Skip to main content

Sustainability Perspective

  • Chapter
  • First Online:
Handbook Digital Farming

Abstract

As shared in chapter one, there are multiple existing and new requirements in a more sustainable agricultural production system, e.g. laid down in regulations, defined in company strategies, purchasing policies and consumer preferences. Compared to the recent decades, which focused on solving specific issues (e.g., ground water quality, flowering strips for insects), todays sustainability challenges seem to call for more systemic, interdisciplinary, integrated, new solutions (e.g. climate change, biodiversity). This chapter provides examples and focus points where to start improving the agricultural sustainability. It describes organizational, methodological, agronomical and other specific approaches how to transform a farm, a segment and the whole value chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angers, D. A., and Eriksen-Hamel, N.S. 2008. Full-inversion tillage and organic carbon distribution in soil profiles: A meta-analysis. Soil Science Society of America Journal 72:1370–1374. https://doi.org/10.2136/sssaj2007.0342.

  2. Altieri, M. A., C. I. Nicholls, A. Henao, and M. A. Lana. 2015. Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development 35:869–890.

    Google Scholar 

  3. Albrecht, E., T. Reinsch, A. Poyda, F. Taube, and C. Henning. 2017. Klimaschutz durch Wiedervernässung von Niedermoorböden: Wohlfahrtseffekte am Beispiel der Eider-Treene-Region in Schleswig-Holstein. Berichte über Landwirtschaft 95(3): ISSN 2196–5099.

    Google Scholar 

  4. Bruno, Basso, and John Antle. 2020. Digital agriculture to design sustainable agricultural systems. https://doi.org/10.1038/s41893-020-0510-0. Accessed 13 March 2022.

  5. BASF SE. 2020. BASF, Boortmalt and SAI Platform collaborate for sustainable barley production. Press Release. https://www.basf.com/global/en/media/news-releases/2020/11/p-20-369.html. Accessed 13 March 2022.

  6. Bellamy, Pat, Peter Loveland, R. Bradley, R. Lark, and Guy Kirk. 2005. Carbon losses from all soils across England and Wales, 1978–2003. Nature 437:245–258. https://doi.org/10.1038/nature04038.

  7. Bockholt, K. 2020. 10 Cent mehr für regionales Lerchenbrothttps://www.agrarheute.com/pflanze/getreide/10-cent-mehr-fuer-regionales-lerchenbrot-imagegewinn-plus-600-euroha-567818. Accessed 13 March 2022.

  8. Baker, J. M., T. E. Ochsner, R. T. Venterea, and T. J. Griffis. 2007. Tillage and soil carbon sequestration – What do we really know? Agriculture, Ecosystems and Environment 118:1–5.

    Google Scholar 

  9. Francesco Braga . 2015. The sustainable agriculture initiative platform: The first 10 years. Journal on Chain and Network Science. http://www.wageningenacademic.com/doi/pdf/10.3920/JCNS2014.x015. Accessed 13 March 2022.

  10. Biernat, Lars, Friedhelm Taube, Iris Vogeler, Thorsten Reinsch, Christof Kluß, and Ralf Loges. 2020. Is organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agriculture, Ecosystems & Environment 298:106964. https://doi.org/ggt6s6.

  11. Business Wire. https://www.businesswire.com/news/home/20200106005370/en/Indigo-Closes-200M-Financing-to-Support-Continued-Growth-of-Its-Platforms-Including-Indigo-Grain-Marketplace-and-Indigo-Carbon.. Accessed 7 July 2021.

  12. Bottcher, U., W. Weymann, J. W. M. Pullens, J. E. Olesen, and H. Kage. 2020. Development and evaluation of HUME-OSR: A dynamic crop growth model for winter oilseed rape. Field Crops Research 246:107679.

    Google Scholar 

  13. Churkina, G., V. Brovkin, W. von Bloh, K. Trusilova, F. Jung, and F. Dentener. 2009. Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming. Global Biogeochemical Cycles 23. https://doi.org/10.1029/2008GB003291.

  14. Cdconant, R. T., R. A. Drijber, M. L. Haddix, W. J. Parton, E. A. Paul, A. F. Plante, J. Six, and J. M. Steinweg. 2008. Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology 14:868–877. https://doi.org/10.1111/j.1365-2486.2008.01541.x.

  15. Cool Farm Alliance. 2019. https://coolfarmtool.org/cool-farm-alliance/. Accessed 13 March 2022.

  16. Churkina, G. 2013. An introduction to carbon cycle science. In Land use and the carbon cycle: Advances in integrated science, management, and policy, Eds. D. Brown, D. Robinson, N. French, and B. Reed, pp. 24–51. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511894824.004.

  17. COSA. 2020. The committee on sustainability assessment, simpler resilience measurement: Tools to diagnose and improve how households fare in difficult circumstances from conflict to climate change. https://thecosa.org/wp-content/uploads/2018/04/COSA-FORD-Simpler-Resilience-Measurement-Full-20180413.pdf. Accessed 13 March 2022.

  18. Dobbs, T. L., and J. N. Pretty. 2004. Agri-environmental stewardship schemes and ‘multifunctionality.’ Review of Agricultural Economics 26(2):220–237.

    Google Scholar 

  19. Deutscher Verband für Landschaftspflege (DVL) e. V. Ed. 2020. Public goods bonus. A concept for the effective remuneration of agricultural environmental and climate protection services within the eco-schemes of the EU Common Agricultural Policy (CAP) beyond 2020, Developed in cooperation with agriculture, science and administration DVL, Ansbach. https://www.dvl.org/uploads/tx_ttproducts/datasheet/DVL-Publication-EN_Public_goods_bonus.pdf.

  20. European Commission. 2021. https://ec.europa.eu/clima/policies/ets_en. Accessed 6 July 2021.

  21. European Commission. 2021. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. Accessed 6 July 2021.

  22. Esperschütz, J., A. Gattinger, P. Mäder, M. Schloter, and A. Fließbach. 2007. Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiology Ecology 61:26–37. https://doi.org/10.1111/j.1574-6941.2007.00318.x.

  23. Enfors, E. I., L. J. Gordon, and G. D. Peterson. 2008. Making investments in dryland development work: Participatory scenario planning in the Makanya catchment. Tanzania. Ecology and Society 13:42.

    Google Scholar 

  24. Food and Agriculture Organization of the United Nations (FAO). 2014. Sustainability Assessment of Food and Agriculture systems (SAFA) Guidelines. ISBN 978-92-5-108485-4.

    Google Scholar 

  25. Food and Agriculture Organization of the United Nations (FAO). 1998. The state of food and agriculture. AGRIS:E16-E80a, ISBN 9251042004.

    Google Scholar 

  26. Fountas S., G. Carli, C. G. Sørensen, Z. Tsiropoulos, C. Cavalaris, A. Vatsanidou, B. Liakos, M. Canavari, J. Wiebensohn, and B. Tisserye. 2005. Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture 115:40–50.

    Google Scholar 

  27. Frank, M., K. Fischer, and D. Voeste. 2014. BASF: Measurability of shared value creation in agriculture. In CSR und value chain management, Ed. Michael D’Heur, pp. 217–236. SpringerGabler.

    Google Scholar 

  28. Flint, D. J., and S. L. Golicic. 2009. Searching for competitive advantage through sustainability: A qualitative study in the New Zealand wine industry. International Journal of Physical Distribution & Logistics Management 39 (10):841–860. https://doi.org/10.1108/09600030911011441.

  29. FTM. 2016. Field to market: The alliance for sustainable agriculture, environmental and socioeconomic indicators for measuring outcomes of on farm agricultural production in the United States (FTM 2016 Third Edition). https://fieldtomarket.org/national-indicators-report-2016/report-downloads/. Accessed 13 March 2022.

  30. Field to Market: The Alliance for Sustainable Agriculture. 2018. Fieldprint Platform. https://calculator.fieldtomarket.org/. Accessed 13 March 2022.

