Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hydrogen generation from biomass by pyrolysis

Abstract

The growing environmental concerns associated with global warming along with the exponential rise in energy demand are boosting the production of clean energy. The combined process of biomass pyrolysis and in-line catalytic steam reforming is a promising alternative for the selective production of hydrogen from renewable sources. This Primer provides a general overview of the fundamental aspects that influence the hydrogen production potential of the process. Recent research studies and their main findings are highlighted. The current challenges and limitations of the process and ways to optimize the biomass-derived products of steam reforming are discussed. Finally, we evaluate progress toward the industrial scalability of the process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key equations for biomass pyrolysis and in-line steam reforming process.
Fig. 2: Reactor configurations for pyrolysis and in-line reforming of biomass.
Fig. 3: Modelling of biomass pyrolysis–reforming process.
Fig. 4: Comparison of Aspen Plus results with respect to experimental results using the relative error method.

Similar content being viewed by others

References

  1. Hydrogen4EU report. Charting Pathways to Enable Netzero. Deloitte Finance – IFPEN - SINTEF https://www.hydrogen4eu.com (2021).

  2. IEA. The future of H2. IEA https://www.iea.org/reports/the-future-of-hydrogen (2019).

  3. Santamaria, L. et al. Progress on catalyst development for the steam reforming of biomass and waste plastics pyrolysis volatiles: a review. Energy Fuels 35, 17051–17084 (2021).

    Article  Google Scholar 

  4. Dou, B. et al. Hydrogen production from the thermochemical conversion of biomass: issues and challenges. Sustain. Energy Fuels 3, 314–342 (2019).

    Article  Google Scholar 

  5. Zhang, Y., Ji, Y. & Qian, H. Progress in thermodynamic simulation and system optimization of pyrolysis and gasification of biomass. Green. Chem. Eng. 2, 266–283 (2021).

    Article  Google Scholar 

  6. Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012).

    Article  Google Scholar 

  7. Valle, B., Remiro, A., García-Gómez, N., Gayubo, A. G. & Bilbao, J. Recent research progress on bio-oil conversion into bio-fuels and raw chemicals: a review. J. Chem. Technol. Biotechnol. 94, 670–689 (2019).

    Article  Google Scholar 

  8. Liu, W. J., Li, W. W., Jiang, H. & Yu, H. Q. Fates of chemical elements in biomass during its pyrolysis. Chem. Rev. 117, 6367–6398 (2017).

    Article  Google Scholar 

  9. Sharifzadeh, M. et al. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions. Prog. Energy Combust. Sci. 71, 1–80 (2019).

    Article  Google Scholar 

  10. Fahmy, T. Y. A., Fahmy, Y., Mobarak, F., El-Sakhawy, M. & Abou-Zeid, R. E. Biomass pyrolysis: past, present, and future. Environ. Dev. Sustain. 22, 17–32 (2020).

    Article  Google Scholar 

  11. Arregi, A., Amutio, M., Lopez, G., Bilbao, J. & Olazar, M. Evaluation of thermochemical routes for hydrogen production from biomass: a review. Energy Conv. Manag. 165, 696–719 (2018).

    Article  Google Scholar 

  12. Trane, R., Dahl, S., Skjøth-Rasmussen, M. S. & Jensen, A. D. Catalytic steam reforming of bio-oil. Int. J. Hydrog. Energy 37, 6447–6472 (2012).

    Article  Google Scholar 

  13. Arregi, A. et al. Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming. RSC Adv. 6, 25975–25985 (2016).

    Article  ADS  Google Scholar 

  14. Chai, Y., Gao, N., Wang, M. & Wu, C. H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C. Chem. Eng. J. 382, 122947 (2020).

    Article  Google Scholar 

  15. Yu, H., Liu, Y., Liu, J. & Chen, D. High catalytic performance of an innovative Ni/magnesium slag catalyst for the syngas production and tar removal from biomass pyrolysis. Fuel 254, 115622 (2019).

    Article  Google Scholar 

  16. Cao, J. P. et al. Preparation and characterization of nickel loaded on resin char as tar reforming catalyst for biomass gasification. J. Anal. Appl. Pyrolysis 127, 82–90 (2017).

    Article  Google Scholar 

  17. Santamaria, L. et al. Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles. Appl. Catal. B 229, 105–113 (2018).

    Article  Google Scholar 

  18. Santamaria, L. et al. Stability of different Ni supported catalysts in the in-line steam reforming of biomass fast pyrolysis volatiles. Appl. Catal. B 242, 109–120 (2019).

    Article  Google Scholar 

  19. Fernandez, E. et al. Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor. Energy 238, 122053 (2022).

    Article  Google Scholar 

  20. Chen, J., Sun, J. & Wang, Y. Catalysts for steam reforming of bio-oil: a review. Ind. Eng. Chem. Res. 56, 4627–4637 (2017).

    Article  Google Scholar 

  21. Nabgan, W. et al. Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: an overview. Renew. Sustain. Energy Rev. 79, 347–357 (2017).

    Article  Google Scholar 

  22. Czernik, S., French, R., Feik, C. & Chornet, E. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ind. Eng. Chem. Res. 41, 4209–4215 (2002).

    Article  Google Scholar 

  23. Pandey, B., Prajapati, Y. K. & Sheth, P. N. Recent progress in thermochemical techniques to produce hydrogen gas from biomass: a state of the art review. Int. J. Hydrog. Energy 44, 25384–25415 (2019).

    Article  Google Scholar 

  24. Setiabudi, H. D., Aziz, M. A. A., Abdullah, S., Teh, L. P. & Jusoh, R. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: a review. Int. J. Hydrog. Energy 45, 18376–18397 (2020).

    Article  Google Scholar 

  25. Al-Rahbi, A. S. & Williams, P. T. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Appl. Energy 190, 501–509 (2017).

    Article  Google Scholar 

  26. Wang, F., Gao, N. & Quan, C. Effect of hot char and steam on products in waste tire pressurized pyrolysis process. Energy Conv. Manag. 237, 114105 (2021).

    Article  Google Scholar 

  27. Arregi, A. et al. Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste and HDPE mixtures. Energy Conv. Manag. 136, 192–201 (2017).

    Article  Google Scholar 

  28. Kumagai, S. et al. Novel Ni–Mg–Al–Ca catalyst for enhanced hydrogen production for the pyrolysis–gasification of a biomass/plastic mixture. J. Anal. Appl. Pyrolysis 113, 15–21 (2015).

    Article  Google Scholar 

  29. Alvarez, J. et al. Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int. J. Hydrog. Energy 39, 10883–10891 (2014).

    Article  Google Scholar 

  30. He, S., Xu, Y., Zhang, Y., Bell, S. & Wu, C. Waste plastics recycling for producing high-value carbon nanotubes: investigation of the influence of manganese content in Fe-based catalysts. J. Hazard. Mater. 402, 123726 (2021).

    Article  Google Scholar 

  31. Liu, X., He, S., Han, Z. & Wu, C. Investigation of spherical alumina supported catalyst for carbon nanotubes production from waste polyethylene. Process. Saf. Environ. Prot. 146, 201–207 (2021).

    Article  Google Scholar 

  32. Zhang, S., Gao, N., Quan, C., Wang, F. & Wu, C. Autothermal CaO looping biomass gasification to increase process energy efficiency and reduce ash sintering. Fuel 277, 118199 (2020).

    Article  Google Scholar 

  33. Chen, F. et al. Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust. Appl. Catal. B 183, 168–175 (2016).

    Article  Google Scholar 

  34. Li, Z., Hu, X., Zhang, L., Liu, S. & Lu, G. Steam reforming of acetic acid over Ni/ZrO2 catalysts: effects of nickel loading and particle size on product distribution and coke formation. Appl. Catal. A 417–418, 281–289 (2012).

    Article  Google Scholar 

  35. Li, D., Koike, M., Chen, J., Nakagawa, Y. & Tomishige, K. Preparation of Ni–Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar. Int. J. Hydrog. Energy 39, 10959–10970 (2014).

    Article  Google Scholar 

  36. Meier, D. et al. State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renew. Sustain. Energy Rev. 20, 619–641 (2013).

    Article  Google Scholar 

  37. Xiao, X., Meng, X., Le, D. D. & Takarada, T. Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization. Bioresour. Technol. 102, 1975–1981 (2011).

    Article  Google Scholar 

  38. Fernandez-Akarregi, A. R., Makibar, J., Lopez, G., Amutio, M. & Olazar, M. Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis. Fuel Process. Technol. 112, 48–56 (2013).

    Article  Google Scholar 

  39. Gholizadeh, M. et al. Progress of the development of reactors for pyrolysis of municipal waste. Sustain. Energy Fuels 4, 5885–5915 (2020).

    Article  Google Scholar 

  40. Medrano, J. A., Oliva, M., Ruiz, J., García, L. & Arauzo, J. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed. Energy 36, 2215–2224 (2011).

    Article  Google Scholar 

  41. Fernandez, E. et al. Assessment of product yields and catalyst deactivation in fixed and fluidized bed reactors in the steam reforming of biomass pyrolysis volatiles. Process. Saf. Environ. Prot. 145, 52–62 (2021).

    Article  Google Scholar 

  42. Ma, Z., Zhang, S.-, Xie, D.- & Yan, Y.- A novel integrated process for hydrogen production from biomass. Int. J. Hydrog. Energy 39, 1274–1279 (2014).

    Article  Google Scholar 

  43. Efika, C. E., Wu, C. & Williams, P. T. Syngas production from pyrolysis–catalytic steam reforming of waste biomass in a continuous screw kiln reactor. J. Anal. Appl. Pyrolysis 95, 87–94 (2012).

    Article  Google Scholar 

  44. Arregi, A. et al. Role of operating conditions in the catalyst deactivation in the in-line steam reforming of volatiles from biomass fast pyrolysis. Fuel 216, 233–244 (2018).

    Article  Google Scholar 

  45. Makibar, J., Fernandez-Akarregi, A. R., Amutio, M., Lopez, G. & Olazar, M. Performance of a conical spouted bed pilot plant for bio-oil production by poplar flash pyrolysis. Fuel Process. Technol. 137, 283–289 (2015).

    Article  Google Scholar 

  46. Xiao, X. et al. Catalytic steam gasification of biomass in fluidized bed at low temperature: conversion from livestock manure compost to hydrogen-rich syngas. Biomass Bioenergy 34, 1505–1512 (2010).

    Article  Google Scholar 

  47. Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Prim. 1, 5 (2021).

    Article  Google Scholar 

  48. Olaleye, A. K. et al. Experimental study, dynamic modelling, validation and analysis of hydrogen production from biomass pyrolysis/gasification of biomass in a two-stage fixed bed reaction system. Fuel 137, 364–374 (2014).

    Article  Google Scholar 

  49. Sánchez, J. L., Gonzalo, A., Gea, G., Bilbao, R. & Arauzo, J. Straw black liquor steam reforming in a fluidized bed reactor. Effect of temperature and bed substitution at pilot scale. Energy Fuels 19, 2140–2147 (2005).

    Article  Google Scholar 

  50. Wang, F., Gao, N., Quan, C. & López, G. Investigation of hot char catalytic role in the pyrolysis of waste tires in a two-step process. J. Anal. Appl. Pyrolysis 146, 104770 (2020).

    Article  Google Scholar 

  51. Bryden, K. M. & Hagge, M. J. Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. Fuel 82, 1633–1644 (2003).

    Article  Google Scholar 

  52. Chen, C., Jin, Y. & Chi, Y. Effects of moisture content and CaO on municipal solid waste pyrolysis in a fixed bed reactor. J. Anal. Appl. Pyrolysis 110, 108–112 (2014).

    Article  Google Scholar 

  53. Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G. An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010).

    Article  Google Scholar 

  54. Azizi, K. et al. On the pyrolysis of different microalgae species in a conical spouted bed reactor: bio-fuel yields and characterization. Bioresour. Technol. 311, 123561 (2020).

    Article  Google Scholar 

  55. Burton, A. & Wu, H. Influence of biomass particle size on bed agglomeration during biomass pyrolysis in fluidised bed. Proc. Combust. Inst. 36, 2199–2205 (2017).

    Article  Google Scholar 

  56. Waheed, Q. M. K. & Williams, P. T. Hydrogen production from high temperature pyrolysis/steam reforming of waste biomass: rice husk, sugar cane bagasse, and wheat straw. Energy Fuels 27, 6695–6704 (2013).

    Article  Google Scholar 

  57. Shen, Y. et al. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl. Catal. B 152–153, 140–151 (2014).

    Article  Google Scholar 

  58. Guan, G., Kaewpanha, M., Hao, X. & Abudula, A. Catalytic steam reforming of biomass tar: prospects and challenges. Renew. Sustain. Energy Rev. 58, 450–461 (2016).

    Article  Google Scholar 

  59. Koike, M. et al. Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Fuel 103, 122–129 (2013).

    Article  Google Scholar 

  60. Xiao, X. et al. Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded brown coal char. Fuel 103, 135–140 (2013).

    Article  Google Scholar 

  61. Ochoa, A., Bilbao, J., Gayubo, A. G. & Castaño, P. Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: a review. Renew. Sustain. Energy Rev. 119, 109600 (2020).

    Article  Google Scholar 

  62. Shen, Y., Chen, M., Sun, T. & Jia, J. Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar. Fuel 159, 570–579 (2015).

    Article  Google Scholar 

  63. Cao, J. P., Shi, P., Zhao, X. Y., Wei, X. Y. & Takarada, T. Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst. Fuel Process. Technol. 123, 34–40 (2014).

    Article  Google Scholar 

  64. Chai, Y., Wang, M., Gao, N., Duan, Y. & Li, J. Experimental study on pyrolysis/gasification of biomass and plastics for H2 production under new dual-support catalyst. Chem. Eng. J. 396, 125260 (2020).

    Article  Google Scholar 

  65. Zou, J. et al. Hydrogen production from pyrolysis catalytic reforming of cellulose in the presence of K alkali metal. Int. J. Hydrog. Energy 41, 10598–10607 (2016).

    Article  Google Scholar 

  66. Shen, Y., Areeprasert, C., Prabowo, B., Takahashi, F. & Yoshikawa, K. Metal nickel nanoparticles in situ generated in rice husk char for catalytic reformation of tar and syngas from biomass pyrolytic gasification. RSC Adv. 4, 40651–40664 (2014).

    Article  ADS  Google Scholar 

  67. Gao, N., Salisu, J., Quan, C. & Williams, P. Modified nickel-based catalysts for improved steam reforming of biomass tar: a critical review. Renew. Sustain. Energy Rev. 145, 111023 (2021).

    Article  Google Scholar 

  68. Zhang, B., Xiong, S., Xiao, B., Yu, D. & Jia, X. Mechanism of wet sewage sludge pyrolysis in a tubular furnace. Int. J. Hydrog. Energy 36, 355–363 (2011).

    Article  Google Scholar 

  69. Gao, N., Chen, C., Magdziarz, A., Zhang, L. & Quan, C. Modeling and simulation of pine sawdust gasification considering gas mixture reflux. J. Anal. Appl. Pyrolysis 155, 105094 (2021).

    Article  Google Scholar 

  70. Lopez, G. et al. Thermodynamic assessment of the oxidative steam reforming of biomass fast pyrolysis volatiles. Energy Conv. Manag. 214, 112889 (2020).

    Article  Google Scholar 

  71. Luo, Z., Wang, S. & Cen, K. A model of wood flash pyrolysis in fluidized bed reactor. Renew. Energy 30, 377–392 (2005).

    Article  Google Scholar 

  72. Faraji, M. & Saidi, M. Hydrogen-rich syngas production via integrated configuration of pyrolysis and air gasification processes of various algal biomass: process simulation and evaluation using Aspen Plus software. Int. J. Hydrog. Energy 46, 18844–18856 (2021).

    Article  Google Scholar 

  73. Vagia, E. C. & Lemonidou, A. A. Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction. Int. J. Hydrog. Energy 33, 2489–2500 (2008).

    Article  Google Scholar 

  74. Montero, C. et al. Thermodynamic comparison between bio-oil and ethanol steam reforming. Int. J. Hydrog. Energy 40, 15963–15971 (2015).

    Article  Google Scholar 

  75. Cortazar, M. et al. Analysis of hydrogen production potential from waste plastics by pyrolysis and in line oxidative steam reforming. Fuel Process. Technol. 225, 107044 (2022).

    Article  Google Scholar 

  76. Akubo, K., Nahil, M. A. & Williams, P. T. Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. J. Energy Inst. 92, 1987–1996 (2019).

    Article  Google Scholar 

  77. Waheed, Q. M. K., Wu, C. & Williams, P. T. Pyrolysis/reforming of rice husks with a Ni–dolomite catalyst: influence of process conditions on syngas and hydrogen yield. J. Energy Inst. 89, 657–667 (2016).

    Article  Google Scholar 

  78. Yao, D. et al. Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresour. Technol. 216, 159–164 (2016).

    Article  Google Scholar 

  79. Miyazawa, T. et al. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass. Catal. Today 115, 254–262 (2006).

    Article  Google Scholar 

  80. Santamaria, L. et al. Effect of CeO2 and MgO promoters on the performance of a Ni/Al2O3 catalyst in the steam reforming of biomass pyrolysis volatiles. Fuel Process. Technol. 198, 106223 (2020).

    Article  Google Scholar 

  81. Santamaria, L. et al. Effect of La2O3 promotion on a Ni/Al2O3 catalyst for H2 production in the in-line biomass pyrolysis-reforming. Fuel 262, 116593 (2020).

    Article  Google Scholar 

  82. Kimura, T. et al. Development of Ni catalysts for tar removal by steam gasification of biomass. Appl. Catal. B 68, 160–170 (2006).

    Article  Google Scholar 

  83. Yao, D., Yang, H., Chen, H. & Williams, P. T. Co-precipitation, impregnation and sol-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics. Appl. Catal. B 239, 565–577 (2018).

    Article  Google Scholar 

  84. Guan, G. et al. Catalytic steam reforming of biomass tar over iron- or nickel-based catalyst supported on calcined scallop shell. Appl. Catal. B 115–116, 159–168 (2012).

    Article  Google Scholar 

  85. Yukesh Kannah, R. et al. Techno-economic assessment of various hydrogen production methods — a review. Bioresour. Technol. 319, 124175 (2021).

    Article  Google Scholar 

  86. Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U. & Dincer, I. A comprehensive review on hydrogen production from coal gasification: challenges and opportunities. Int. J. Hydrog. Energy 46, 25385–25412 (2021).

    Article  Google Scholar 

  87. Wagner, N. J., Coertzen, M., Matjie, R. H. & van Dyk, J. C. in Applied Coal Petrology (eds Suárez-Ruiz, I. & Crelling, J. C.) 119–144 (Elsevier, 2008).

  88. Sanna, A. Advanced biofuels from thermochemical processing of sustainable biomass in Europe. Bioenergy Res. 7, 36–47 (2014).

    Article  ADS  Google Scholar 

  89. Yang, F., Meerman, J. C. & Faaij, A. P. C. Carbon capture and biomass in industry: a techno-economic analysis and comparison of negative emission options. Renew. Sustain. Energy Rev. 144, 111028 (2021).

    Article  Google Scholar 

  90. Sansaniwal, S. K., Pal, K., Rosen, M. A. & Tyagi, S. K. Recent advances in the development of biomass gasification technology: a comprehensive review. Renew. Sustain. Energy Rev. 72, 363–384 (2017).

    Article  Google Scholar 

  91. Pfeifer, C., Koppatz, S. & Hofbauer, H. Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Conv. Bioref. 1, 39–53 (2011).

    Article  Google Scholar 

  92. Mahinpey, N. & Gomez, A. Review of gasification fundamentals and new findings: reactors, feedstock, and kinetic studies. Chem. Eng. Sci. 148, 14–31 (2016).

    Article  Google Scholar 

  93. Heidenreich, S. & Foscolo, P. U. New concepts in biomass gasification. Prog. Energy Combust. Sci. 46, 72–95 (2015).

    Article  Google Scholar 

  94. Larsson, A. et al. Steam gasification of biomass — typical gas quality and operational strategies derived from industrial-scale plants. Fuel Process. Technol. 212, 106609 (2021).

    Article  Google Scholar 

  95. Cortazar, M. et al. Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification. Energy 153, 455–463 (2018).

    Article  Google Scholar 

  96. Sikarwar, V. S. et al. An overview of advances in biomass gasification. Energy Environ. Sci. 9, 2939–2977 (2016).

    Article  Google Scholar 

  97. Pio, D. T. & Tarelho, L. A. C. Industrial gasification systems (>3 MWth) for bioenergy in Europe: current status and future perspectives. Renew. Sustain. Energy Rev. 145, 111108 (2021).

    Article  Google Scholar 

  98. Valderrama Rios, M. L., González, A. M., Lora, E. E. S. & Almazán del Olmo, O. A. Reduction of tar generated during biomass gasification: a review. Biomass Bioenergy 108, 345–370 (2018).

    Article  Google Scholar 

  99. Asadullah, M. Biomass gasification gas cleaning for downstream applications: a comparative critical review. Renew. Sustain. Energy Rev. 40, 118–132 (2014).

    Article  Google Scholar 

  100. Rapagnà, S. et al. Fe/olivine catalyst for biomass steam gasification: preparation, characterization and testing at real process conditions. Catal. Today 176, 163–168 (2011).

    Article  Google Scholar 

  101. Cortazar, M. et al. Fe/olivine as primary catalyst in the biomass steam gasification in a fountain confined spouted bed reactor. J. Ind. Eng. Chem. 99, 364–379 (2021).

    Article  Google Scholar 

  102. Tursun, Y., Xu, S., Abulikemu, A. & Dilinuer, T. Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine. Bioresour. Technol. 272, 241–248 (2019).

    Article  Google Scholar 

  103. Bridgwater, T. Challenges and opportunities in fast pyrolysis of biomass: part I. Johnson Matthey Technol. Rev. 62, 118–130 (2018).

    Article  Google Scholar 

  104. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    Article  Google Scholar 

  105. Amutio, M. et al. Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour. Cons. Recycl. 59, 23–31 (2012).

    Article  Google Scholar 

  106. Yao, D. et al. Hydrogen production from catalytic reforming of the aqueous fraction of pyrolysis bio-oil with modified Ni-Al catalysts. Int. J. Hydrog. Energy 39, 14642–14652 (2014).

    Article  Google Scholar 

  107. Hoang, A. T. et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process. Technol. 223, 106997 (2021).

    Article  Google Scholar 

  108. Pawar, A., Panwar, N. L. & Salvi, B. L. Comprehensive review on pyrolytic oil production, upgrading and its utilization. J. Mater. Cycles Waste Manag. 22, 1712–1722 (2020).

    Article  Google Scholar 

  109. Kumar, R. & Strezov, V. Thermochemical production of bio-oil: a review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products. Renew. Sustain. Energy Rev. 135, 110152 (2021).

    Article  Google Scholar 

  110. Adeniyi, A. G., Otoikhian, K. S. & Ighalo, J. O. Steam reforming of biomass pyrolysis oil: a review. Int. J. Chem. React. Eng. 17, 20180328 (2019).

    Google Scholar 

  111. Zhao, Z. et al. Hydrogen production from catalytic steam reforming of bio-oils: a critical review. Chem. Eng. Technol. 43, 625–640 (2020).

    Article  Google Scholar 

  112. Kang, K., Klinghoffer, N. B., ElGhamrawy, I. & Berruti, F. Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products. Renew. Sustain. Energy Rev. 149, 111372 (2021).

    Article  Google Scholar 

  113. Park, Y. et al. Optimum operating conditions for a two-stage gasification process fueled by polypropylene by means of continuous reactor over ruthenium catalyst. Fuel Process. Technol. 91, 951–957 (2010).

    Article  ADS  Google Scholar 

  114. Ye, M. et al. Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports. Catal. Today 307, 154–161 (2018).

    Article  Google Scholar 

  115. Santamaria, L. et al. Catalytic steam reforming of biomass fast pyrolysis volatiles over Ni–Co bimetallic catalysts. J. Ind. Eng. Chem. 91, 167–181 (2020).

    Article  Google Scholar 

  116. Santamaria, L. et al. Performance of a Ni/ZrO2 catalyst in the steam reforming of the volatiles derived from biomass pyrolysis. J. Anal. Appl. Pyrolysis 136, 222–231 (2018).

    Article  Google Scholar 

  117. Perego, C. & Villa, P. Catalyst preparation methods. Catal. Today 34, 281–305 (1997).

    Article  Google Scholar 

  118. Li, X. et al. Investigation of coking behaviors of model compounds in bio-oil during steam reforming. Fuel 265, 116961 (2020).

    Article  Google Scholar 

  119. Remón, J., Broust, F., Volle, G., García, L. & Arauzo, J. Hydrogen production from pine and poplar bio-oils by catalytic steam reforming. Influence of the bio-oil composition on the process. Int. J. Hydrog. Energy 40, 5593–5608 (2015).

    Article  Google Scholar 

  120. Jin, F. et al. Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass. Catal. Today 309, 2–10 (2018).

    Article  Google Scholar 

  121. Wu, C., Wang, Z., Dupont, V., Huang, J. & Williams, P. T. Nickel-catalysed pyrolysis/gasification of biomass components. J. Anal. Appl. Pyrolysis 99, 143–148 (2013).

    Article  Google Scholar 

  122. Arregi, A. et al. Regenerability of a Ni catalyst in the catalytic steam reforming of biomass pyrolysis volatiles. J. Ind. Eng. Chem. 68, 69–78 (2018).

    Article  Google Scholar 

  123. Wang, L. et al. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Appl. Catal. A 392, 248–255 (2011).

    Article  Google Scholar 

  124. Ashok, J. et al. Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Process. Technol. 199, 106252 (2020).

    Article  Google Scholar 

  125. Zhang, Z., Liu, L., Shen, B. & Wu, C. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification. Renew. Sustain. Energy Rev. 94, 1086–1109 (2018).

    Article  Google Scholar 

  126. Yung, M. M., Jablonski, W. S. & Magrini-Bair, K. A. Review of catalytic conditioning of biomass-derived syngas. Energy Fuels 23, 1874–1887 (2009).

    Article  Google Scholar 

  127. Charisiou, N. D. et al. Glycerol steam reforming for hydrogen production over nickel supported on alumina, zirconia and silica catalysts. Top. Catal. 60, 1226–1250 (2017).

    Article  Google Scholar 

  128. Artetxe, M., Nahil, M. A., Olazar, M. & Williams, P. T. Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst. Fuel 184, 629–636 (2016).

    Article  Google Scholar 

  129. Remiro, A., Valle, B., Aguayo, A. T., Bilbao, J. & Gayubo, A. G. Operating conditions for attenuating Ni/La2O3-αAl2O3 catalyst deactivation in the steam reforming of bio-oil aqueous fraction. Fuel Process. Technol. 115, 222–232 (2013).

    Article  Google Scholar 

  130. Garcia-Garcia, I. et al. Hydrogen production by steam reforming of m-cresol, a bio-oil model compound, using catalysts supported on conventional and unconventional supports. Int. J. Hydrog. Energy 40, 14445–14455 (2015).

    Article  Google Scholar 

  131. Argyle, M. D. & Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5, 145–269 (2015).

    Article  Google Scholar 

  132. Ochoa, A. et al. Coking and sintering progress of a Ni supported catalyst in the steam reforming of biomass pyrolysis volatiles. Appl. Catal. B 233, 289–300 (2018).

    Article  Google Scholar 

  133. Fernandez, E. et al. In line upgrading of biomass fast pyrolysis products using low-cost catalysts. Fuel 296, 120682 (2021).

    Article  Google Scholar 

  134. Wang, L. et al. Catalytic performance and characterization of Co–Fe bcc alloy nanoparticles prepared from hydrotalcite-like precursors in the steam gasification of biomass-derived tar. Appl. Catal. B 160–161, 701–715 (2014).

    Article  Google Scholar 

  135. Li, D. et al. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar. ChemSusChem 7, 510–522 (2014).

    Article  Google Scholar 

  136. Wang, C. et al. Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming. Energy 214, 118971 (2021).

    Article  Google Scholar 

  137. Furusawa, T. et al. Steam reforming of naphthalene/benzene with various types of Pt- and Ni-based catalysts for hydrogen production. Fuel 103, 111–121 (2013).

    Article  Google Scholar 

  138. Wagenaar, B. M., Prins, W. & van Swaaij, W. P. M. Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chem. Eng. Sci. 49, 5109–5126 (1994).

    Article  Google Scholar 

  139. Oasmaa, A., Lehto, J., Solantausta, Y. & Kallio, S. Historical review on VTT fast pyrolysis bio-oil production and upgrading. Energy Fuels 35, 5683–5695 (2021).

    Article  Google Scholar 

  140. Trane-Restrup, R. & Jensen, A. D. Steam reforming of cyclic model compounds of bio-oil over Ni-based catalysts: product distribution and carbon formation. Appl. Catal. B 165, 117–127 (2015).

    Article  Google Scholar 

  141. Lu, Q. et al. Coking behavior and syngas composition of the char supported Fe catalyst of biomass pyrolysis volatiles reforming. Fuel 298, 120830 (2021).

    Article  Google Scholar 

  142. Li, X. et al. Effects of preparation method on the performance of Ni/Al2O3 catalysts for hydrogen production by bio-oil steam reforming. Appl. Biochem. Biotechnol. 168, 10–20 (2012).

    Article  Google Scholar 

  143. Remón, J., Medrano, J. A., Bimbela, F., García, L. & Arauzo, J. Ni/Al–Mg–O solids modified with Co or Cu for the catalytic steam reforming of bio-oil. Appl. Catal. B 132–133, 433–444 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support of grants RTI2018-101678-B-I00, RTI2018-098283-J-I00 and PID2019-107357RB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF: A way of making Europe” and the grants IT1218-19 and KK-2020/00107 funded by the Basque government. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 823745.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.L.); Experimentation (S.Z. and C.W.); Results (A.T.S. and N.G.); Applications (G.L. and L.S.); Reproducibility and data deposition (G.L. and L.S.); Limitations and optimizations (G.L. and L.S.); Outlook (G.L. and L.S.); Overview of the Primer (G.L.).

Corresponding author

Correspondence to Gartzen Lopez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Jing-Pei Cao and Herma Setiabudi for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Steam gasification

High-temperature thermochemical process in which a carbonaceous material is converted into synthesis gas (a gaseous mixture of hydrogen and carbon oxide) using steam as the oxidizing agent.

Flash pyrolysis

Thermochemical process in which the feedstock is rapidly heated up to moderate temperatures (400–550 °C) in the absence of air, devolatilizes and produces a liquid (the target product), gases and char.

Steam reforming

Thermochemical process for hydrogen production in which a carbonaceous feedstock reacts with water steam at temperatures of 450–800 °C in the presence of a suitable catalyst.

Fixed-bed reactors

Tubular reactor filled with feedstock and/or catalyst, in which the reactants flow through the bed to be converted into products.

Fluidized-bed reactors

Type of chemical reactor in which a solid material (usually a catalyst) is suspended by the upward flow of a fluid.

Screw-kiln reactor

Type of reactor in which a screw conveyor is used to perform chemical reactions under controlled temperature and residence time conditions.

Spouted-bed reactors

Type of fluidized-bed reactor that uses a single gas inlet nozzle instead of a distributor plate.

K-type thermocouple

Type of electronic temperature sensor containing Chromel and Alumel conductors, used for monitoring high temperatures.

Cyclone

Device for the removal of particles from the fluid stream, consisting of a chamber that creates a spiral vortex whose rotational effects plus gravity are used to separate mixtures of solids and fluids.

Venturi scrubber

Gas–solid separation device in which a liquid auxiliary stream is finely pulverized using a venturi to ensure efficient particle collection.

Syngas

Fuel gas mixture produced from feedstock hydrocarbon, composed of hydrogen (H2) and carbon monoxide (CO) as primary components and carbon dioxide (CO2) and methane (CH4) as the remaining compounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, G., Santamaria, L., Lemonidou, A. et al. Hydrogen generation from biomass by pyrolysis. Nat Rev Methods Primers 2, 20 (2022). https://doi.org/10.1038/s43586-022-00097-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00097-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing