Skip to main content

A Review on the Hybridization of Fuzzy Systems and Machine Learning Techniques

  • Conference paper
  • First Online:
Computer Vision and Robotics

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Fuzzy systems are used in modeling and implementation of many real-world applications operating under an imprecise and uncertain environment. Such systems have effective learning and reasoning capabilities. By integration ML techniques, the fuzzy systems can work with better performance. The paper is a review on the application of the different types of machine learning techniques into fuzzy systems. Many research outcomes are extracted in the hybridization zone of the fuzzy systems and machine learning. The advantages and future scope are also discussed on the mutual integration of fuzzy systems and machine learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zadeh A (2015) Fuzzy logic—a personal perspective. Fuzzy Sets Syst 281:4–20

    Google Scholar 

  2. Nguyen HT, Walker CL, Walker EA (2018) A first course in fuzzy logic. CRC press

    Google Scholar 

  3. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A (2020) A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408:189–215

    Google Scholar 

  4. Nardulli PF, Althaus SL, Hayes M (2015) A progressive supervised-learning approach to generating rich civil strife data. Sociol Methodol 45(1):148–183

    Google Scholar 

  5. Ashfaq RAR, Wang X-Z, Huang JZ, Abbas H, He Y-L (2017) Fuzziness based semi-supervised learning approach for intrusion detection system. Inform Sci 378:484–497

    Google Scholar 

  6. Gou J, Ma H, Weihua O, Zeng S, Rao Y, Yang H (2019) A generalized mean distance-based k-nearest neighbor classifier. Expert Syst Appl 115:356–372

    Google Scholar 

  7. Zhang Y, Cao G, Wang B, Li X (2019) A novel ensemble method for k-nearest neighbor. Pattern Recogn 85:13–25

    Google Scholar 

  8. Marcot BG, Penman TD (2019) Advances in bayesian network modelling: integration of modelling technologies. Environ. Modell. Softw 111:386–393

    Google Scholar 

  9. Drury B, Valverde-Rebaza J, Moura M-F, de Andrade Lopes A (2017) A survey of the applications of bayesian networks in agriculture. Eng Appl Artif Intell 65:29–42

    Google Scholar 

  10. D. Huang, “Systematic theory of neural networks for pattern recognition”, Publishing House of Electronic Industry of China (1996).

    Google Scholar 

  11. Huang D-S (1999) Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recogn Artificial Intell 13(07):1083–1101

    Google Scholar 

  12. Huang D-S (2004) A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Trans Neural Netw 15:477–491

    Google Scholar 

  13. Huang D-S, Ip HHS, Law KCK, Chi Z (2005) Zeroing polynomials using modified constrained neural network approach. IEEE Trans Neural Netw 16:721–732

    Google Scholar 

  14. Baxt WG (1991) Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Int Med 115(11):843–848

    Google Scholar 

  15. Trabelsi A, Elouedi Z, Lefevre E (2018) Decision tree classifiers for evidential attribute values and class labels. Fuzzy Sets Syst

    Google Scholar 

  16. Fratello M, Tagliaferri R (2019) Decision trees and random forests. In: Encyclopedia of bioinformatics and computational biology. Elsevier, pp. 374–383

    Google Scholar 

  17. Prasath VB, Alfeilat HAA, Hassanat A, Lasassmeh O, Tarawneh AS, Alhasanat MB, Eyal Salman HS (2017) Distance and similarity measures effect on the performance of K-nearest neighbor classifier–a review. arXiv preprint arXiv:1708.04321

  18. Almond RG, Mislevy RJ, Steinberg LS, Yan D, Williamson DM (2015) Bayesian networks in educational assessment. Springer

    Google Scholar 

  19. Cai B, Huang L, Xie M (2017) Bayesian networks in fault diagnosis. IEEE Trans Industr Inf 13(5):2227–2240

    Google Scholar 

  20. Walczak S (2019) Artificial neural networks. Advanced methodologies and technologies in artificial intelligence, computer simulation, and human-computer interaction. IGI Glob, pp 40–53

    Google Scholar 

  21. Van Gerven M, Bohte S (2017) Artificial neural networks as models of neural information processing. Frontiers Comput Neurosci 11:114

    Google Scholar 

  22. Chen M, Challita U, Saad W, Yin C, Debbah M (2019) Artificial neural networks-based machine learning for wireless networks: a tutorial. IEEE Commun Surv Tutorials 21(4):3039–3071

    Google Scholar 

  23. Cortes C, Gonzalvo X, Kuznetsov V, Mohri M, Yang Scott (2017) Adanet: adaptive structural learning of artificial neural networks. International conference on machine learning. PMLR

    Google Scholar 

  24. Vapnik VN (1998) The nature of statistical learning theory. Springer

    Google Scholar 

  25. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press

    Google Scholar 

  26. Platt J (1998) Sequential minimal optimization: a fast algorithm for training support vector machines. Tech. Rep

    Google Scholar 

  27. Kotsiantis SB (2013) Decision trees: a recent overview. Artificial Intell Rev 39.4:261–283

    Google Scholar 

  28. Maimon OZ, Rokach L (2014) Data mining with decision trees: theory and applications. World Sci 81:2014

    Google Scholar 

  29. Durgesh KS, Lekha B (2010) Data classification using support vector machine. J Theoret Appl Inform Technol 12.1:1–7

    Google Scholar 

  30. Deka PC (2014) Support vector machine applications in the field of hydrology: a review. Appl Soft Comput 19:372–386

    Google Scholar 

  31. Bergstra J, James RB, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: 25th annual conference on neural information processing systems (NIPS 2011), vol. 24. Neural Information Processing Systems Foundation

    Google Scholar 

  32. Yagyasen D, Darbari M, Shukla PK, Singh VK (2013) Diversity and convergence issues in evolutionary multiobjective optimization: application to agriculture science. IERI Procedia 5:81–86

    Google Scholar 

  33. Shukla PK, Tripathi SP (2013) Interpretability issues in evolutionary multi-objective fuzzy knowledge base systems. In: Proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012). Springer, India

    Google Scholar 

  34. Huang DS, Du JX (2008) A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans Neural Netw 19:2099–2115

    Google Scholar 

  35. Wang X-F, Huang D-S (2008) A novel multi-layer level set method for image segmentation. J Univers Comput Sci 14(14):2428–2452

    MathSciNet  Google Scholar 

  36. Zhao Z-Q, Huang D-S (2007) A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability. Appl Math Model 31(7):1271–1281

    MATH  Google Scholar 

  37. Du J-X, Huang D-S, Wang X-F, Gu X (2007) Shape recognition based on neural networks trained by differential evolution algorithm. Neurocomputing 70(4):896–903. Advanced Neurocomputing Theory and Methodology

    Google Scholar 

  38. Du J, Huang D, Zhang G, Wang Z (2006) A novel full structure optimization algorithm for radial basis probabilistic neural networks. Neurocomputing 70(1–3):592–596

    Google Scholar 

  39. Kamiński B, Jakubczyk M, Szufel P (2018) A framework for sensitivity analysis of decision trees. CEJOR 26(1):135–159

    MathSciNet  MATH  Google Scholar 

  40. Zhang Q, Yang Y, Ma H, WYN (2019) Interpreting cnns via decision trees. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6261–6270

    Google Scholar 

  41. Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for text classification. In: Proceedings of the AAAI conference on artificial intelligence 29(1)

    Google Scholar 

  42. Vedaldi A, Lenc K (2015) Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM international conference on multimedia

    Google Scholar 

  43. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260

    MathSciNet  MATH  Google Scholar 

  44. Novikov A et al (2015) Tensorizing neural networks. arXiv preprint arXiv:1509.06569

  45. Stallkamp J et al (2011) The German traffic sign recognition benchmark: a multi-class classification competition. The 2011 international joint conference on neural networks. IEEE

    Google Scholar 

  46. Zhou Z-H (2016) Learnware: on the future of machine learning. Frontiers Comput Sci 10(4):589–590

    Google Scholar 

  47. Cracknell MJ, Reading AM (2014) Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci 63:22–33

    Google Scholar 

  48. Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372

    MATH  Google Scholar 

  49. Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36(4):1140–1152

    Google Scholar 

  50. Koyejo O, Natarajan N, Ravikumar P, Dhillon IS (2014) Consistent binary classification with generalized performance metrics. NIPS 27:2744–2752

    Google Scholar 

  51. Razavi AH, Inkpen D, Uritsky S, Matwin S (2010) Offensive language detection using multi-level classification. In: Canadian conference on artificial intelligence. Springer, Berlin, Heidelberg, pp. 16–27

    Google Scholar 

  52. Huang C, Li Y, Loy CC, Tang X (2016) Learning deep representation for imbalanced classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5375–5384

    Google Scholar 

  53. Suthaharan S (2016) Support vector machine. Machine learning models and algorithms for big data classification. Springer, Boston, MA, pp 207–235

    Google Scholar 

  54. Anava O, Levy KY (2016) k*-nearest neighbors: from global to local. In: Proceedings of the 30th international conference on neural information processing systems

    Google Scholar 

  55. Gasso G (2019) Logistic regression

    Google Scholar 

  56. Shukla PK et al (2011) A survey of fuzzy techniques in object-oriented databases. Int J Scient Eng Res 2.11:1–11

    Google Scholar 

  57. Song Y-Y, Ying LU (2015) Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry 27.2, 130

    Google Scholar 

  58. Biau G, Scornet E (2016) A random forest guided tour. Test 25(2):197–227

    MathSciNet  MATH  Google Scholar 

  59. Leng Y, Xinyan X, Qi G (2013) Combining active learning and semi-supervised learning to construct SVM classifier. Knowl Based Syst 44:121–131

    Google Scholar 

  60. Guillaumin M, Verbeek J, Schmid C (2010) Multimodal semi-supervised learning for image classification. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE

    Google Scholar 

  61. Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209–212

    Google Scholar 

  62. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat 46:175–185

    MathSciNet  Google Scholar 

  63. Shukla PK, Tripathi SP (2014) A new approach for tuning interval type-2 fuzzy knowledge bases using genetic algorithms. J Uncertain Anal Appl 2.1:1–15

    Google Scholar 

  64. Bělohlávek, R, Dauben JW, Klir GJ (2017) Fuzzy logic and mathematics: a historical perspective. Oxford University Press

    Google Scholar 

  65. Shukla PK, Tripathi SP (2011) A survey on interpretability-accuracy (IA) trade-off in evolutionary fuzzy systems. In: 2011 fifth international conference on genetic and evolutionary computing. IEEE

    Google Scholar 

  66. Shukla PK (2020) Development of fuzzy knowledge-based system for water quality assessment in river ganga. Soft computing for problem solving 2019. Springer, Singapore, pp 17–26

    Google Scholar 

  67. Tahilyani S, Darbari M, Shukla PK (2013) Soft computing approaches in traffic control systems: a review. Aasri Procedia 4:206–211

    Google Scholar 

  68. Hsieh S-L, Hsieh S-H, Cheng P-H, Chen C-H, Hsu K-P, Lee I-S, Wang Z, Lai F (2012) Design ensemble machine learning model for breast cancer diagnosis. J Med Syst 36(5):2841–2847

    Google Scholar 

  69. Liu B (2011) Supervised learning. Web data mining. Springer, Berlin, Heidelberg, pp 63–132

    Google Scholar 

  70. Zhou T, Brown M, Snavely N, Lowe DG (2017) Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  71. Le QV (2013) Building high-level features using large scale unsupervised learning. In: 2013 IEEE international conference on acoustics, speech and signal processing. IEEE

    Google Scholar 

  72. Kingma DP, Mohamed S, Rezende DJ, Welling M et al (2014) Semi-supervised learning with deep generative models. arXiv preprint arXiv:1406.5298

  73. Rasmus A, Valpola H, Honkala M, Berglund M, Raiko T (2015) Semi-supervised learning with ladder networks. arXiv preprint arXiv:1507.02672

  74. Shukla PK, Tripathi SP (2012) On the design of interpretable evolutionary fuzzy systems (I-EFS) with improved accuracy. In: 2012 international conference on computing sciences. IEEE

    Google Scholar 

  75. Alfeilat A, Arafat H, Hassanat ABA, Lasassmeh O, Tarawneh AS, Alhasanat MB, Eyal Salman HS, Surya Prasath VB (2019) Effects of distance measure choice on k-nearest neighbor classifier performance: a review. Big Data 7.4:221–248

    Google Scholar 

  76. Fix E, Hodges JL (1951) Discriminatory analysis. Nonparametric discrimination; consistency properties. Technical Report 4, USAF School of Aviation Medicine, Randolph Field, TX, USA

    Google Scholar 

  77. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13 (1):21–27

    Google Scholar 

  78. Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ (2008) Top 10 algorithms in data mining. Knowledge and information systems 14(1):1–37

    Google Scholar 

  79. Shukla PK, Tripathi SP (2012) Uncertainty handling using fuzzy logic in rule-based systems. Int J Adv Sci Technol 45:31–46

    Google Scholar 

  80. Bielza C, Larranaga P (2014) Discrete Bayesian network classifiers: a survey. ACM Comput Surveys (CSUR) 47(1):1–43

    MATH  Google Scholar 

  81. Gil-Begue S, Bielza C, Larrañaga P (2021) Multi-dimensional Bayesian network classifiers: a survey. Artif Intell Rev 54:519–559

    Google Scholar 

  82. Misra J, Saha I (2010) Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3):239–255

    Google Scholar 

  83. Hassoun MH (1995) Fundamentals of artificial neural networks. MIT press

    Google Scholar 

  84. Nissen S (2003) Implementation of a fast artificial neural network library (fann). Report, Department of Computer Science University of Copenhagen (DIKU) 31:29

    Google Scholar 

  85. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A (2020) A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408:189–215

    Google Scholar 

  86. Graves D, Pedrycz W (2010) Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study. Fuzzy Sets Syst 161(4):522–543

    MathSciNet  Google Scholar 

  87. Bora DJ, Gupta DR, Kumar A (2014) A comparative study between fuzzy clustering algorithm and hard clustering algorithm. arXiv preprint arXiv:1404.6059

  88. Shukla, PK, Tripathi SP (204) Handling high dimensionality and interpretability-accuracy trade-off issues in evolutionary multiobjective fuzzy classifiers. Int J Sci Eng Res 6:665–671

    Google Scholar 

  89. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, 32–57

    Google Scholar 

  90. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geo Sci 10(2–3):191–203

    Google Scholar 

  91. Shukla PK, Tripathi SP (2016) Interpretability and accuracy issues in evolutionary multi-objective fuzzy classifiers. Int J Soft Comput Netw 1.1:55–69

    Google Scholar 

  92. Tahilyani S, Darbari M, Shukla PK (2012) A new genetic algorithm-based lane-by-pass approach for smooth traffic flow on road networks. Int J Adv Res Artificial Intell 1.3:32–36

    Google Scholar 

  93. Tiwari A, Singh VK, Shukla PK (2018) Mobile handset selection using evolutionary multi-objective optimization considering the cost and quality parameters. Int Conf Adv Comput Data Sci. Springer, Singapore

    Google Scholar 

  94. Kaur A, Shukla PK (2013) A review on evolutionary multiobjective optimization for routing problem of computer networks. In: Confluence 2013: the next generation information technology summit (4th International Conference). IET

    Google Scholar 

  95. Reddy U, Reddy B, Reddy B (2019) Recognition of lung cancer using machine learning mechanisms with fuzzy neural networks. Traitement du Signal 36(1):87–91

    MathSciNet  Google Scholar 

  96. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1(1):3–28

    MathSciNet  MATH  Google Scholar 

  97. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249

    MathSciNet  MATH  Google Scholar 

  98. Hong DH, Hwang C (2003) Support vector fuzzy regression machines. Fuzzy Sets Syst 138.2:271–281

    Google Scholar 

  99. Hong, DH, Hwang C (2006) Fuzzy nonlinear regression model based on LS-SVM in feature space. International Conference on Fuzzy Systems and Knowledge Discovery. Springer, Berlin, Heidelberg

    Google Scholar 

  100. Ishibuchi H, Fujioka R, Tanaka H (1993) Neural networks that learn from fuzzy if-then rules. IEEE Trans Fuzzy Syst 1(2):85–97

    Google Scholar 

  101. Adeli A, Neshat M (2010) A fuzzy expert system for heart disease diagnosis. In: Proceedings of international multi conference of engineers and computer scientists. Hong Kong, vol 1, pp 28–30

    Google Scholar 

  102. Baig MM, Hosseini HG, Kouzani A, Harrison MJ (2011) Anaesthesia monitoring using fuzzy logic. Journal of clinical monitoring and computing, 25(5):339, 2011

    Google Scholar 

  103. Shabgahi AZ, Abadeh MS (2011) Cancer tumor detection by gene expression data exploration using a genetic fuzzy system. In: 2011 Developments in E-systems Eng, pp 141–145. IEEE

    Google Scholar 

  104. Zou Y, Li Z, Zhu X, Yu J, Gu Z (2012) Research on the computer-assisted intelligent diagnosis system of traditional chinese medicine. In: 2012 9th international conference on fuzzy systems and knowledge discovery, pp 329–333. IEEE

    Google Scholar 

  105. Singh S, Kumar A, Panneerselvam K, Jannet Vennila J (2012) Diagnosis of arthritis through fuzzy inference system. J Med Syst 36(3):1459–1468

    Google Scholar 

  106. Zolnoori M, Zarandi MHF, Moin M, Teimorian S (2012) Fuzzy rule-based expert system for assessment severity of asthma. J Med Syst 36(3):1707–1717

    Google Scholar 

  107. Karimpour M, Kamyad AV, Forughipour M (2014) Fuzzy modeling of optimal initial drug prescripttion. In: Fuzzy information & engineering and operations research & management. Springer, pp 3–12

    Google Scholar 

  108. Gayathri BM, Sumathi CP (2015) Mamdani fuzzy inference system for breast cancer risk detection. In: 2015 IEEE international conference on computational intelligence and computing research (ICCIC), pp 1–6. IEEE

    Google Scholar 

  109. Neshat M, Sepidname G, Eizi A, Amani A (2015) A new skin color detection approach based on fuzzy expert system. Indian J Sci Technol 8:1–11

    Google Scholar 

  110. Economou G-PK, Sourla E, Stamatopoulou K-M, Syrimpeis V, Sioutas S, Tsakalidis A, Tzimas G (2015) Exploiting expert systems in cardiology: a comparative study. In: GeNeDis2014. Springer, pages 79–89

    Google Scholar 

  111. Fialho AS, Vieira SM, Kaymak U, Almeida RJ, Cismondi F, Reti SR, Finkelstein SN, Sousa JMC (2016) Mortality prediction of septic shock patients using probabilistic fuzzy systems. Appl Soft Comput 42:194–203

    Google Scholar 

  112. Saikia D, Dutta JC (2016) Early diagnosis of dengue disease using fuzzy inference system. In: 2016 international conference on microelectronics, computing and communications (MicroCom). IEEE, pp 1–6

    Google Scholar 

  113. Ali Mohammad Alqudah (2017) Fuzzy expert system for coronary heart disease diagnosis in jordan. Heal Technol 7(2–3):215–222

    Google Scholar 

  114. Sharma A, Khosla A, Khosla M, Rao Y (2018) Fast and accurate diagnosis of autism (fada): a novel hierarchical fuzzy system-based autism detection tool. Australas Phys Eng Sci Med 41(3):757–772

    Google Scholar 

  115. Karegowda AG, Poornima D, Lakshmi CR (2017) Knowledge based fuzzy inference system for diagnosis of diffuse goiter. In: 2017 2nd international conference on emerging computation and information technologies (ICECIT). IEEE, pp 1–12

    Google Scholar 

  116. Sajadi NA, Borzouei S, Mahjub H, Farhadian M (2018) Diagnosis of hypothyroidism using a fuzzy rule-based expert system. Clin Epidemiol Global Health

    Google Scholar 

  117. Chandra P, Agarwal D, Shukla PK (2020) A review on the interval type-2-fuzzy systems. Int J Intell Syst Des Comput 3.2:117–132

    Google Scholar 

  118. Guzmán JC, Miramontes I, Melin P, Prado-Arechiga G (2019) Optimal genetic design of type-1 and interval type-2-fuzzy systems for blood pressure level classification. Axioms 8(1):8

    Google Scholar 

  119. Nguyen TNM, TQC, Duong TD, Mai NA (2018) Design of a medical expert system for consulting tuberculosis diagnosis in vietnam rural areas. In: International conference on the development of biomedical engineering in Vietnam. Springer, pp 577–583

    Google Scholar 

  120. Hadžic L, Fazli ´ c A, Hasani ´ c O, Kudi ´ c N, Spahi ´ c L (2019) Expert system for performance prediction of anesthesia machines. In: International conference on medical and biological engineering. Springer, pp 671–679

    Google Scholar 

  121. Rubio JJ et al (2019) ANFIS system for classification of brain signals’, 1 Jan, pp 4033–4041

    Google Scholar 

  122. Kisi O et al (2019) Drought forecasting using novel heuristic methods in a semi-arid environment. J Hydrol 578:124053

    Google Scholar 

  123. Wang G, Zhou T, Choi K-S, Lu J (2020) A deep-ensemble-level-based interpretable Takagi-Sugeno-Kang fuzzy classifier for imbalanced data. In: IEEE transactions on cybernetics. https://doi.org/10.1109/TCYB.2020.3016972

  124. Moayedi H, Raftari M, Sharifi A et al (2020) Optimization of ANFIS with GA and PSO estimating α ratio in driven piles. Eng Comput 36:227–238. https://doi.org/10.1007/s00366-018-00694-w

    Article  Google Scholar 

  125. Cortés-Antonio P et al (2020) Learning rules for Sugeno ANFIS with parametric conjunction operations. Appl Soft Comput 89:106095

    Google Scholar 

  126. Khan MA, Algarni F (2020) A healthcare monitoring system for the diagnosis of heart disease in the IoMT cloud environment using MSSO-ANFIS. IEEE Access 8:122259–122269

    Google Scholar 

  127. Ebrahimi-Khusfi Z, Taghizadeh-Mehrjardi R, Nafarzadegan AR (2021) Accuracy, uncertainty, and interpretability assessments of ANFIS models to predict dust concentration in semi-arid regions. Environ Sci Pollut Res 28.6:6796–6810

    Google Scholar 

  128. Das H, Naik B, Behera HS (2020) Disease classification using linguistic neuro-fuzzy model. Progress in Computing. Analytics and Networking. Springer, Singapore, pp 45–53

    Google Scholar 

  129. Chen W, Chen X, Peng J, Panahi M, Lee S (2021) Landslide susceptibility modeling based on ANFIS with teaching-learning- based optimization and Satin bowerbird optimizer. Geosci Frontiers 12.1:93–107

    Google Scholar 

  130. Harandizadeh H, Armaghani DJ (2021) Prediction of air-overpressure induced by blasting using an ANFIS-PNN model optimized by GA. Appl Soft Comput 99:106904

    Google Scholar 

  131. Kim S, Jung S, Park Y, Lee J, Park J (2014) Effective liver cancer diagnosis method based on machine learning algorithm. In:2014 7th international conference on biomedical engineering and informatics. IEEE, pp 714–718

    Google Scholar 

  132. Yang C-H, Moi S-H, Hou M-F, Chuang L-Y, Lin Y-D (2020) Applications of deep learning and fuzzy systems to detect cancer mortality in next-generation genomic data. IEEE Transact Fuzzy Syst

    Google Scholar 

  133. Singh H, Rana PS, Singh U (2018) Prediction of drug synergy in cancer using ensemble-based machine learning techniques. Mod Phys Lett B 32(11):1850132

    Google Scholar 

  134. Einipour A (2011) A fuzzy-ACO method for detect breast cancer. Glob J Health Sci 3(2):195

    Google Scholar 

  135. Nilashi M, Ibrahim O, Ahmadi H, Shahmoradi L (2017) A knowledge-based system for breast cancer classification using fuzzy logic method. Telematics Inform 34(4):133–144

    Google Scholar 

  136. Sharma S, Aggarwal A, Choudhury T (2018) Breast cancer detection using machine learning algorithms. In:2018 international conference on computational techniques, electronics and mechanical systems (CTEMS). IEEE, pp 114–118

    Google Scholar 

  137. Daliri MR (2012) A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm and fuzzy extreme learning machines. J Med Syst 36(2):1001–1005

    Google Scholar 

  138. Fatima B, Amine CM (2012) A neuro-fuzzy inference model for breast cancer recognition. Int J Comput Sci Inform Technol 4(5):163

    Google Scholar 

  139. Araújo S, Jonathan V, Guimarães AJ, de Campos Souza PV, Rezende TS, Araújo VS (2019) Using resistin, glucose, age and BMI and pruning fuzzy neural network for the construction of expert systems in the prediction of breast cancer. Mach Learn Knowl Extract 1(1), 466–482

    Google Scholar 

  140. Ashraf M, Le K, Huang X (2010) Information gain and adaptive neuro-fuzzy inference system for breast cancer diagnoses. In: 5th international conference on computer sciences and convergence information technology. IEEE, pp 911–915

    Google Scholar 

  141. Tintu PB, Paulin R (2013) Detect breast cancer using fuzzy c means techniques in wisconsin prognostic breast cancer (WPBC) data sets. Int J Comput Appl Technol Res 2(5):614–617

    Google Scholar 

  142. Sherbet GV, Woo WL, Dlay S (2018) Application of artificial intelligence-based technology in cancer management: a commentary on the deployment of artificial neural networks. Anticancer Res 38(12):6607–6613

    Google Scholar 

  143. Özyurt, F, Sert E, Avcı D (2020) An expert system for brain tumor detection: fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Med Hypoth 134:109433

    Google Scholar 

  144. Huang M-L, Hung Y-H, Lee W-M, Li R-K, Wang T-H (2012) Usage of case-based reasoning, neural network and adaptive neuro-fuzzy inference system classification techniques in breast cancer dataset classification diagnosis. J Med Syst 36(2):407–414

    Google Scholar 

  145. Ghani A, Khanapi M, Mohammed MA, Arunkumar N, Mostafa SA, Ibrahim DA, Abdullah MK, Jaber MM, Abdulhay E, Ramirez-Gonzalez G, Burhanuddin MA (2020) Decision-level fusion scheme for nasopharyngeal carcinoma identification using machine learning techniques. Neural Comput Appl 32(3):625–638

    Google Scholar 

  146. Peng L, Chen W, Zhou W, Li F, Yang J, Zhang J (2016) An immune-inspired semi-supervised algorithm for breast cancer diagnosis. Comput Methods Programs Biomed 134:259–265

    Google Scholar 

  147. Shukla PK, Tripathi SP (2016) Interpretability and accuracy issues in evolutionary multi-objective fuzzy classifiers. Int J Soft Comput Netw 1.1:55–69

    Google Scholar 

  148. Gupta K, Janghel RR (2019) Dimensionality reduction-based breast cancer classification using machine learning. In: Computational intelligence: theories, applications and future directions-Springer. Singapore, vol 1, pp 133–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prasad, R., Shukla, P.K. (2022). A Review on the Hybridization of Fuzzy Systems and Machine Learning Techniques. In: Bansal, J.C., Engelbrecht, A., Shukla, P.K. (eds) Computer Vision and Robotics. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-8225-4_32

Download citation

Publish with us

Policies and ethics