Skip to main content

Brief History, Pathophysiology, Transmission of SARS-CoV-2 Virus, and Recent Advances on Transition Metal Complexes and Nanocomposites as the Potent Antiviral Agents from COVID-19 Perspectives

  • Chapter
  • First Online:
Nanostructured Biomaterials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 510 Accesses

Abstract

The outbreak of SARS-CoV-2 has resulted in an unprecedented and greatest global health crisis in the present century affecting more than 220 countries with 3.7 million deaths and 173.5 million individual infections till now. This pandemic has had an enormous impact on global healthcare, economy, and society, which has prompted extensive research on exploring the biology of SARS-CoV-2 and the discovery of new drugs for COVID-19. The lack of effective antiviral drugs for COVID-19 has initiated the effort to repurpose selected FDA-approved antiviral drugs for the treatment of COVID-19 along with plasma therapy. Vaccination has proven to be the effective prevention strategy against the SARS-CoV-2 virus, although mutations in the SARS-CoV-2 virus have become the major concern due to the decreasing effectiveness of the vaccines Therefore, an effective cure for COVID-19 is still an elusive goal. Transition metal complexes by a broad spectrum of formal charge and oxidation states, wide range of coordination number and geometry, tunable kinetic, thermodynamic, and redox properties, diverse reaction pathways have emerged as the alternative and viable tools in the medicinal domain from therapeutics to diagnostics. Several transition metal complexes proved their efficacy against various types of viruses and recent advances on the potent transition metal complexes or nanoconjugates are reviewed in this chapter. The present chapter also aims to discuss the perspectives on the potential utility of transition metal complexes or the nanoconjugates against SARS-CoV-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574

    Google Scholar 

  2. https://www.who.int/emergencies/diseases/novel-coronavirus-2019

  3. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang NB, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W (2020) A novel coronavirus from patients with pneumonia in China. Engl J Med 382:727–733

    Google Scholar 

  4. https://www.who.int/csr/media/sars_wha.pdf

  5. Baig AM, Khaleeq A, Ali U, Syeda H (2020) Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 11:995–998

    CAS  Google Scholar 

  6. Aminnejad R, Shafiee H (2020) Is regional anesthesia safe enough in suspected or confirmed COVID-19 patients? ACS Chem Neurosci 11:1371–1371

    CAS  Google Scholar 

  7. Xiong C, Jiang L, Chen Y, Jiang Q (2020) Evolution and variation of 2019-novel coronavirus. bioRxiv. https://doi.org/10.1101/2020.01.30.926477

  8. Guerra S (2020) Oral mucosal lesions in a COVID-19 patient: New signs or secondary manifestations? Int J Infect Dis 97:326–328

    Google Scholar 

  9. https://en.wikipedia.org/wiki/National_responses_to_the_COVID-19_pandemic

  10. https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdowns

  11. Godbole T (2020) Domestic violence rises amid coronavirus lockdowns in Asia 11 April, 2020

    Google Scholar 

  12. Mental health and psychosocial considerations during the COVID-19 outbreak. World Health Organization. 18 March 2020

    Google Scholar 

  13. https://en.m.wikipedia.org/wiki/Social_impact_of_the_COVID-19_pendemic

  14. Opatz T, Senn-Bilfinger J, Richert C (2020) Thoughts on what chemists can contribute to fighting SARS-CoV-2—a short note on hand sanitizers, drug candidates and outreach. Angew Chem Int Ed 59:9236–9240

    CAS  Google Scholar 

  15. https://www.weforum.org/agenda/2020/02/coronavirus-economic-effects-global-economy-trade-travel/

  16. Leng Z, Zhu R, Hou W, Feng Y, Liu H, Jin R, Jin K, Zhao RC (2020) Transplantation of ACE2—mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 11:216–228

    Google Scholar 

  17. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/

  18. Corman VM, Muth D, Niemeyer D, Drosten C (2018) Hosts and sources of endemic human coronaviruses. Adv Virus Res 100:163–188

    CAS  Google Scholar 

  19. Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, Wit E, Munster VJ (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382:1564–1567

    Google Scholar 

  20. https://www.worldometers.info/coronavirus/

  21. Shalev D, Shapiro PA, Psychiatry E (2020) Epidemic psychiatry: the opportunities and challenges of COVID-19. Gen Hosp Psychiatry 64:68–71

    Google Scholar 

  22. Encinar JA, Menendez JA (2020) Potential drugs targeting early innate immune evasion of SARS-coronavirus 2 via 2′-O-methylation of viral RNA. Viruses 12:525

    CAS  Google Scholar 

  23. Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z, Cui J, Lu J (2020) On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 7:1012–1023

    Google Scholar 

  24. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, Myers R, Campbell C, Amirthalingam G, Edmunds M, Zambon M, Brown K, Hopkins S, Chand M, Ramsay M (2021) Effectiveness of COVID-19 vaccines against the B.1.617.2 variant. https://doi.org/10.1101/2021.05.22.21257658. Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HME, Tuekprakhon A, Nutalai R, Wang B, Paesen GC, Lopez-Camacho C, Slon-Campos J, Hallis B, Coombes N, Bewley K, Charlton S, Walter TS, Skelly D, Lumley SF, Dold C, Levin R, Dong T, Pollard AJ, Knight JC, Crook D, Lambe T, Clutterbuck E, Bibi S, Flaxman A, Bittaye M, Belij-Rammerstorfer S, Gilbert S, James W, Carroll MW, Klenerman P, Barne E, Dunachie SJ, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR (2021) Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 198:2348–2361