  31. Field to Market: The Alliance for Sustainable Agriculture. 2019. Field to market and SAI platform announce first use of joint equivalency module by leading food companies Barry Callebaut and Unilever. https://www.duurzaam-ondernemen.nl/field-to-market-and-sai-platform-announce-first-use-of-joint-equivalency-module-by-leading-food-companies-barry-callebaut-and-unilever/. Accessed 13 March 2022.

  32. Fließbach, Andreas, Hans-Rudolf Oberholzer, Lucie Gunst, and Paul Mäder. 2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems & Environment 118:1–4.

    Google Scholar 

  33. Markus Frank, Peter Saling, Martjn. Gipmans, and Jan Schöneboom. 2014. Life cycle assessment towards a sustainable food supply – A review on BASF’s strategy. Proceedings of the 9th international conference on life cycle assessment in the agri-food sector.

    Google Scholar 

  34. [FST+15] Fountas, G. C., C. G. Sørensen, Z. Tsiropoulos, C. Cavalaris, A. Vatsanidou, B. Liakos, M. Canavari, J. Wiebensohn, and B. Tisserye. 2015. Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture 115:40–50.

    Google Scholar 

  35. [GAE+03] James, N., Galloway, John D., Aber, Jan Willem Erisman, Sybil P. Seitzinger, Robert W. Howarth, Ellis B. Cowling, and B. Jack Cosby. 2003. The nitrogen cascade. BioScience 53 (4):341–356.

    Google Scholar 

  36. Godfray H. C. J., Beddington J. R., Crute I. R., Haddad L., Lawrence L., Muir J. F., Pretty J., Robinson S., Thomas S. M., and Toulmin, C. 2010. Food security: The challenge of feeding 9 billion people. Science 327:812–818.

    Google Scholar 

  37. Giller, K. E., Hijbeek, R., Andersson, J. A., and Sumberg, J. 2021. Regenerative agriculture: An agronomic perspective. Outlook on Agriculture 50(1):13–25. https://doi.org/10.1177/0030727021998063.

  38. Gregorich, E. G., B. C. Liang, B. H. Ellert, and Drury, C. F. 1996. Fertilization effects on soil organic matter turnover and corn residue C storage. Soil Science Society of America Journal 60:472–476. https://doi.org/10.2136/sssaj1996.03615995006000020019x.

  39. GODAN. 2016. A global data ecosystem for agriculture and foodhttps://www.godan.info/sites/default/files/documents/Godan_Global_Data_Ecosystem_Publication_lowres.pdf. Accessed 28 Sep 2020.

  40. Gordon, L. J., G. D. Peterson, and E. M. Bennett. 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology & Evolution 23:211–219.

    Google Scholar 

  41. Giovannucci, Daniele, Sara Scherr, Charlotte Hebebrand, Julie Shapiro, Jeffrey Milder, and Keith Wheeler. 2020. Food and agriculture: The future of sustainability. A strategic input to the sustainable development in the 21st Century (SD21) project. https://sustainabledevelopment.un.org/content/documents/1443sd21brief.pdf. Accessed 13 March 2022.

  42. Gál, Anita, Tony J. Vyn, Erika Michéli, Eileen J. Kladivko, and William W. McFee. 2019. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths, Soil and Tillage. Research 96(1–2).

    Google Scholar 

  43. Huggins, D. R., R. R. Allmaras, C. E. Clapp, J. A. Lamb, and G. W. Randall. 2007. Corn-soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Science Society of America Journal 71:145–154. https://doi.org/10.2136/sssaj2005.0231.

  44. Harvey, C. A., M. Chacón, C.I. Donatti, E. Garen, L. Hannah, A. Andrade, L. Bede, D. Brown, A. Calle, J. Chará, C. Clement, E. Gray, M. H. Hoang, P. Minang, A. M. Rodríguez, C. Seeberg-Elverfeldt, B. Semroc, S. Shames, S. Smukler, E. Somarriba, E. Torquebiau, J. van Etten, and E. Wollenberg. 2014. Climate-smart landscapes: Opportunities and challenges for integrating adaptation, Climate-smart landscapes: Opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conservation Letters 7 (2):77–90.

    Google Scholar 

  45. Horlings, L. G., and T. K. Marsden. 2011. Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernisation of agriculture that could ‘feed the world’. Global Environmental Change 21:441–452.

    Google Scholar 

  46. IAASTD. 2019. International assessment of agricultural knowledge, science and technology for development. Global Report. Washington, US: Island Press.

    Google Scholar 

  47. IPCC. 2014. Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  48. Jones, R. J. A., R. Hiederer, E. Rusco, and L. Montanarella. 2005. Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science 56:655–671. https://doi.org/10.1111/j.1365-2389.2005.00728.x.

  49. Jones, C., C. McConnell, K. Coleman, P. Cox, P. Falloon, D. Jenkinson, and D. Powlson. 2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology 11:154–166. https://doi.org/10.1111/j.1365-2486.2004.00885.x.

  50. Keystone Center. 2009. Field to market: Environmental resource indicators report, environmental resource indicators for measuring outcomes of on-farm agricultural production in the United States (NIR- 2009 First Report). https://fieldtomarket.org/national-indicators-report-2016/report-downloads/. Accessed 13 March 2022.

  51. Keystone Center. 2012 V2. Field to market: Environmental and socioeconomic indicators for measuring outcomes of on-farm agricultural production in the United States, (NIR-2012 Second Report Version 2). https://fieldtomarket.org/national-indicators-report-2016/report-downloads/. Accessed 15 July 2020.

  52. Konefal, J., Hatanaka, M., Strube, J., Glenna, L., and Conner, D. 2019. Sustainability assemblages: From metrics development to metrics implementation in United States agriculture. Journal of Rural Studies. https://doi.org/10.1016/j.jrurstud.2019.10.023.

  53. Lal, R. 2007. Soil science and the carbon civilization. Soil Science Society of America Journal 71:1425–1437. https://doi.org/10.2136/sssaj2007.0001

  54. Lal, R. 2014. Abating climate change and feeding the world through soil carbon sequestration. In Soil as world heritage, Ed. Dent D. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-6187-2_47.

  55. Linton, J. D., R. Klassen, and V. Jayaramanet. 2007. Sustainable supply chains: An introduction. Journal of Operations Management 25:1075–1082.

    Google Scholar 

  56. Loges, Ralf, Sabine Mues, Christof Kluß, Carsten S. Malisch, Cecilia Loza, Arne Poyda, Thorsten Reinsch, and Friedhelm Taube. 2020. Dairy cows back to arable regions? Grazing leys for eco-efficient milk production systems. Grassland Science in Europe 25:400–402. https://www.europeangrassland.org/fileadmin/documents/Infos/Printed_Matter/Proceedings/EGF2020.pdf.

  57. Lorenz, Heike, Thorsten Reinsch, Christof Kluß, Friedhelm Taube, and Ralf Loges. 2020. Does the admixture of forage herbs affect the yield performance, yield stability and forage quality of a grass clover ley? Sustainability 12:5842. ghcqfq.

    Google Scholar 

  58. Luck, J. D. 2016. Precision ag data usage: Current trends and future opportunities. Resource Magazine 23(6):18–19.

    Google Scholar 

  59. Lefebvre, D., A. Williams, and J. Meersmans, et al. 2020. Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Scientific Reports 10:19479. https://doi.org/10.1038/s41598-020-76470-y.

  60. Roderick John MacRae. 1990. Policies, programs, and regulations to support the transition to sustainable agriculture in Canada. American Journal of Alternative Agriculture 5(2):76–92. https://doi.org/10.1017/S0889189300003325.

  61. Maixner, Ed, and Philip Brasher. 2020. Carbon markets lure farmers, but will benefits be enough to hook them? https://www.agri-pulse.com/articles/14880-carbon-markets-lure-farmers-but-are-benefits-enough-to-hook-them. Accessed 12 Feb 2021.

  62. Meier, Toni, Olaf Christen, Edmund Semler, Gerhard Jahreis, Lieske Voget-Kleschin, Alexander Schrode, and Martina Artmann. 2014. Balancing virtual land imports by a shift in the diet. Using a land balance approach to assess the sustainability of food consumption. Germany as an example. Appetite 74:20–34. https://doi.org/f5stw2.

  63. Neumann, Helge, Uwe Dierking, and Friedhelm Taube. 2017. Erprobung und Evaluierung eines neuen Verfahrens für die Bewertung und finanzielle Honorierung der Biodiversitäts-, Klima- und Wasserschutzleistungen landwirtschaftlicher Betriebe („Gemeinwohlprämie“). Berichte über Landwirtschaft - Zeitschrift für Agrarpolitik und Landwirtschaft 95. https://doi.org/gg5swt.

  64. Nemecek T., O. Huguenin-Elie, D. Dubois, G. Gaillard, B. Schaller, and A. Chervet. 2011. Life cycle assessment of Swiss farming systems: II. Extensive and Intensive production, Agricultural Systems 104(3):233–245.

    Google Scholar 

  65. OpenTEAM. 2020. https://openteam.community. Accessed 13 March 2022.

  66. Oppermann, Rainer, Sonja C. Pfister, and Anja Eirich. 2020. Sicherung der Biodiversität in der Agrarlandschaft Quantifizierung des Maßnahmenbedarfs und Empfehlungen zur Umsetzung, S. 191. Institut für Agrarökologie und Biodiversität (IFAB). ISBN 978-3-00-066368-0.

    Google Scholar 

  67. Pretty, J., and Z. Pervez Bharucha. 2018. Sustainable intensification of agriculture. Greening the world’s food economy. Routledge, Abingdon, UK: Earthscan.

    Google Scholar 

  68. Poetz, Katharina, Rainer Haas, and Michaela Balzarova. 2012. Emerging strategic corporate social responsibility partnership initiatives in agribusiness: The case of the sustainable agriculture initiative. Journal on Chain and Network Science. Wageningen Academic Publishers. https://doi.org/10.3920/JCNS2012.x010. Accessed 6 June 2020.

  69. Peterson, H. C. 2009. Transformational supply chains and the “wicked problem” of sustainability: Aligning knowledge, innovation, entrepreneurship, and leadership. Journal on Chain and Network Science 9:71–82.

    Google Scholar 

  70. Piepenbrock. 2021. https://f3.de/food/ruckverfolgbarkeit-als-produktstory-1264.html. Accessed 14 June 2021.

  71. Poyda, Arne, Thorsten Reinsch, Christof Kluß, Ralf Loges, and Friedhelm Taube. 2016. Greenhouse gas emissions from fen soils used for forage production in northern Germany. Biogeosciences 13:5221–5244. https://doi.org/gcc4t7.

  72. Powlson, D. S., A. P. Whitmore, and K. W. T. Goulding. 2011. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. European Journal of Soil Science 62:42–55.

    Google Scholar 

  73. Röös, Elin, Bojana Bajželj, Pete Smith, Mikaela Patel, David Little, and Tara Garnett. 2017. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Global Environmental Change 47:1–12. https://doi.org/gcr65w.

  74. Russell, A. E., C. A. Cambardella, D. A. Laird, D. B. Jaynes, and D. W. Meek. 2009. Nitrogen fertilizer effects on soil carbon balances in midwestern U.S. agricultural systems. Ecological Applications 19 (5):1102–1113. https://doi.org/10.1890/07-1919.1. PMID: 19688919.

  75. Reinsch, Thorsten, Cecilia Loza, Iris Vogeler, Christof Kluß, Ralf Loges, and Friedhelm Taube. Ecological intensification in dairy production: Towards specialised or integrated systems in northwest Europe? https://www.frontiersin.org/articles/10.3389/fsufs.2021.614348/full.

  76. SAI Sustainable Agriculture Initiative Platform. 2009. Principles & practices for Sustainable Production of Arable & Vegetable Crops Report. https://saiplatform.org/our-work/reports-publications/principles-practices-arable-and-vegetable-crops/. Accessed 10 June 2020.

  77. SAI Sustainable Agriculture Initiative Platform. 2016. SAI Platform Annual Report. https://saiplatform.org/wp-content/uploads/2017/05/sai-platform-annual-report-2016-2.pdf. Accessed 6 June 2020.

  78. SAI - FSA Web-App. 2018a. Video file. https://fsatool.sustainabilitymap.org/index.html#!/home. Accessed 13 March 2022.

  79. SAI Sustainable Agriculture Initiative Platform. 2018. Donana Berry Project. SAI PLATFORM 6 Avenue Jules Crosnier 1206 Geneva, Switzerland.

    Google Scholar 

  80. SAI Sustainable Agriculture Initiative Platform. 2019a. SAIRISI sustainability and collaboration across the value Chain. https://saiplatform.org/?q=SAIRISI%3A+across+value+chain. Accessed 14 June 2020.

  81. SAI Sustainable Agriculture Initiative Platform. 2019. European Sugar Beet Project. SAI PLATFORM 6 Avenue Jules Crosnier 1206 Geneva, Switzerland.

    Google Scholar 

  82. Senthilkumar, S., B. Basso, A. N. Kravchenko, and G. P. Robertson. 2009. Contemporary evidence of soil carbon loss in the U.S. Corn Belt.. Soil Science Society of America Journal 73:2078–2086. https://doi.org/10.2136/sssaj2009.0044.

  83. Six, J., R. T. Conant, E. A. Paul, et al. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil 241:155–176. https://doi.org/10.1023/A:1016125726789.

  84. Schoeneboom, J., M. Frank, J. Spencer, and P. Saling. 2015. Enabling farmers to reduce their impact and to show it by Life Cycle Management systems. Abstract 481, Life Cycle Management Conference, Bordeaux, 2015.

    Google Scholar 

  85. Saling, Peter, Markus Frank, Dirk Voeste, Martijn Gipmans, Jan Schoeneboom, and Richard Gelder. 2012. AgBalance – holistic sustainability assessment of agricultural Production.

    Google Scholar 

  86. Sutton, Mark A., Clare M. Howard, Jan Willem Erisman, William J. Bealey, Gilles Billen, Albert Bleeker, Alexander F. Bouwman, Peringe Grennfelt, Hans van Grinsven, and Bruna Grizzetti. 2011. The challenge to integrate nitrogen science and policies: The European Nitrogen Assessment approach. In The European nitrogen assessment, Eds. Mark A. Sutton, Clare M. Howard, Jan Willem Erisman, William J. Bealey, Gilles Billen, Albert Bleeker, Alexander F. Bouwman, Peringe Grennfelt, Hans van Grinsven, and Bruna Grizzetti, pp. 82–96. Cambridge: Cambridge University Press. https://doi.org/b2kc78.

  87. Srinivasarao, C., R. Lal, S. Kundu, and P. Thakur. 2015. Conservation agriculture and soil carbon sequestration. In Conservation agriculture, Eds. M. Farooq and K. Siddique. Cham: Springer. https://doi.org/10.1007/978-3-319-11620-4_19.

  88. Seufert, Verena, and Navin Ramankutty. 2017. Many shades of gray—The context-dependent performance of organic agriculture. Science Advances 3:e1602638. https://doi.org/ggcvf7.

  89. Syngenta. 2015. The good growth plan progress report 2015. https://www.syngenta.com/sites/syngenta/files/presentation-and-publication/updated/thegoodgrowthplanprogressreport2015/Syngenta-The-Good-Growth-Plan-Progress-Report-2015-online-EN.PDF. Accessed 20 Feb 2021.

  90. Tilman D., Balzer, C., Hill, J., and Befort, B. I. 2011. Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–20264.

    Google Scholar 

  91. Teasdale, J. R. 2007. Strategies for soil conservation in no-tillage and organic farming systems. Journal of Soil and Water Conservation 62:144A–147A.

    Google Scholar 

  92. Tittonell, Pablo. 2014. Ecological intensification of agriculture—sustainable by nature. Current Opinion in Environmental Sustainability 8:53–61. https://doi.org/ggmkhm.

    Google Scholar 

  93. Toensmeier, E. 2016. The carbon farming solution, 1 ed. Chelsea Green Publishing, White River Junction.

    Google Scholar 

  94. The Royal Society. 2009. Reaping the benefits: Science and the sustainable intensification of global agriculture. London, UK.

    Google Scholar 

  95. Taube, Friedhelm, Iris Vogeler, Christof Kluß, Antje Herrmann, Mario Hasler, Jürgen Rath, Ralf Loges, and Carsten S. Malisch. 2020. Yield progress in forage maize in NW Europe—Breeding progress or climate change effects? Frontiers in Plant Science 11:16. https://doi.org/gg79j2.

  96. Tylianakis, J. M. 2013. The global plight of pollinators. Science 339:1532–1533.

    Google Scholar 

  97. Unilever. 2013. The sustainable source. Issue 4, February 2013. https://www.unilever.com/about/suppliers-centre/sustainable-sourcing-suppliers/certification-vs-self-verification/. Accessed 28 Feb 2021.

  98. 2021. Transforming our world: the 2030 Agenda for Sustainable Development. United Nations General Assembly document A/RES/70/1. https://sustainabledevelopment.un.org/post2015/transformingourworld/publication. Accessed 13 March 2022.

  99. Unilever. 2018. Press Release. https://www.unilever.com/news/press-releases/2018/unilevers-sustainable-living-plan-continues-to-fuel-growth.html.

  100. Unilever. 2019. Unilever Sustainable Living Plan 3 Year Performance Summary 2017–2019https://www.unilever.com/Images/uslp-3-year-performance-summary-2017-2019_tcm244-549781_en.pdf. Accessed 28 Feb 2021.

  101. Verra. 2021. https://verra.org/project/vcs-program/. Accessed 7 July 2021.

  102. World Commission on Environment and Development. 1987. Report of the World Commission on Environment and Development: Our Common Future, United Nations General Assembly document A/42/427. http://www.un-documents.net/wced-ocf.htm. Accessed 13 March 2022.

  103. WBAE, Achim Spiller, Britta Renner, Lieske Voget-Kleschin, Ulrike Arens-Azevedo, Alfons Balmann, Hans Konrad Biesalski, Regina Birner, Wolfgang Bokelmann, Olaf Christen, Matthias Gauly, Harald Grethe, Uwe Latacz-Lohmann, José Martínez, Hiltrud Nieberg, Monika Pischetsrieder, Matin Qaim, Julia C. Schmid, Friedhelm Taube, and Peter Weingarten. 2020. “Promoting sustainability in food consumption – Developing an integrated food policy and creating fair food environments”. Executive summary and synthesis report. Berichte über Landwirtschaft. Special Issue 233. https://doi.org/gh2zrx.

  104. Axel Woitowitz. 2007. „Auswirkungen einer Einschränkung des Verzehrs von Lebensmitteln tierischer Herkunft auf ausgewählte Nachhaltigkeitsindikatoren – dargestellt am Beispiel konventioneller und ökologischer Wirtschaftsweise.“ PhD Thesis, Technical University of Munich. http://mediatum.ub.tum.de/?id=619300.

  105. Wrangler. 2018. Sustainability data in the agricultural supply chain – Technical Paper No. 2. https://kontoorbrands.app.box.com/v/burden-to-benefit. Accessed 28 Feb 2021.

  106. Wezel, A., and V. Soldat. 2009. A quantitative and qualitative historical analysis of the scientific discipline of agroecology. International Journal of Agricultural Sustainability 7(1):3–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wheeler, K.A., Taube, F., Erdle, K., Frank, M., Roth, I. (2022). Sustainability Perspective. In: Dörr, J., Nachtmann, M. (eds) Handbook Digital Farming. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64378-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64378-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64377-8

  • Online ISBN: 978-3-662-64378-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics