Skip to main content

Machine Learning Techniques for Renewable Energy Forecasting: A Comprehensive Review

  • Chapter
  • First Online:
Computational Intelligence Techniques for Green Smart Cities

Abstract

Over the past decade, renewable energy resources, such as wind, solar, biomass, ocean energy and other kinds of energy, are becoming attractive technologies for building green smart cities. These new forms of energy can complete the world’s energy demand, protect the environment and provide energy security. Statistics have shown that renewable energy resources offer between 15 and 30% of the world’s energy. Moreover, the production and consumption of different kinds of renewable energy are constantly increasing every year. However, forecasting renewable resources in terms of production and consumption is becoming more vital for the decision-making process in the energy sector. Indeed, the accurate forecasting of renewable energy permits to ensure optimal management of energy. In this context, machine learning techniques represent a promising solution to deal with forecasting issues. Several solutions and forecasting models based on machine learning have been extensively proposed in the literature for predicting power energy that should be deployed for future smart cities. This chapter aims to conduct a systematic mapping study to analyze and synthesize studies concerning machine learning techniques for forecasting renewable resources. Therefore, a total number of 86 relevant papers published on this subject between January 1, 2007, and December 31, 2021, were carefully selected. The selected articles were classified and analyzed according to the following criteria: channel and year of publication, research type, study domain, study context, study category and machine learning techniques used for forecasting renewable resources. The results showed that wind energy and solar energy were used massively in selected papers, and the forecasting of power production based on hourly forecast model and minutely forecast was the primary interest in the majority of selected papers. Furthermore, artificial neural network (ANN) and deep neural network (DNN) were the most regression algorithms used to predict renewable energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission: 2030 Climate and Energy Framework. https://ec.europa.eu

  2. Global energy transformation: a roadmap to 2050 (2019). Available online at https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019. Accessed August 17, 2020

  3. Alkabbani, H., Ahmadian, A., Zhu, Q., Elkamel, A.: Machine learning and metaheuristic methods for renewable power forecasting: a recent review. Front. Chem. Eng. 26 (2021)

    Google Scholar 

  4. Zerrahn, A., Schill, W.P., Kemfert, C.: On the economics of electrical storage for variable renewable energy sources. Eur. Econ. Rev. 108, 259–279 (2018)

    Article  Google Scholar 

  5. Wang, H., Lei, Z., Zhang, X., Zhou, B., Peng, J.: A review of deep learning for renewable energy forecasting. Energy Convers. Manage. 198, 111799 (2019)

    Article  Google Scholar 

  6. Frías-Paredes, L., Mallor, F., Gastón-Romeo, M., León, T.: Assessing energy forecasting inaccuracy by simultaneously considering temporal and absolute errors. Energy Convers. Manage. 142, 533–46 (2017)

    Article  Google Scholar 

  7. Lara-Fanego, V., Ruiz-Arias, J.A., Pozo-Vazquez, D., Santos-Alamillos, F.J.: Evaluation of the WRF model solar irradiance forecasts in Andalusia. Solar Energy 86, 2200–2217 (2012)

    Article  Google Scholar 

  8. Chakraborty, S., et al.: A fuzzy binary clustered particle swarm optimization strategy for thermal unit commitment problem with wind power integration. IEEJ Trans. Electr. Electron. Eng. 7(5), 478–486 (2012)

    Article  Google Scholar 

  9. Santhosh, M., Venkaiah, C.: Sustainable energy, grids and networks short-term wind speed forecasting approach using ensemble empirical mode decomposition and deep Boltzmann machine. Sustain. Energy Grids Netw. 19, 100242 (2019)

    Article  Google Scholar 

  10. Kitchenham, B.: Procedures for Performing Systematic Reviews, vol. 33, pp. 1–26. Keele, UK, Keele University (2004)

    Google Scholar 

  11. Olabi, A.G.: Renewable and energy storage system. Energy 136, 1–6 (2017)

    Article  Google Scholar 

  12. Zendehboudi, A., Baseer, M.A., Saidur, R.: Application of support vector machine models for forecasting solar and wind energy resources: a review. J. Clean. Prod. 199, 272–285 (2018)

    Article  Google Scholar 

  13. Nielsen, T.S., Joensen, A., Madsen, H.: A new reference for wind power forecasting. Wind Energy 34, 29–34 (1998)

    Article  Google Scholar 

  14. Lei, M., Shiyan, L., Chuanwen, J., Hongling, L., Yan, Z.: A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 13, 915–920 (2009)

