Hassanien, A.E. (2022). Digital Twin Solutions for Textile Industry: Architecture, Services, and Challenges. In: Hassanien, A.E., Darwish, A., Snasel, V. (eds) Digital Twins for Digital Transformation: Innovation in Industry. Studies in Systems, Decision and Control, vol 423. Springer, Cham. https://doi.org/10.1007/978-3-030-96802-1_9

Download citation

Publish with us

Policies and ethics