  25. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581:221–224. Chang EL, Simmers C, Knight DA (2010) Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals 3:1711–1728

    Google Scholar 

  26. Musib D, Raza MK, Kundu S, Roy M (2018) Modulating in vitro photodynamic activities of copper(II) complexes. Eur J Inorg Chem 2018:2011–2018

    CAS  Google Scholar 

  27. Lu R, Zhao X, Li J (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574

    CAS  Google Scholar 

  28. Walls AC, Park Y, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–292

    CAS  Google Scholar 

  29. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R (2020) COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 24:91–98

    CAS  Google Scholar 

  30. Hamre D, Procknow JJ (1966) A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121:190–193

    CAS  Google Scholar 

  31. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM (1967) Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA 57:933–940

    Google Scholar 

  32. Tyrrell DA, Cohen S, Schlarb JE (1993) Signs and symptoms in common colds. Epidemiol Infect 111:143–156

    CAS  Google Scholar 

  33. Abdul-Rasool S, Fielding BC (2010) Understanding human coronavirus HCoV-NL63. Open Virol J 4:76–84

    CAS  Google Scholar 

  34. Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, Osterhaus ADME (2004) A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci USA 101:6212–6216

    Google Scholar 

  35. Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, Cheng VC, Lee P, Tang BSF, Cheung CHY, Lee RA, So L, Lau Y, Chan K, Yuen K (2006) Coronavirus HKU1 and other coronavirus Infections in Hong Kong. J Clin Microbiol 44:2063–2071

    Google Scholar 

  36. Cheng VC, Lau SK, Woo PC, Yuen KY (2007) Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 20:660–694

    CAS  Google Scholar 

  37. Devi LR, Raza MK, Musib D, Ramu V, Devi J, Roy M (2019) Nucleus targeting anthraquinone-based copper (II) complexes as the potent PDT agents: synthesis, photo-physical and theoretical evaluation. Inorg Chim Acta 500:119208

    Google Scholar 

  38. Musib D, Raza MK, Martina K, Roy M (2019) Mn(I)-based photoCORMs for trackable, visible light-induced CO release and photocytotoxicity to cancer cells. Polyhedron 172:125–131

    CAS  Google Scholar 

  39. Hilgenfeld R, Peiris M (2013) From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res 100:286–295

    CAS  Google Scholar 

  40. Gao H, Yao H, Yang S, Li L (2016) From SARS to MERS: evidence and speculation. Front Med 10:377–382

    Google Scholar 

  41. Coleman CM, Frieman MB (2013) Emergence of the Middle East respiratory syndrome coronavirus. PLoSPathog 9:e1003595

    Google Scholar 

  42. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. Lancet 395:497–506

    CAS  Google Scholar 

  43. Risku M, Lappalainen S, Rasanen S, Vesikari T (2010) Detection of human coronaviruses in children with acute gastroenteritis. J Clin Virol 48:27–30

    Google Scholar 

  44. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen K (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9:221–236

    CAS  Google Scholar 

  45. Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5:562–569

    CAS  Google Scholar 

  46. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T (2020) Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 9:382–385

    CAS  Google Scholar 

  47. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen H, Chen J, Luo Y, Guo H, Jiang R, Liu M, Chen Y, Shen X, Wang X, Zheng X, Zhao K, Chen Q, Deng F, Liu L, Yan B, Zhan F, Wang Y, Xiao G, Shi Z (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    CAS  Google Scholar 

  48. (a) http://www.nhc.gov.cn/jkj/s7915/202001/e4e2d5e6f01147e0a8df3f6701d49f33.shtml. (b) http://www.bigd.big.ac.cn/gwh/

  49. Khailany RA, Safdar M, Ozaslan M (2020) Genomic characterization of a novel SARS-CoV-2. Gene Rep 19:100682

    Google Scholar 

  50. Yuen K, Ye Z, Fung S, Chan C, Jin D (2020) SARS-CoV-2 and COVID-19: the most important research questions. Cell Biosci 10:40

    Google Scholar 

  51. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265–269

    CAS  Google Scholar 

  52. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA et al (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544

    Google Scholar 

  53. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S (2020) Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect, Genet Evol 79:104212

    Google Scholar 

  54. National Microbiology Data Center. (http://nmdc.cn/coronavirus)

  55. Leng Z, Zhu R, Hou W, Feng Y, Liu H, Jin R, Jin K, Zhao RC (2020) Transplantation of ACE2—mesenchymal stem cells improves the outcome of patients with COVID-19 Pneumonia. Aging Dis 11:216–228

    Google Scholar 

  56. Toljan K (2020) Letter to the editor regarding the viewpoint “evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanism. ACS Chem Neurosci 11:1192–1194

    CAS  Google Scholar 

  57. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444–1448

    CAS  Google Scholar 

  58. Siu YL, Teoh KT, Lo J, Chan CM, Kien F, Escriou N, Tsao SW, Nicholls JM, Altmeyer R, Peiris JSM, Bruzzone R, Nal B (2008) The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol 82:11318–11330

    CAS  Google Scholar 

  59. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581:221–224

    CAS  Google Scholar 

  60. Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol 94:e00127-e220

    Google Scholar 

  61. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263

    CAS  Google Scholar 

  62. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 20:S0092

    Google Scholar 

  63. Tan W, Zhao X, Ma X, Wang W, Niu P, Xu W, Gao GF, Wu G (2020) A novel coronavirus genome identified in a cluster of pneumonia cases—Wuhan, China 2019–2020. China CDC Weekly 2:61–62

    Google Scholar 

  64. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T (2020) Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 9:382–385

    CAS  Google Scholar 

  65. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nat Med 26:450–452

    CAS  Google Scholar 

  66. Kikkert M (2020) Innate immune evasion by human respiratory RNA viruses. J Innate Immun 12:4–20

    CAS  Google Scholar 

  67. Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK (2020) Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). Virus Dis 31:13–21

    Google Scholar 

  68. Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, Hao L, Zeng Z, Luo X, Liu F, Wang H (2020) New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother 127:110195

    Google Scholar 

  69. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395:1033–1034

    CAS  Google Scholar 

  70. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler (2020) Structure, function, and antigenicity of the SARSCoV-2 Spike Glycoprotein. Cell 180:1–12

    Google Scholar 

  71. Wang Y, Wang Y, Chen Y, Qin Q (2020) Coronavirus infections and immune responses. J Med Virol 2020:1–9

    Google Scholar 

  72. Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, Xie Y, Zhang R, Jiang S, Lu L (2020) SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol, 1–3

    Google Scholar 

  73. Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J (2020) An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect. Dis. Model 5:248–255

    Google Scholar 

  74. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263

    CAS  Google Scholar 

  75. Guo D (2020) Old weapon for new enemy: drug repurposing for treatment of newly emerging viral diseases. Virol Sin 35:253–255

    CAS  Google Scholar 

  76. Maxmen A (2020) More than 80 clinical trials launch to test coronavirus treatments. Nature 578:347–348

    CAS  Google Scholar 

  77. Ali A, Pooya A, Simani L (2020) Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci 413:116832

    Google Scholar 

  78. Ge XY (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503:535–538

    CAS  Google Scholar 

  79. Graham RL, Sparks JS, Eckerle LD, Sims AC, Denison MR (2008) SARS coronavirus replicase proteins in pathogenesis. Virus Res 133:88–10

    CAS  Google Scholar 

  80. Hurst KR, Koetzner CA, Masters PS (2013) Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex. J Virol 87:9159–9172

    CAS  Google Scholar 

  81. Koyama T, Platt D, Parida L (2020) Variant analysis of COVID-19 genomes, Bull. World Health Organ. Variant analysis of COVID-19 genomes. https://doi.org/10.2471/BLT.20.253591

  82. Drosten C, Günther S, Preiser W, Werf S van der, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguière A, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra J, Müller S, Rickerts V, Stürmer M, Vieth S, Klenk H, Osterhaus ADME, Schmitz H, Doerr HW (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976

    Google Scholar 

  83. Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses Nat. Rev Microbiol 17:181–192

    CAS  Google Scholar 

  84. (a) Morgenstern B, Michaelis M, Baer PC, Doerr HW, Cinatl Jr. J (2005) Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem Biophys Res Commun 326:905–908. (b) Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269–271

    Google Scholar 

  85. Adhikari S, Meng S, Wu Y (2020) Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty 9:29

    Google Scholar 

  86. (a) Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R (2020) Coronavirus susceptibility to the antiviral remdesivir (GS-5734) Is mediated by the viral polymerase and the proofreading exoribonuclease MBIO 9:00221. (b) Yamamoto N, Matsuyama S., Hoshino T, Yamamoto N (2020) Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro bioRxiv. https://doi.org/10.1101/2020.04.06.026476

  87. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269–271

    CAS  Google Scholar 

  88. (a) Yamamoto N, Yang R, Yoshinaka Y, Amari S, Nakano T, Cinatl J, Rabenau H, Doerr HW, Hunsmann G, Otaka A, et al (2004) HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus Biochem Biophys Res Commun 318:719–725. (b) Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, Li Y, Zhao L, Li W, Sun X, Yang X, Shi Z, Deng F, Hu Z, Zhong W, Wang M (2020) The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov 6:28

    Google Scholar 

  89. http://www.sd.chinanews.com/2/2020/0205/70145.html

  90. Uhlemann AC, Krishna S (2005) Antimalarial multi-drug resistance in Asia. Curr Top Microbiol Immunol 295:39–53

    CAS  Google Scholar 

  91. (a) Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S (2020) A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 57:279–283. (b) Konig MF, Kim AH, Scheetz MH, Graef ER, Liew JW, Simard J, Machado PM, Gianfrancesco M, Yazdany J, Langguth D, Robinson PC (2020) Baseline use of hydroxychloroquine in systemic lupus erythematosus does not preclude SARS-CoV-2 infection and severe COVID-19. Ann Rheum Dis 79:1386–1388

    Google Scholar 

  92. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S, Lu R, Li H, Tan W, Liu D (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 71:732–739. https://doi.org/10.1093/cid/ciaa237

  93. Magagnoli J, Narendran S, Pereira F (2020) Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv. (2020), DOI: https://doi.org/10.1101/2020.04.16.20065920.

  94. Dong L, Hu S, Gao J (2020) Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 14:58–60

    CAS  Google Scholar 

  95. Stockman LJ, Bellamy R, Garner P (2006) SARS: systematic review of treatment effects. PLos Med 3:e343

    Google Scholar 

  96. https://www.laboratoryequipment.com/563201-COVID-19-Treatment-Update-Remdesivir-Hydroxychloroquine-Leronlimab-Ivermectin-and-More/

  97. Fang L, Karakiulakis G, Roth M (2020) Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 8:e21

    Google Scholar 

  98. Gurwitz D (2020) Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res 81:537–540

    CAS  Google Scholar 

  99. Shah B, Modi P, Sagar SR (2020) In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci 252:117652

    Google Scholar 

  100. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Stebbing J (2020) Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 395:e30–e31

    CAS  Google Scholar 

  101. Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC (2016) Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir Ther 21:455–459

    Google Scholar 

  102. Kelleni MT (2020) Nitazoxanide/azithromycin combination for COVID-19: a suggested new protocol for early management. Pharmacol Res 157:104874

    Google Scholar 

  103. Haffizulla J, Hartman A, Hoppers M (2014) Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis 14:609–618

    CAS  Google Scholar 

  104. Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LCP, Veiga VC, Avezum A, Damiani LP, Marcadenti A, Kawano-Dourado L, Lisboa T, Junqueira DLM, de Barros e Silva PGM, Tramujas L, Abreu-Silva EO, Laranjeira LN, Soares AT, Echenique LS, Pereira AJ, Freitas FGR, Gebara OCE, Dantas VCS, Furtado RHM, Milan EP, Golin NA, Cardoso FF, Maia IS, Hoffmann Filho CR, Kormann APM, Amazonas RB, Bocchi de Oliveira MF, Serpa-Neto A, Falavigna M, Lopes RD, Machado FR, Berwanger O (2020) Hydroxychloroquine with or without Azithromycin in mild-to-moderate Covid-19. N Engl J Med NEJMoa2019014

    Google Scholar 

  105. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honore S, Colson P, Chabriere E, Scola BL, Rolain JM, Brouqui P, Raoult D (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 56:105949

    Google Scholar 

  106. Hung IF, Lung K, Tso EY, Liu R, Chung TW, Chu M, Ng Y, Lo J, Chan J, Tam AR, Shum H, Chan V, Wu AK, Sin K, Leung W, Law W, Lung DC, Sin S, Yeung P, Yip CC, Zhang RR, Fung AY, Yan EY, Leung K, Daniel J, Chu AW, Chan W, Ng AC, Lee R, Fung K, Yeung A, Wu T, Chan JW, Yan W, Chan W, Chan JF, Lie AK, Tsang OT, Cheng VC, Que T, Lau C, Chan K, To KK, Yuen K (2020) Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet 395:1695–1704. https://doi.org/10.1016/S0140-6736(20)31042-4

    Article  CAS  Google Scholar 

  107. (a) Banerjee S, Chakravarty AR (2015) Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc Chem Res 48:2075–2083. (b) Sadler PJ, Li H, Sun H (1999) Coordination chemistry of metals in medicine: target sites for bismuth. Coord Chem Rev 185:689–709

    Google Scholar 

  108. Imberti C, Zhang P, Huang H, Sadler PJ (2020) New designs for phototherapeutic transition metal complexes. Angew Chem Int Ed 59:61–73

    CAS  Google Scholar 

  109. García-Gallego S, Serramía MJ, Arnaiz E, Díaz L, Muñoz-Fernández MA, Gómez-Sal P, Ottaviani MF, Gómez R, de la Mata FJ (2011) Transition-metal complexes based on a sulfonate-containing N-donor ligand and their use as HIV antiviral agents. Eur J Inorg Chem 2011:1657–1665

    Google Scholar 

  110. Thompson KH, Orvig C (2001) Coordination chemistry of vanadium in metallopharmaceutical candidate compounds. Coord Chem Rev 219:1033–1053

    Google Scholar 

  111. D’Cruz OJ, Dong Y, Uckun FM (2003) Potent dual anti-HIV and spermicidal activities of novel oxovanadium(V) complexes with thiourea non-nucleoside inhibitors of HIV-1 reverse transcriptase. Biochem Biophys Res Commun 302:253–264

    Google Scholar 

  112. Sun RW, Ma D, Wong EL, Che C (2007) Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans 43:4884–4892

    Google Scholar 

  113. d Aguiar I, d Santos ER, Mafud AC, Annies V, Navarro-Silva MA, Malta VRdS, Gambardella MTdP, Marques FdA, Carlos RM (2017) Synthesis and characterization of Mn(I) complexes and their larvicidal activity against Aedes aegypti, vector of dengue fever. Inorg Chem Commun 84:49−55

    Google Scholar 

  114. Song R, Witvrouw M, Schols D, Robert A, Bolzorini J, Clercq E De, Bernodou J, Meunier B (1997) Anti-HIV activities of anionic metalloporphyrins and related compounds. Antivir Chem Chemother 8:85-97

    Google Scholar 

  115. Vausselin T, Calland N, Belouzard S, Descamps V, Douam F, Helle F, François C, Lavillette D, Duverlie G, Wahid A, Fénéant L, Cocquerel L, Guérardel Y, Wychowski C, Biot C, Dubuisson J (2013) The antimalarial ferroquine is an inhibitor of hepatitis C virus. Hepatology 58:86–97

    CAS  Google Scholar 

  116. Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, Clercq ED (2006) Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem 49:2845–2849

    CAS  Google Scholar 

  117. Wang H, Li Z, Niu J, Xu Y, Ma L, Lu A, Wang X, Qian Z, Huang Z, Jin X, Leng Q, Wang J, Zhong J, Sun B, Meng G (2018) Antiviral effects of ferric ammonium citrate. Cell Discov 4:14

    Google Scholar 

  118. Gadhachanda VR, Eastman KJ, Wang Q, Phadke AS, Patel D, Yang W, Marlor CW, Deshpande M, Huang M, Wiles JA (2018) Ferrocene-based inhibitors of hepatitis C virus replication that target NS5A with low picomolar in vitro antiviral activity. Bioorg Med Chem Lett 28:3463–3471

    CAS  Google Scholar 

  119. Belema M, Nguyen VN, Bachand C, Deon DH, Goodrich JT, James CA, Lavoie R, Lopez OD, Martel A, Romine JL, Ruediger EH, Snyder LB, St. Laurent DR, Yang F, Zhu J, Wong HS, Langley DR, Adams SP, Cantor GH, Chimalakonda A, Fura A, Johnson BM, Knipe JO, Parker DD, Santone KS, Fridell RA, Lemm JA, O’Boyle DR, Colonno RJ, Gao M, Meanwell NA, Hamann LG. J Med Chem 28:2013–2032

    Google Scholar 

  120. Asbell PA, Epstein SP, Wallace JA, Epstein D, Stewart CC, Burger MR (1998) Efficacy of cobalt chelates in the rabbit eye model for epithelial herpetic keratitis. Cornea 17:550–557

    CAS  Google Scholar 

  121. Epstein SP, Pashinsky YY, Gershon D, Winicov I, Srivilasa C, Kristic KJ, Asbell PA (2006) Efficacy of topical cobalt chelate CTC-96 against adenovirus in a cell culture model and against adenovirus keratoconjunctivitis in a rabbit model. BMC Ophthalmol 6:22

    Google Scholar 

  122. Chang EL, Simmers C, Knight DA (2010) Cobalt Complexes as antiviral and antibacterial agents. Pharmaceuticals (Basel) 3:1711–1728

    CAS  Google Scholar 

  123. Saini AK, Kumari P, Sharma V, Mathur P, Mobin SM (2016) Varying structural motifs in the salen based metal complexes of Co(ii), Ni(ii) and Cu(ii): synthesis, crystal structures, molecular dynamics and biological activities Dalton Trans 45:19096−19108

    Google Scholar 

  124. Delehanty JB, Bongard JE, Thach DC, Knight DA, Hickey TE, Chang EL (2008) Antiviral properties of cobalt(III)-complexes. Bioorg Med Chem 16:830–837

    CAS  Google Scholar 

  125. Cígler P, Kožíšek M, Řezáčová P, Brynda J, Otwinowski Z, Pokorná J, Plešek J, Grüner B, Dolečková-Marešová L, Máša M, Sedláček J, Bodem J, Kräusslich HG, Král V, Konvalinka J (2005) From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proc Natl Acad Sci USA 102:15394–15399

    Google Scholar 

  126. Řezáčová P, Pokorná J, Brynda J, Kožíšek M, Cígler P, Lepšík M, Fanfrlík J, Řezáč J, Šašková KG, Sieglová I, Plešek J, Šícha V, Grüner B, Oberwinkler H, Sedláček J, Kräusslich HG, Hobza P, Král V, Konvalinka J (2009) Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes. J Med Chem 52:7132–7141

    Google Scholar 

  127. García-Gallego S, Jesús Serramía M, Arnaiz E, Díaz L, Muñoz-Fernández MA, Gómez-Sal P, Ottaviani MF, Gómez R, Mata FJDL (2011) Transition-metal complexes based on a sulfonate-containing N-donor ligand and their use as HIV antiviral agents. Eur J Inorg Chem, 1657–1665

    Google Scholar 

  128. Rogolino D, Carcelli M, Bacchi A, Compari C, Contardi L, Fisicaro E, Gatti A, Sechi M, Stevaert A, Naesens L (2015) A versatile salicyl hydrazonic ligand and its metal complexes as antiviral agents. J Inorg Biochem 150:9–17

    CAS  Google Scholar 

  129. Loginova NV, Koval’chuk TV, Polozov GI, Osipovich NP, Rytik PG, Kucherov II, Chernyavskaya AA, Sorokin VL, Shadyro OI (2008) Synthesis, characterization, antifungal and anti-HIV activities of metal(II) complexes of 4,6-di-tert-butyl-3-[(2-hydroxyethyl)thio]benzene-1,2-diol. Eur J Med Chem 43:1536–1542

    Google Scholar 

  130. Hunter TM, McNae IW, Simpson DP, Smith AM, Moggach S, White F, Walkinshaw MD, Parsons S, Sadler PJ (2007) Configurations of Nickel-Cyclam antiviral complexes and protein recognition. Chem Eur J 13:40–50

    Google Scholar 

  131. Bitu MNA, Hossain MS, Zahid AASM, Zakaria CM, Kudrat-E-Zahan M (2019) Anti-pathogenic activity of Cu(II) complexes incorporating Schiff bases: a short review. Am J Heterocycl Chem 5:11–23

    Google Scholar 

  132. Zerda KS, Gerba CP, Goyel SM (1985) Adsorption of viruses to charge-modified silica. Appl Environ Microbial 49:91–95

    CAS  Google Scholar 

  133. Ishida T (2016) Bacteriolyses of Cu2+ solution on bacterial cell walls/cell membrane and DNA base-pairing damages. Biomed Res Trace Elemt 27:151–161

    CAS  Google Scholar 

  134. Srivastava A (2009) Antiviral activity of copper complexes of isoniazid against RNA tumor viruses. Resonance 14:754–760

    CAS  Google Scholar 

  135. Pelosi G, Bisceglie F, Bignami F, Ronzi P, Schiavone P, Carla RM, Casoli C, Pilotti E (2010) Antiretroviral activity of thiosemicarbazone metal complexes. J Med Chem 53:8765–8769

    CAS  Google Scholar 

  136. Chauhan G, Rath G, Goyal AK (2013) Non-invasive systemic drug delivery through mucosal routes. Nanomedicine, Biotechnol Int J 41:4

    Google Scholar 

  137. García-Gallego S, Sánchez Rodríguez J, Luis Jiménez J, Cangiotti M, Francesca Ottaviani M, Muñoz-Fernández MÁ, Gómez R, Mata FJDL (2012) Polyanionic N-donor ligands as chelating agents in transition metal complexes: synthesis, structural characterization and antiviral properties against HIV. Dalton Trans 41:6488–6499

    Google Scholar 

  138. Dorotíková S, Kožíšková J, Malček M, Jomová K, Herich P, Plevová K, Briestenská K, Chalupková A, Mistríková J, Milata V, Dvoranová D, Bučinský L (2015) Tetracarboxylatoplatinum(IV) complexes featuring monodentate leaving groups—a rational approach toward exploiting the platinum(IV) prodrug strategy. J Inorg Biochem 150:160–173

    Google Scholar 

  139. McGuire KL, Hogge J, Hintze A, Liddle N, Nelson N, Pollock J, Brown A, Facer S, Walker S, Lynch J, Harrison RG, Busath DD (2019) Copper complexes as influenza antivirals: reduced zebrafish toxicity. Eng Nanomater - Health Saf. https://doi.org/10.5772/intechopen.88786

    Article  Google Scholar 

  140. Kar M, Khan NA, Panwar A, Bais SS, Basak S, Goel R, Sopory S, Medigeshi GR (2019) Zinc chelation specifically inhibits early stages of dengue virus replication by activation of NF-κB and induction of antiviral response in epithelial cells. Zinc chelation specifically inhibits early stages of dengue virus replication by activation of NF-κB and induction of antiviral response in epithelial cells. Front Immunol 10:2347

    Google Scholar 

  141. Krenn BM, Gaudernak E, Holzer B, Lanke K, Van Kuppeveld FJM, Seipelt J (2009) Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J Virol 83:58–64

    CAS  Google Scholar 

  142. Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ (2010) Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 6:1001176

    Google Scholar 

  143. Arens M, Travis S (2000) Detection of Legionella pneumophila using a real-time PCR hybridization assay. J Clin Microbiol 38:1758–1762

    CAS  Google Scholar 

  144. Hsu JTA, Kuo C, Hsieh H, Wang Y, Huang K, Lin CPC, Huang P, Chen X, Liang P (2004) Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Lett 574:116–120

    Google Scholar 

  145. Karaküçük-Iyidogan A, Tasdemir D, Oruç-Emre EE, Jan B (2011) Novel platinum(II) and palladium(II) complexes of thiosemicarbazones derived from 5-substitutedthiophene-2-carboxaldehydes and their antiviral and cytotoxic activities. Eur J Med Chem 46:5616–5624

    Google Scholar 

  146. Simic V, Kolarevic S, Brceki I, Jeremic D, Vukovic-gacic B (2016) Cytotoxicity and antiviral activity of palladium(II) and platinum(II) complexes with 2-(diphenylphosphino)benzaldehyde 1-adamantoylhydrazone. Turk J Biol 40:661–669

    CAS  Google Scholar 

  147. Genova P, Varadinova T, Matesanz AI, Marinova D, Souza P (2004) Toxic effects of bis(thiosemicarbazone) compounds and its palladium(II) complexes on herpes simplex virus growth. Toxicol Appl Pharmacol 197:107–112

    CAS  Google Scholar 

  148. Kovala-Demertzi D, Varadinova T, Genova P, Souza P, Demertzis MA (2007) Platinum(II) and palladium(II) complexes of pyridine-2-carbaldehyde thiosemicarbazone as alternative antiherpes simplex virus agents. Bioinorg Chem Appl 2007:56165

    Google Scholar 

  149. Cavicchioli M, Massabni AC, Heinrich TA, Costa-Neto CM, Abrão EP, Fonseca AL, Castellano EE, Corbi PP, Lustri WR, Leite CQF (2010) Pt(II) and Ag(I) complexes with acesulfame: crystal structure and a study of their antitumoral, antimicrobial and antiviral activities. J Inorg Biochem 104:533–540

    CAS  Google Scholar 

  150. Allardyce CS, Dyson PJ, Ellis DJ, Salter PA, Scopelliti R (2003) Synthesis and characterisation of some water soluble ruthenium(II)–arene complexes and an investigation of their antibiotic and antiviral properties. J Organomet Chem 668:35–42

    CAS  Google Scholar 

  151. Luedtke NW, Hwang JS, Glazer EC, Gut D, Kol M, Tor Y (2002) Eilatin Ru(II) complexes display anti-HIV activity and enantiomeric diversity in the binding of RNA. Chem Bio Chem 3:766–771

    CAS  Google Scholar 

  152. Mishra L, Singh AK, Trigun SK, Singh SK, Pandey SM (2004) J Exp Biol 42:660–666

    CAS  Google Scholar 

  153. Anchuri SS, Gangarapu K, Thota S, Karki SS, Clercq ED, Andrei G, Snoeck R, Balzarini J (2016) Evaluation of hepatoprotective and antioxidant activity of newly synthesized Ho(III) complex. Biointerface Res Appl Chem 6:1491–1496

    CAS  Google Scholar 

  154. Gunatilleke SS, Barrios AM (2006) Inhibition of lysosomal cysteine proteases by a series of Au(I) complexes: a detailed mechanistic investigation. J Med Chem 49:3933–3937

    CAS  Google Scholar 

  155. Gunatilleke SS, de Oliveira CAF, McCammon JA, Barrios AM (2008) The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways. J Biol Inorg Chem 13:555–561

    CAS  Google Scholar 

  156. Okada T, Patterson BK, Ye SQ, Gurney ME (1993) Silencing the alarms: Innate immune antagonism by rotavirus NSP1 and VP3. Virology 192:631–642

    CAS  Google Scholar 

  157. Sun RWY, Yu WY, Sun H, Che CM (2004) In vitro inhibition of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase by gold(III) porphyrins. Chem Bio Chem 5:1293–1298

    Google Scholar 

  158. Fonteh P, Meyer D (2009) Novel gold(i) phosphine compounds inhibit HIV-1 enzymes. Metallomics 1:427–433

    CAS  Google Scholar 

  159. Fonteh PN, Keter FK, Meyer D (2010) Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Bio. Metals 23:185–196

    CAS  Google Scholar 

  160. Qasim M, Baipaywad P, Udomluck N, Na D, Park H (2014) Enhanced therapeutic efficacy of lipophilic amphotericin B against Candida albicans with amphiphilic poly(N-isopropylacrylamide) nanogels. Macromol Res 22:1125–1131

    CAS  Google Scholar 

  161. Gurunathan S, Qasim M, Park C, Yoo H, Kim JH, Hong K (2018) Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int J Mol Sci 19:2269

    Google Scholar 

  162. Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH (2019) A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials 9:1719

    CAS  Google Scholar 

  163. Chakravarthy KV, Bonoiu AC, Davis WG, Ranjan P, Ding H, Hu R, Bowzard JB, Bergey EJ, Katz JM, Knight PR (2010) Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. Proc Natl Acad Sci USA 107:10172–10177

    CAS  Google Scholar 

  164. Lee MY, Yang JA, Jung HS, Beack S, Choi JE, Hur W, Koo H, Kim K, Yoon SK, Hahn SK (2012) Hyaluronic acid-gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection. ACS Nano 6:9522–9531

    CAS  Google Scholar 

  165. Halder A, Das S, Ojha D, Chattopadhyay D, Mukherjee A (2018) Highly monodispersed gold nanoparticles synthesis and inhibition of herpes simplex virus infections. Mater Sci Eng C 89:413–421

    CAS  Google Scholar 

  166. Papp I, Sieben C, Ludwig K, Roskamp M, Böttcher C, Schlecht S, Herrmann A, Haag R (2010) Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small 6:2900–2906

    CAS  Google Scholar 

  167. Hu R, Li S, Kong F, Hou R, Guan X, Guo F (2014) Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol Res 13:7022–7028

    CAS  Google Scholar 

  168. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1–10

    Google Scholar 

  169. Mohammed Fayaz A, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan PT, Yao X (2012) Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. Int J Nanomed 7:5007–5018

    CAS  Google Scholar 

  170. Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M (2013) Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza a virus. Nanoscale Res Lett 8:93

    Google Scholar 

  171. Ghosal K, Sarkar K (2018) Biomedical applications of graphene nanomaterials and beyond. ACS Biomater Sci Eng 4:2653–2703

    CAS  Google Scholar 

  172. Song Z, Wang X, Zhu G, Nian Q, Zhou H, Yang D, Qin C, Tang R (2015) Virus capture and destruction by label-free graphene oxide for detection and disinfection applications. Small 11:1171–1176

    Google Scholar 

  173. Sametband M, Kalt I, Gedanken A, Sarid R (2014) Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl Mater Interfaces 6:1228–1235

    CAS  Google Scholar 

  174. Yang XX, Li CM, Li YF, Wang J, Huang CZ (2017) Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 9:16086–16092

    CAS  Google Scholar 

  175. Du T, Cai K, Han H, Fang L, Liang J, Xiao S (2015) Probing the interactions of CdTe quantum dots with pseudorabies virus. Sci Rep 5:1–10

    Google Scholar 

  176. Huang S, Gu J, Ye J, Fang B, Wan S, Wang C, Ashraf U, Li Q, Wang X, Shao L (2019) Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid Interface Sci 542:198–206

    CAS  Google Scholar 

  177. Antoine TE, Mishra YK, Trigilio J, Tiwari V, Adelung R, Shukla D (2012) Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antivir Res 96:363–375

    CAS  Google Scholar 

  178. Antoine TE, Hadigal SR, Yakoub AM, Mishra YK, Bhattacharya P, Haddad C, Valyi-Nagy T, Adelung R, Prabhakar BS, Shukla D (2016) Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes. J Immunol 196:4566–4575

    CAS  Google Scholar 

  179. Tejman-Yarden N, Miyamoto Y, Leitsch D, Santini J, Debnath A (2013) A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Chemother 57:2029–2035

    CAS  Google Scholar 

  180. Harbut MB, Vilcheze C, Luo X, Hensler ME, Guo H, Yang B, Chatterjee AK, Nizet V, Jacobs JWR, Schultz PG, Wang F (2015) Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc Natl Acad Sci USA 112:4453–4458

    CAS  Google Scholar 

  181. Musib D, Raza MK, Pal M, Roy M (2021) A red light-activable MnI(CO)3-functionalized gold nanocomposite as the anticancer prodrug with theranostic potential. Appl Organomet 35:e6110

    Google Scholar 

  182. Musib D, Banerjee S, Garai A, Soraisam U, Roy M (2018) Synthesis, theory and in vitro photodynamic activities of new copper(II)-histidinito complexes. Chemistry Select 3:2767–2775

    CAS  Google Scholar 

  183. Musib D, Pal M, Raza MK, Roy M (2020) Photo-physical, theoretical and photo-cytotoxic evaluation of a new class of lanthanide(iii)–curcumin/diketone complexes for PDT application. Dalton Trans 49:10786–10798

    CAS  Google Scholar 

  184. Marzo T, Messori L, Marzo T, Messori L (2020) A role for metal-based drugs in fighting COVID-19 infection? The case of auranofin. ACS Med Chem Lett 11:1067–1068

    CAS  Google Scholar 

  185. Rothan HR, Stone S, Natekar J, Kumari P, Arora K, Kumar M (2020) The FDA-approved gold drug Auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. bioRxiv preprint. https://doi.org/10.1101/2020.04.14.041228

  186. Gil-Moles M, Basu U, Büssing R, Hoffmeister H, Türck S, Varchmin A, Ott I (2020) Gold metallodrugs to target coronavirus proteins: inhibitory effects on the spike-ACE2 interaction and on PLpro protease activity by auranofin and gold organometallics. Chem Eur J 26:15140–15144

    CAS  Google Scholar 

  187. Milenković DA, Dimić DS, Avdovićac EH, Marković ZS (2020) Several coumarin derivatives and their Pd(II) complexes as potential inhibitors of the main protease of SARS-CoV-2, an in silico approach. RSC Adv 10:5099–35108

    Google Scholar 

  188. Haribabu J, Srividya S, Mahendiran D, Gayathri D, Venkatramu V, Bhuvanesh N, Karvembu R (2020) Synthesis of palladium(II) complexes via Michael addition: antiproliferative effects through ROS-mediated mitochondrial apoptosis and docking with SARS-CoV-2. Inorg Chem 59:17109–17122

    CAS  Google Scholar 

  189. Pal M, Musib D, Roy M (2021) Transition metal complexes as potential tools against SARS-CoV-2: an in silico approach. New J Chem 45:1924–1933

    CAS  Google Scholar 

  190. https://www.rcsb.org/

  191. http://www.rcsb.org/pdb/workbench/workbench.do

  192. Yadav M, Dhagat S, Eswari JS (2020) Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Eur J Pharm Sci 155:105522

    Google Scholar 

  193. El Hawary SS, Khattab AR, Marzouk HS, El Senousy AS, Alex MGA, Aly OM, Telebe M, Abdelmohsen UR (2020) In silico identification of SARS-CoV-2 spike (S) protein–ACE2 complex inhibitors from eight Tecoma species and cultivars analyzed by LC-MS. RSC Adv 10:43103–43108

    Google Scholar 

  194. Maffucci I, Contini A (2020) In silico drug repurposing for SARS-CoV-2 main proteinase and spike proteins. J Proteome Res 19:4637–4648

    Google Scholar 

  195. Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N, Cioffi N (2020) can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials (Basel) 4:802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Musib, D., Pal, M., Allam, U.S., Roy, M. (2022). Brief History, Pathophysiology, Transmission of SARS-CoV-2 Virus, and Recent Advances on Transition Metal Complexes and Nanocomposites as the Potent Antiviral Agents from COVID-19 Perspectives. In: Swain, B.P. (eds) Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-8399-2_1

Download citation

Publish with us

Policies and ethics