    Article  Google Scholar 

  15. Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C.: The State-of-the-Art in Short-Term Prediction of Wind Power (2011)

    Google Scholar 

  16. Murata, A., Ohtake, H., Oozeki, T.: Modeling of uncertainty of solar irradiance forecasts on numerical weather predictions with the estimation of multiple confidence intervals. Renew. Energy 117, 193–201 (2018)

    Article  Google Scholar 

  17. Giebel, G., Kariniotakis, G., and Brownsword, R., The state-of-the- art in short term prediction of wind power from a danish perspective. In: 4th International Workshop on Large Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms (Billund) (2018)

    Google Scholar 

  18. Ahmed, A., Khalid, M.: A review on the selected applications of forecasting models in renewable power systems. Renew. Sustain. Energy Rev. 100, 9–21 (2019)

    Article  Google Scholar 

  19. Ezzat, A.A., Jun, M., Ding, Y., Member, S.: Spatio-temporal asymmetry of local wind fields and its impact on short-term wind forecasting. Trans. Sustain. Energy X 9, 1437–1447 (2018)

    Article  Google Scholar 

  20. Ghofrani, M., and Alolayan, M.: Time series and renewable energy forecasting. In: Time Series Analysis and Applications, pp. 78–92 (2018)

    Google Scholar 

  21. Jiang, Y., Huang, G., Peng, X., Li, Y., Yang, Q.: Journal of wind engineering and industrial aerodynamics a novel wind speed prediction method: hybrid of correlation-aided DWT, LSSVM and GARCH. J. Wind Eng. Industrial Aerodynamics 174, 28–38 (2018)

    Article  Google Scholar 

  22. Erdem, E., Shi, J.: ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 88, 1405–1414 (2011)

    Article  Google Scholar 

  23. Gomes, P., Castro, R.: Wind speed and wind power forecasting using statistical models: AutoRegressive moving average (ARMA) and artificial neural networks (ANN). Int. J. Sustain. Energy Dev. 1, 41–50 (2012)

    Article  Google Scholar 

  24. Fentis, A., Bahatti, L., Tabaa, M., Mestari, M.: Short-term nonlinear autoregressive photovoltaic power forecasting using statistical learning approaches and in-situ observations. Int. J. Energy Environ. Eng. 10, 189–206 (2019)

    Article  Google Scholar 

  25. Bacher, P., Madsen, H., Nielsen, H.A.: Online short-term solar power forecasting. Solar Energy 83, 1772–1783 (2009)

    Article  Google Scholar 

  26. Atique, S., Noureen, S., Roy, V., Subburaj, V., Bayne, S., MacFie, J., Forecasting of total daily solar energy generation using ARIMA: a case study. In: IEEE 9th Annual Computing and Communication Workshop and Conference. CCWC (Las Vegas, NV), pp. 114–119 (2019)

    Google Scholar 

  27. Pasari, S., Shah, A.: Time Series Auto-Regressive Integrated Moving Average Model for Renewable Energy Forecasting. Springer International Publishing, Pilani (2020)

    Book  Google Scholar 

  28. Kavasseri, R.G., Seetharaman, K.: Day-ahead wind speed forecasting using f -ARIMA models. Renew. Energy 34, 1388–1393 (2009)

    Article  Google Scholar 

  29. Widodo D.A., Iksan N., Udayanti E.D.: Renewable energy power generation forecasting using deep learning method. IOP Conf. Ser. Earth Environ. Sci. 700, 012026 (2021)

    Article  Google Scholar 

  30. https://www.discoverdatascience.org/industries/clean-energy/

  31. Chang, J.-P., Lai, Y.-M., Chen, C.-H., Pai, P.-F.: A survey of machine learning models in renewable energy predictions. Appl. Sci. 10(5975), 2020 (2020)

    Google Scholar 

  32. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. Informatica 31, 249–268 (2007)

    Google Scholar 

  33. Qiu, J., Wu, Q., Ding, G., Xu, Y., Feng, S.: A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 67 (2016)

    Article  Google Scholar 

  34. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L., Wang, G., et al.: Recent advances in convolutional neural networks. Pattern Recognit. 1, 1–24 (2017)

    Google Scholar 

  35. Amasyali, K., El-Gohary, N.M.: A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205 (2018)

    Article  Google Scholar 

  36. Wang, H.Z., Lei, Z.X., Zhang, X.: A review of deep learning for renewable energy forecasting. Energy Convers. Manage. 198, 111799 (2019)

    Article  Google Scholar 

  37. Banos, R., et al.: Optimization methods applied to renewable and sustainable energy: a review. Renew. Sustain. Energy Rev. 15(4), 1753–1766 (2011)

    Article  Google Scholar 

  38. Diagne, M., et al.: Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 27, 65–76 (2013)

    Article  Google Scholar 

  39. Voyant, C., et al.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105, 569–582 (2017)

    Article  Google Scholar 

  40. Das, U.K., et al.: Forecasting of photovoltaic power generation and model optimization: a review. Renew. Sustain. Energy Rev. 81, 912–928 (2018)

    Article  Google Scholar 

  41. Wang, H., et al.: A review of deep learning for renewable energy forecasting. Energy Convers. Manage. 198, 111799 (2019)

    Article  Google Scholar 

  42. Alkhayat, G., Mehmood, R.: A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy AI, 100060 (2021)

    Google Scholar 

  43. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015)

    Article  Google Scholar 

  44. Lahby, M., Aqil, S., Yafooz, W., Abakarim, Y.: Online Fake News Detection Using Machine Learning Techniques: A Systematic Mapping Study. Combating Fake News with Computational Intelligence Techniques, pp. 3–37 (2022)

    Google Scholar 

  45. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper classification and evaluation criteria: a proposal and a discussion. Requirements Eng. 11(1), 102–107 (2006)

    Article  Google Scholar 

  46. Kitchenham, B.A.: Systematic review in software engineering: where we are and where we should be going. In: Proceedings of the 2nd International Workshop on Evidential Assessment of Software Technologies, pp. 1–2 (2012)

    Google Scholar 

  47. Marsland, S. (2011). Machine Learning: An Algorithmic Perspective. Chapman and Hall/CRC

    Google Scholar 

  48. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2011)

    Google Scholar 

  49. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Machine Learning 109(2), 373–440 (2020)

    Article  Google Scholar 

  50. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press

    Google Scholar 

  51. Chakraborty, S., Weiss, M.D., Simoes, M.G.: Distributed intelligent energy management system for a single-phase high-frequency AC microgrid. IEEE Trans. Ind. Electron. 54(1), 97–109 (2007)

    Article  Google Scholar 

  52. Zhou, B., Du, S., Li, L., Wang, H., He, Y., Zhou, D.: An explainable recurrent neural network for solar irradiance forecasting. In: 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), pp. 1299–1304 (2021)

    Google Scholar 

  53. Al-Dahidi, S., Louzazni, M., Omran, N.: A local training strategy-based artificial neural network for predicting the power production of solar photovoltaic systems. IEEE Access 8, 150262–150281 (2020)

    Article  Google Scholar 

  54. Ji, G.R., Han, P., Zhai, Y.J.: Wind speed forecasting based on support vector machine with forecasting error estimation. Int. Conf. Mach. Learn. Cybern. 5, 2735–2739 (2007)

    Article  Google Scholar 

  55. Cellura, M.A.U.R.I.Z.I.O., Cirrincione, G., Marvuglia, A., Miraoui, A.: Wind speed spatial estimation for energy planning in Sicily: introduction and statistical analysis. Renew. Energy 33(6), 1237–1250 (2008)

    Google Scholar 

  56. Sanz, S.S., Perez-Bellido, A., Ortiz-Garcia, E., Portilla-Figueras, A., Prieto, L., Paredes, D., Correoso, F.: Short-term wind speed prediction by hybridizing global and mesoscale forecasting models with artificial neural networks. In: 2008 Eighth International Conference on Hybrid Intelligent Systems, pp. 608–612. IEEE (2008)

    Google Scholar 

  57. Ramirez-Rosado, I.J., Fernandez-Jimenez, L.A., Monteiro, C., Sousa, J., Bessa, R.: Comparison of two new short-term wind-power forecasting systems. Renew. Energy 34(7), 1848–1854 (2009)

    Article  Google Scholar 

  58. Fan, S., Liao, J.R., Yokoyama, R., Chen, L., Lee, W.J.: Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans. Energy Convers. 24(2), 474–482 (2009)

    Article  Google Scholar 

  59. Colak, I., Demirtas, M., Bal, G., Kahraman, H.T.: A parameter determination system for wind turbines based on nave bayes classification algorithm. In: 2009 International Conference on Machine Learning and Applications, pp. 611–616. IEEE (2009)

    Google Scholar 

  60. Zhao, P., Xia, J., Dai, Y., He, J.: Wind speed prediction using support vector regression. In: 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 882–886. IEEE (2010)

    Google Scholar 

  61. Li, G., Shi, J.: On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 87(7), 2313–2320 (2010)

    Article  Google Scholar 

  62. Paoli, C., Voyant, C., Muselli, M., Nivet, M.L.: Forecasting of preprocessed daily solar radiation time series using neural networks. Solar Energy 84(12), 2146–2160 (2010)

    Article  Google Scholar 

  63. Kusiak, A., Li, W.: Short-term prediction of wind power with a clustering approach. Renew. Energy 35(10), 2362–2369 (2010)

    Article  Google Scholar 

  64. Mora-Lpez, L., Martnez-Marchena, I., Piliougine, M., Sidrach-de-Cardona, M.: Binding statistical and machine learning models for short-term forecasting of global solar radiation. In: International Symposium on Intelligent Data Analysis, pp. 294–305. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  65. Jahromi, M.J., Maswood, A.I., Tseng, K.J.: Long term prediction of tidal currents. IEEE Syst. J. 5(2), 146–155 (2010)

    Article  Google Scholar 

  66. Catalo, J.P.D.S., Pousinho, H.M.I., Mendes, V.M.F.: Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew. Energy 36(4), 1245–1251 (2011)

    Article  Google Scholar 

  67. Erdem, E., Shi, J.: ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 88(4), 1405–1414 (2011)

    Article  Google Scholar 

  68. Chen, C., Duan, S., Cai, T., Liu, B.: Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy 85(11), 2856–2870 (2011)

    Article  Google Scholar 

  69. Lorenzo, J., Mndez, J., Castrilln, M., Hernndez, D.: Short-term wind power forecast based on cluster analysis and artificial neural networks. In: International Work-Conference on Artificial Neural Networks, pp. 191–198. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  70. Ferrari, S., Lazzaroni, M., Piuri, V., Salman, A., Cristaldi, L., Rossi, M., Poli, T.: Illuminance prediction through extreme learning machines. In: 2012 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), pp. 97–103. IEEE (2012)

    Google Scholar 

  71. Santos, N.I., Said, A.M., James, D.E., Venkatesh, N.H.: Modeling solar still production using local weather data and artificial neural networks. Renew. Energy 40(1), 71–79 (2012)

    Article  Google Scholar 

  72. Shi, J., Lee, W.J., Liu, Y., Yang, Y., Wang, P.: Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Trans. Ind. Appl. 48(3), 1064–1069 (2012)

    Article  Google Scholar 

  73. Bonanno, F., Capizzi, G., Gagliano, A., Napoli, C.: Optimal management of various renewable energy sources by a new forecasting method. In: International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, pp. 934–940. IEEE (2012)

    Google Scholar 

  74. Quan, D.M., Ogliari, E., Grimaccia, F., Leva, S., Mussetta, M.: Hybrid model for hourly forecast of photovoltaic and wind power. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2013)

    Google Scholar 

  75. Wytock, M., Kolter, J.Z.: Large-scale probabilistic forecasting in energy systems using sparse gaussian conditional random fields. In: 52nd IEEE Conference on Decision and Control, pp. 1019–1024. IEEE (2013)

    Google Scholar 

  76. Kuznetsova, E., Li, Y.F., Ruiz, C., Zio, E., Ault, G., Bell, K.: Reinforcement learning for microgrid energy management. Energy 59, 133–146 (2013)

    Article  Google Scholar 

  77. Marquez, R., Pedro, H.T., Coimbra, C.F.: Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs. Solar Energy 92, 176–188 (2013)

    Article  Google Scholar 

  78. Chen, S.X., Gooi, H.B., Wang, M.Q.: Solar radiation forecast based on fuzzy logic and neural networks. Renew. Energy 60, 195–201 (2013)

    Article  Google Scholar 

  79. Hu, J., Wang, J., Zeng, G.: A hybrid forecasting approach applied to wind speed time series. Renew. Energy 60, 185–194 (2013)

    Article  Google Scholar 

  80. Heinermann, J., Kramer, O.: Precise wind power prediction with SVM ensemble regression. In: International Conference on Artificial Neural Networks, pp. 797–804. Springer, Cham (2014)

    Google Scholar 

  81. Mellit, A., Pavan, A.M., Lughi, V.: Short-term forecasting of power production in a large-scale photovoltaic plant. Solar Energy 105, 401–413 (2014)

    Article  Google Scholar 

  82. Khan, G.M., Ali, J., Mahmud, S.A.: Wind power forecasting an application of machine learning in renewable energy. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 1130–1137. IEEE (2014)

    Google Scholar 

  83. Li, J., Mao, J.: Ultra-short-term wind power prediction using BP neural network. In: 2014 9th IEEE Conference on Industrial Electronics and Applications, pp. 2001–2006. IEEE (2014)

    Google Scholar 

  84. Pravilovic, S., Appice, A., Lanza, A., Malerba, D.: Wind power forecasting using time series cluster analysis. In: International Conference on Discovery Science, pp. 276–287. Springer, Cham (2014)

    Google Scholar 

  85. Pedro, H.T., Coimbra, C.F.: Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances. Renew. Energy 80, 770–782 (2015)

    Article  Google Scholar 

  86. Wang, J., Hu, J.: A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (Gaussian process regression) model. Energy 93, 41–56 (2015)

    Article  CAS  Google Scholar 

  87. Duran, M.A., Filik, Ü.B.: Short-term wind speed prediction using several artificial neural network approaches in Eskisehir. In: 2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), pp. 1–4. IEEE (2015)

    Google Scholar 

  88. Ak, R., Fink, O., Zio, E.: Two machine learning approaches for short-term wind speed time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 27(8), 1734–1747 (2015)

    Article  Google Scholar 

  89. Silva, C.V., Lim, L., Stevens, D., Nakafuji, D.: Probabilistic models for one-day ahead solar irradiance forecasting in renewable energy applications. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 1163–1168. IEEE (2015)

    Google Scholar 

  90. Gensler, A., Henze, J., Sick, B., Raabe, N.: Deep Learning for solar power forecasting an approach using AutoEncoder and LSTM neural networks. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002858–002865. IEEE (2016)

    Google Scholar 

  91. Melzi, F.N., Touati, T., Same, A., Oukhellou, L.: Hourly solar irradiance forecasting based on machine learning models. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 441–446. IEEE (2016)

    Google Scholar 

  92. Golestaneh, F., Pinson, P., Gooi, H.B.: Very short-term nonparametric probabilistic forecasting of renewable energy generation With application to solar energy. IEEE Trans. Power Syst. 31(5), 3850–3863 (2016)

    Article  Google Scholar 

  93. Li, J., Ward, J.K., Tong, J., Collins, L., Platt, G.: Machine learning for solar irradiance forecasting of photovoltaic system. Renew. Energy 90, 542–553 (2016)

    Article  Google Scholar 

  94. Wang, H.Z., Wang, G.B., Li, G.Q., Peng, J.C., Liu, Y.T.: Deep belief network based deterministic and probabilistic wind speed forecasting approach. Appl. Energy 182, 80–93 (2016)

    Article  Google Scholar 

  95. Bayindir, R., Yesilbudak, M., Colak, M., Genc, N.: A novel application of naive bayes classifier in photovoltaic energy prediction. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 523–527. IEEE

    Google Scholar 

  96. Neo, Y.Q., Teo, T.T., Woo, W.L., Logenthiran, T., Sharma, A.: Forecasting of photovoltaic power using deep belief network. In: Tencon 2017-2017 IEEE Region 10 Conference, pp. 1189-1194. IEEE (2017)

    Google Scholar 

  97. Bouzgou, H., Gueymard, C.A.: Minimum redundancy-maximum relevance with extreme learning machines for global solar radiation forecasting: toward an optimized dimensionality reduction for solar time series. Solar Energy 158, 595–609 (2017)

    Article  Google Scholar 

  98. Kavousi-Fard, A., Su, W.: A combined prognostic model based on machine learning for tidal current prediction. IEEE Trans. Geosci. Remote Sensing 55(6), 3108–3114 (2017)

    Article  Google Scholar 

  99. Shi, Z., Liang, H., Dinavahi, V.: Direct interval forecast of uncertain wind power based on recurrent neural networks. IEEE Trans. Sustain. Energy 9(3), 1177–1187 (2017)

    Article  Google Scholar 

  100. Li, C., Xiao, Z., Xia, X., Zou, W., Zhang, C.: A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting. Appl. Energy 215, 131–144 (2018)

    Article  Google Scholar 

  101. Sun, S., Wang, S., Zhang, G., Zheng, J.: A decomposition-clustering-ensemble learning approach for solar radiation forecasting. Solar Energy 163, 189–199 (2018)

    Article  Google Scholar 

  102. Shi, Z., Liang, H., Dinavahi, V.: Wavelet neural network based multiobjective interval prediction for short-term wind speed. IEEE Access 6, 63352–63365 (2018)

    Article  Google Scholar 

  103. Nespoli, A., Ogliari, E., Dolara, A., Grimaccia, F., Leva, S., Mussetta, M.: Validation of ANN training approaches for day-ahead photovoltaic forecasts. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2018)

    Google Scholar 

  104. Rodrguez, F., Fleetwood, A., Galarza, A., Fontn, L.: Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renew. Energy 126, 855–864 (2018)

    Article  Google Scholar 

  105. Yang, Z., Wang, J.: A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm. Appl. Energy 230, 1108–1125 (2018)

    Article  Google Scholar 

  106. Domingo, A.J., Garcia, F.C., Salvaña, M.L., Libatique, N.J., Tangonan, G.L.: Short term wind speed forecasting: a machine learning based predictive analytics. In: TENCON 2018—2018 IEEE Region 10 Conference, pp. 1948–1953. IEEE (2018)

    Google Scholar 

  107. Lin, K.P., Pai, P.F., Ting, Y.J.: Deep belief networks with genetic algorithms in forecasting wind speed. IEEE Access 7, 99244–99253 (2019)

    Article  Google Scholar 

  108. Huang, C.J., Kuo, P.H.: Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting. IEEE Access 7, 74822–74834 (2019)

    Article  Google Scholar 

  109. Zhao, J., Wang, J., Guo, Z., Guo, Y., Lin, W., Lin, Y.: Multi-step wind speed forecasting based on numerical simulations and an optimized stochastic ensemble method. Appl. Energy 255, 113833 (2019)

    Article  Google Scholar 

  110. Liu, D., Sun, K.: Random forest solar power forecast based on classification optimization. Energy 187, 115940 (2019)

    Article  Google Scholar 

  111. Prasad, R., Ali, M., Kwan, P., Khan, H.: Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Appl. Energy 236, 778–792 (2019)

    Article  Google Scholar 

  112. Abdel-Nasser, M., Mahmoud, K.: Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 31(7), 2727–2740 (2019)

    Article  Google Scholar 

  113. Deng, Y., Jia, H., Li, P., Tong, X., Qiu, X., Li, F.: A deep learning methodology based on bidirectional gated recurrent unit for wind power prediction. In: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 591–595. IEEE (2019)

    Google Scholar 

  114. Wen, L., Zhou, K., Yang, S., Lu, X.: Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting. Energy 171, 1053–1065 (2019)

    Article  Google Scholar 

  115. Devi, A.S., Maragatham, G., Boopathi, K., Rangaraj, A.G.: Hourly day-ahead wind power forecasting with the EEMD-CSO-LSTM-EFG deep learning technique. Soft Comput. 24(16), 12391–12411 (2020)

    Article  Google Scholar 

  116. Faraji, J., Ketabi, A., Hashemi-Dezaki, H., Shafie-Khah, M., Catalao, J.P.: Optimal day-ahead scheduling and operation of the prosumer by considering corrective actions based on very short-term load forecasting. IEEE Access 8, 83561–83582 (2020)

    Article  Google Scholar 

  117. Pan, M., Li, C., Gao, R., Huang, Y., You, H., Gu, T., Qin, F.: Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization. J. Clean. Prod. 277, 123948 (2020)

    Article  Google Scholar 

  118. Hai, T., Sharafati, A., Mohammed, A., Salih, S.Q., Deo, R.C., Al-Ansari, N., Yaseen, Z.M.: Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model. IEEE Access 8, 12026–12042 (2020)

    Article  Google Scholar 

  119. Shawon, M.M.H., Akter, S., Islam, M.K., Ahmed, S., Rahman, M.M.: Forecasting PV panel output using prophet time series machine learning model. In: 2020 IEEE Region 10 Conference (Tencon), pp. 1141–1144. IEEE

    Google Scholar 

  120. Theocharides, S., Makrides, G., Livera, A., Theristis, M., Kaimakis, P., Georghiou, G.E.: Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. Appl. Energy 268, 115023 (2020)

    Article  Google Scholar 

  121. Wang, L., Li, K., Ji, Z., Zhang, C.: An ultra-short-term prediction method for wind speed series based on Gaussian process median regression. In: 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 495–499. IEEE (2020)

    Google Scholar 

  122. Fraccanabbia, N., da Silva, R.G., Ribeiro, M.H.D.M., Moreno, S.R., dos Santos Coelho, L., Mariani, V.C.: Solar power forecasting based on ensemble learning methods. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2020)

    Google Scholar 

  123. Pang, Z., Niu, F., O’Neill, Z.: Solar radiation prediction using recurrent neural network and artificial neural network: a case study with comparisons. Renew. Energy 156, 279–289 (2020)

    Article  Google Scholar 

  124. Jahangir, H., Tayarani, H., Gougheri, S.S., Golkar, M.A., Ahmadian, A., Elkamel, A.: Deep learning-based forecasting approach in smart grids with microclustering and bidirectional LSTM network. IEEE Trans. Ind. Electron. 68(9), 8298–8309 (2020)

    Article  Google Scholar 

  125. Huang, H., Jia, R., Shi, X., Liang, J., Dang, J.: Feature selection and hyper parameters optimization for short-term wind power forecast. Appl. Intell. 1–19 (2021)

    Google Scholar 

  126. Jalali, S.M.J., Ahmadian, S., Khodayar, M., Khosravi, A., Ghasemi, V., Shafie-khah, M., Catalo, J.P.: Towards Novel Deep Neuroevolution Models: Chaotic Levy Grasshopper Optimization for Short-Term Wind Speed Forecasting. Engineering with Computers, pp. 1–25 (2021)

    Google Scholar 

  127. Jumin, E., Basaruddin, F.B., Yusoff, Y.B.M., Latif, S.D., Ahmed, A.N.: Solar radiation prediction using boosted decision tree regression model: a case study in Malaysia. Environ. Sci. Pollut. Res. 28(21), 26571–26583 (2021)

    Article  Google Scholar 

  128. Vidya, S., Janani, E.S.V.: Wind speed multistep forecasting model using a hybrid decomposition technique and a selfish herd optimizer-based deep neural network. Soft Comput. 25(8), 6237–6270 (2021)

    Article  Google Scholar 

  129. Bento, P.M.R., Pombo, J.A.N., Mendes, R.P.G., Calado, M.R.A., Mariano, S.J.P.S.: Ocean wave energy forecasting using optimised deep learning neural networks. Ocean Eng. 219, 108372 (2021)

    Google Scholar 

  130. Kılıç, F., Yılmaz, İ.H., Kaya, Ö.: Adaptive co-optimization of artificial neural networks using evolutionary algorithm for global radiation forecasting. Renewable Energy 171, 176–190 (2021)

    Google Scholar 

  131. Hassan, M.A., Bailek, N., Bouchouicha, K., Nwokolo, S.C.: Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renew. Energy 171, 191–209 (2021)

    Article  Google Scholar 

  132. Jeong, J., Kim, H.: DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting. Appl. Energy 294, 116970 (2021)

    Article  Google Scholar 

  133. Wang, J., Wang, S., Li, Z.: Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression. Renew. Energy 179, 1246–1261 (2021)

    Article  Google Scholar 

  134. Kolodziejczyk, W., Zoltowska, I., Cichosz, P.: Real-time energy purchase optimization for a storage-integrated photovoltaic system by deep reinforcement learning. Control Eng. Practice 106, 104598 (2021)

    Article  Google Scholar 

  135. Wang, J., Yang, Z.: Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm. Renew. Energy 171, 1418–1435 (2021)

    Article  Google Scholar 

  136. Knol, D., de Leeuw, F., Meirink, J.F., Krzhizhanovskaya, V.V.: Deep learning for solar irradiance nowcasting: a comparison of a recurrent neural network and two traditional methods. In: International Conference on Computational Science, pp. 309–322. Springer, Cham (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lahby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaamouche, R., Chinnici, M., Lahby, M., Abakarim, Y., Hasnaoui, A. (2022). Machine Learning Techniques for Renewable Energy Forecasting: A Comprehensive Review. In: Lahby, M., Al-Fuqaha, A., Maleh, Y. (eds) Computational Intelligence Techniques for Green Smart Cities. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-96429-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96429-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96428-3

  • Online ISBN: 978-3-030-96429-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics