Skip to main content

Advertisement

Log in

Mesoporous Silica Carrier-Based Composites for Taste-Masking of Bitter Drug: Fabrication and Palatability Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Abstract. Palatability is one of the most critical characteristics of oral preparations. Therefore, the exploration of new techniques to mask the aversive taste of drugs is in continuous demand. In this study, we fabricated and characterized composites based on mesoporous silica (MPS) that consisted of MPS, a bitter drug, and release regulators. We conducted a palatability evaluation to assess the taste-masking efficacy of the composites. The composites were prepared using the dry impregnation method combined with hot-melt extrusion. Morphology and components distribution in composites were characterized by scanning electron microscopy, confocal laser scanning microscopy, X-ray photoelectron spectroscopy, powder flow properties evaluation, and nitrogen-sorption measurement. The results demonstrated that drugs mainly existed in the inner pore of composites, and release regulators existed in the inner pore and covered the composites’ surface. Interactions among the composite components were studied using powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The drug loaded into the composites was amorphous, and an intermolecular interaction occurred between the drug and the MPS. Taste-masked composites significantly reduced drug release levels under mouth conditions; thus, they prevented the interaction of the dissolved drug with taste receptors and improved palatability. An electronic tongue evaluation and a human taste panel assessment confirmed the better palatability of taste-masked composites. Moreover, the desired drug release behavior can be adjusted by choosing an appropriate release regulator, with stronger hydrophobicity of release regulators resulting in slower drug release. This work has provided new insights into taste-masking strategies for drugs with unpleasant tastes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredients

OP:

Oseltamivir phosphate

MPS:

Mesoporous silica

GD:

Glycerol distearate

GB:

Glycerol behenate

HVO:

Hydrogenated vegetable oil

MPS-OP:

MPS-OP composite

MPS-OP-M:

MPS-OP physical mixture

MPS-OP-GD:

(MPS-OP)-GD composite

MPS-OP-GD-M:

(MPS-OP)-GD physical mixture

MPS-OP-GB:

(MPS-OP)-GB composite

MPS-OP-GB-M:

(MPS-OP)-GB physical mixture

MPS-OP-HVO:

(MPS-OP)-HVO composite

MPS-OP-HVO-M:

(MPS-OP)-HVO physical mixture

References

  1. Ternik R, Liu F, Bartlett JA, Khong YM, Tan DCT, Dixit T, et al. Assessment of swallowability and palatability of oral dosage forms in children: report from an M-CERSI pediatric formulation workshop[J]. Int J Pharm. 2018;536(2):570–81.

    Article  CAS  PubMed  Google Scholar 

  2. Li C, Zhou K, Chen D, Xu W, Tao Y, Pan Y, Meng K, Shabbir MAB, Liu Q, Huang L, Xie S. Solid lipid nanoparticles with enteric coating for improving stability, palatability, and oral bioavailability of enrofloxacin[J]. Int J Nanomedicine. 2019;14:1619–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lopez FL, Ernest TB, Orlu M, Tuleu C. The effect of administration media on palatability and ease of swallowing of multiparticulate formulations[J]. Int J Pharm. 2018;551(1-2):67–75.

    Article  CAS  PubMed  Google Scholar 

  4. Li S, Zhang Y, Khan AR, He S, Wang Y, Xu J, Zhai G. Quantitative prediction of the bitterness of atomoxetine hydrochloride and taste-masked using hydroxypropyl-β-cyclodextrin: a biosensor evaluation and interaction study[J]. Asian J Pharm Sci. 2020;15(4):492–505.

    Article  PubMed  Google Scholar 

  5. Walsh J, Cram A, Woertz K, Breitkreutz J, Winzenburg G, Turner R, Tuleu C, European Formulation Initiative. Playing hide and seek with poorly tasting paediatric medicines: Do not forget the excipients[J]. Adv Drug Deliv Rev. 2014;73:14–33.

    Article  CAS  PubMed  Google Scholar 

  6. Campbell GA, Charles JA, Roberts-Skilton K, Tsundupalli M, Oh CK, Weinecke A, Wagner R, Franz D. Evaluating the taste masking effectiveness of various flavors in a stable formulated pediatric suspension and solution using the Astree™ electronic tongue[J]. Powder Technol. 2012;224:109–23.

    Article  CAS  Google Scholar 

  7. Wang Z, Li J, Hong X, Han X, Liu B, Li X, Zhang H, Gao J, Liu N, Gao X, Zheng A. Taste masking study based on an electronic tongue: the formulation design of 3D printed levetiracetam Instant-dissolving tablets[J]. Pharm Res. 2021;38(5):831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keast R, Breslin P, Beauchamp G. Suppression of bitterness using sodium salts[J]. Chimia. 2001;55:441–7.

    Article  CAS  Google Scholar 

  9. Tung N-T, Tran C-S, Nguyen T-L, Hoang T, Trinh T-D, Nguyen T-N. Formulation and biopharmaceutical evaluation of bitter taste masking microparticles containing azithromycin loaded in dispersible tablets[J]. Eur J Pharm Biopharm. 2018;126:187–200.

    Article  CAS  PubMed  Google Scholar 

  10. Karaman R. Prodrugs for masking bitter taste of antibacterial drugs—a computational approach[J]. J Mol Model. 2013;19(6):2399–412.

    Article  CAS  PubMed  Google Scholar 

  11. Shang R, Liu C, Quan P, Zhao H, Fang L. Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction[J]. Int J Pharm. 2018;545(1-2):163–9.

    Article  CAS  PubMed  Google Scholar 

  12. Panraksa P, Boonsermsukcharoen K, Hwang K-M, Park E-S, Jantrawut P. Taste masking of nizatidine using ion-exchange resins[J]. Processes. 2019;7(11):779.

    Article  CAS  Google Scholar 

  13. Siddiqui A, Shah RB, Khan MA. Oseltamivir phosphate-amberlite (TM) IRP 64 ionic complex for taste masking: preparation and chemometric evaluation[J]. J Pharm Sci. 2013;102(6):1800–12.

    Article  CAS  PubMed  Google Scholar 

  14. Dungarwal UN, Patil SB. Development of orodispersible tablets of taste masked rizatriptan benzoate using hydroxypropyl beta cyclodextrin[J]. J Pharm Invest. 2016;46(6):537–45.

    Article  CAS  Google Scholar 

  15. Liu T, Wan X, Luo Z, Liu C, Quan P, Cun D, Fang L. A donepezil/cyclodextrin complexation orodispersible film: Effect of cyclodextrin on taste-masking based on dynamic process and in vivo drug absorption[J]. Asian J Pharm Sci. 2019;14(2):183–92.

    Article  PubMed  Google Scholar 

  16. Joshi S, Petereit HU. Film coatings for taste masking and moisture protection[J]. Int J Pharm. 2013;457(2):395–406.

    Article  CAS  PubMed  Google Scholar 

  17. Jannin V, Cuppok Y. Hot-melt coating with lipid excipients[J]. Int J Pharm. 2013;457(2):480–7.

    Article  CAS  PubMed  Google Scholar 

  18. Chiappetta DA, Carcaboso ÁM, Bregni C, Rubio M, Bramuglia G, Sosnik A. Indinavir-loaded pH-sensitive microparticles for taste masking: toward extemporaneous pediatric anti-HIV/AIDS liquid formulations with improved patient compliance[J]. AAPS PharmSciTech. 2009;10(1):1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qian KK, Bogner RH. Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems[J]. J Pharm Sci. 2012;101(2):444–63.

    Article  CAS  PubMed  Google Scholar 

  20. Shah A, Serajuddin ATM. Conversion of solid dispersion prepared by acid–base interaction into free-flowing and tabletable powder by using Neusilin® US2[J]. Int J Pharm. 2015;484(1):172–80.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar D, Sailaja Chirravuri SV, Shastri NR. Impact of surface area of silica particles on dissolution rate and oral bioavailability of poorly water soluble drugs: A case study with aceclofenac[J]. Int J Pharm. 2014;461(1):459–68.

    Article  CAS  PubMed  Google Scholar 

  22. Yasmin R, Rao S, Bremmell K, Prestidge C. Synergistic role of solid lipid and porous silica in improving the oral delivery of weakly basic poorly water soluble drugs[J]. Eur J Pharm Sci. 2017;96:508–14.

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen TL, Cha BG, Choi Y, Im J, Kim J. Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold[J]. Biomaterials. 2020;239:119859.

    Article  CAS  PubMed  Google Scholar 

  24. Kang J, Joo J, Kwon EJ, Skalak M, Hussain S, She Z-G, Ruoslahti E, Bhatia SN, Sailor MJ. Self-sealing porous silicon-calcium silicate core-shell nanoparticles for targeted siRNA delivery to the injured brain[J]. Adv Mater. 2016;28(36):7962–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gumaste SG, Freire BOS, Serajuddin ATM. Development of solid SEDDS, VI: effect of precoating of Neusilin® US2 with PVP on drug release from adsorbed self-emulsifying lipid-based formulations[J]. Eur J Pharm Sci. 2017;110:124–33.

    Article  CAS  PubMed  Google Scholar 

  26. Fujimoto Y, Hirai N, Takatani-Nakase T, Takahashi K. Novel tablet formulation of amorphous indomethacin using wet granulation with a high-speed mixer granulator combined with porous calcium silicate[J]. J Drug Deliv Sci Tec. 2016;33:51–7.

    Article  CAS  Google Scholar 

  27. Fujimoto Y, Hirai N, Takatani-Nakase T, Takahashi K. Preparation and evaluation of solid dispersion tablets by a simple and manufacturable wet granulation method using porous calcium silicate[J]. Chem Pharm Bull. 2016;64:311–8.

    Article  CAS  Google Scholar 

  28. Mamidi HK, Mishra SM, Rohera BD. Determination of maximum flowable liquid-loading potential of Neusilin (R) US2 and investigation of compressibility and compactibility of its liquisolid blends with PEG (400)[J]. J Drug Deliv Sci Tec. 2019;54:101285.

    Article  CAS  Google Scholar 

  29. Ahern RJ, Hanrahan JP, Tobin JM, Ryan KB, Crean AM. Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery[J]. Eur J Pharm Sci. 2013;50(3):400–9.

    Article  CAS  PubMed  Google Scholar 

  30. Gumaste SG, Dalrymple DM, Serajuddin ATM. Development of solid SEDDS, V: compaction and drug release properties of tablets prepared by adsorbing lipid-based formulations onto Neusilin US2[J]. Pharm Res. 2013;30:3186–99.

    Article  CAS  PubMed Central  Google Scholar 

  31. Benjasirimongkol P, Piriyaprasarth S, Sriamornsak P. Design and optimization of resveratrol-loaded porous calcium silicate powders for dissolution and photostability enhancement[J]. Heliyon. 2019;5(3):e01399–e423.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Perez-Roman I, Kiekens F, Cordoba-Diaz D, Garcia-Rodriguez JJ, Cordoba-Diaz M. Development of a solid formulation containing a microemulsion of a Novel Artemisia extract with nematocidal activity for oral administration[J]. Pharmaceutics. 2020;12(9):873.

    Article  CAS  PubMed Central  Google Scholar 

  33. Xu W, Riikonen J, Lehto V-P. Mesoporous systems for poorly soluble drugs[J]. Int J Pharm. 2013;453(1):181–97.

    Article  CAS  PubMed  Google Scholar 

  34. . U.S. Food and Drug Administration. Database of Inactive Ingredients in Approved Drug Products. https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm.

  35. Ward P, Small I, Smith J, Suter P, Dutkowski R. Oseltamivir (Tamiflu®) and its potential for use in the event of an influenza pandemic[J]. J Antimicrob Chemother. 2005;55(suppl_1):i5–i21.

    Article  CAS  PubMed  Google Scholar 

  36. Kalra A, Bhat P, Kaur IP. Deciphering molecular mechanics in the taste masking ability of Maltodextrin: developing pediatric formulation of Oseltamivir for viral pandemia[J]. Carbohydr Polym. 2021;260:117703.

    Article  CAS  PubMed  Google Scholar 

  37. Jadhav NR, Irny PV, Patil US. Solid state behavior of progesterone and its release from Neusilin US2 based liquisolid compacts[J]. J Drug Deliv Sci Tec. 2017;38:97–106.

    Article  CAS  Google Scholar 

  38. Waters LJ, Hanrahan JP, Tobin JM, Finch CV, Parkes GMB, Ahmad SA, Mohammad F, Saleem M. Enhancing the dissolution of phenylbutazone using Syloid® based mesoporous silicas for oral equine applications[J]. J Pharm Anal. 2018;8(3):181–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marques M, Löbenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing[J]. Dissolut Technol. 2011;18:15–28.

    Article  CAS  Google Scholar 

  40. Maniruzzaman M, Douroumis D. An in-vitro–in-vivo taste assessment of bitter drug: comparative electronic tongues study[J]. J Pharm Pharmacol. 2015;67(1):43–55.

    Article  CAS  PubMed  Google Scholar 

  41. Hespeler D, Pyo SM, Müller RH. Dermal smartPearls—optimized silica particles for commercial products & mechanistic considerations[J]. Int J Pharm. 2020;574:118757.

    Article  CAS  PubMed  Google Scholar 

  42. Lu J, Luo B, Chen Z, Yuan Y, Kuang Y, Wan L, Yao L, Chen X, Jiang B, Liu J, Li C. Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy[J]. Int J Biol Macromol. 2020;146:363–73.

    Article  CAS  PubMed  Google Scholar 

  43. Hespeler D, El Nomeiri S, Kaltenbach J, Mueller RH. Nanoporous smartPearls for dermal application—identification of optimal silica types and a scalable production process as prerequisites for marketed products[J]. Beilstein J Nanotech. 2019;10:1666–78.

    Article  CAS  Google Scholar 

  44. Vranikova B, Niederquell A, Sklubalova Z, Kuentz M. Relevance of the theoretical critical pore radius in mesoporous silica for fast crystallizing drugs[J]. Int J Pharm. 2020;591:120019.

    Article  CAS  PubMed  Google Scholar 

  45. Kralevich ML, Koenig JL. FTIR analysis of silica-filled natural rubber[J]. Rubber Chem Technol. 1998;71(2):300–9.

    Article  CAS  Google Scholar 

  46. Ibrahim MA, Abou El Ela AESF. Optimized furosemide taste masked orally disintegrating tablets[J]. Saudi Pharm J. 2017;25(7):1055–62.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Harada Y, Noda J, Yatabe R, Ikezaki H, Toko K. Research on the changes to the lipid/polymer membrane used in the acidic bitterness sensor caused by preconditioning[J]. Sensors. 2016;16(2):230.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yan G, Liang Q, Wen X, Peng J, Deng R, Lv L, et al. Preparation, characterization, and pharmacokinetics of tilmicosin taste-masked formulation via hot-melt extrusion technology[J]. Colloid Surface B. 2020;196:111293.

    Article  CAS  Google Scholar 

  49. Mabuchi R, Ishimaru A, Adachi M, Zhao H, Kikutani H, Tanimoto S. Taste Evaluation of Yellowtail (Seriola Quinqueradiata) Ordinary and dark muscle by metabolic profiling[J]. Molecules. 2019;24(14):2574.

    Article  CAS  PubMed Central  Google Scholar 

  50. Soares S, Brandão E, Guerreiro C, Soares S, Mateus N, De Freitas V. Tannins in food: insights into the molecular perception of astringency and bitter taste[J]. Molecules. 2020;25(11):2590.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Gaopin Yang (Pharmaceutical Processing Solution Co., Ltd, China) for assisting us with the preparation of composites using a hot-melt extruder.

Funding

The China Postdoctoral Science Foundation (2020M672078), National Major Scientific and Technological Special Project for “Significant New Drugs Development” during the Thirteenth Five-Year Plan Period (2018ZX09721003), Shandong Provincial Natural Science Foundation (ZR2021QH360), and TaiShan Industrial Experts Programme (2019TSCYCX-31) financially supported this work.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of work, W.F.Z., S.W.H., and G.X.Z.; experimental execution, W.F.Z., G.X.L., X.C., Y.S., W.P.F., and X.P.W.; analysis and interpretation of the data, W.F.Z., X.P.W., C.Q.X., Y.X., B.T., D.G., S.W.H., and G.X.Z; drafting of the manuscript, W.F.Z.; revision of the manuscript, W.F.Z., C.Q.X., S.W.H., and G.X.Z; supervision, S.W.H., and G.X.Z; funding acquisition, W.F.Z., S.W.H., and G.X.Z.

Corresponding authors

Correspondence to Shuwang He or Guangxi Zhai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 7471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, G., Xiao, C. et al. Mesoporous Silica Carrier-Based Composites for Taste-Masking of Bitter Drug: Fabrication and Palatability Evaluation. AAPS PharmSciTech 23, 75 (2022). https://doi.org/10.1208/s12249-022-02227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02227-7

KEY WORDS

Navigation