Skip to main content

Advertisement

Log in

CD68 and CD83 immune populations in non-metastatic axillary lymph nodes are of prognostic value for the survival and relapse of breast cancer patients

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

The foremost cause of death of breast cancer (BC) patients is metastasis, and the first site to which BC predominantly metastasizes is the axillary lymph node (ALN). Thus, ALN status is a key prognostic indicator at diagnosis. The immune system has an essential role in cancer progression and dissemination, so its evaluation in ALNs could have significant applications. In the present study we aimed to investigate the association of clinical-pathological and immune variables in the primary tumour and non-metastatic ALNs (ALNs) of a cohort of luminal A and triple-negative BC (TNBC) patients with cancer-specific survival (CSS) and time to progression (TTP).

Methods

We analysed the differences in the variables between patients with different outcomes, created univariate and multivariate Cox regression models, validated them by bootstrapping and multiple imputation of missing data techniques, and used Kaplan–Meier survival curves for a 10-years follow-up.

Results

We found some clinical-pathological variables at diagnosis (tumour diameter, TNBC molecular profile and presence of ALN metastasis), and the levels of several immune markers in the two studied sites, to be associated with worse CSS and TTP. Nevertheless, only CD68 and CD83 in ALNs were confirmed as independent prognostic factors for TTP.

Conclusions

The study identified the importance of macrophage and dendritic cell markers as prognostic factors of relapse for BC. We highlight the importance of studying the immune response in ALNs, which could be relevant to the prediction of BC patients’ outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Datasets generated and analysed during this study are available from the corresponding authors upon reasonable request.

Abbreviations

ALN:

Axillary lymph node

ALN :

Non-metastatic axillary lymph node

ALN+ :

Metastatic axillary lymph node

AUC:

Area under the curve

BC:

Breast cancer

CI:

Confidence interval

CSS:

Cancer-specific survival

DAB:

Diaminobenzidine

DC:

Dendritic cell

ER:

Oestrogen receptor

HER2:

Human epidermal growth factor receptor 2

HR:

Hazard ratio

HTVC:

Hospital de Tortosa Verge de la Cinta

Ki67:

Proliferation index

NK:

Natural killer

PR:

Progesterone receptor

ROC:

Receiver-operating characteristic

STROBE:

Strengthening the Reporting of Observational Studies in Epidemiology

TMA:

Tissue microarray

TNBC:

Triple-negative breast cancer

TTP:

Time to progression

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology. 2015;82(3–4):142–52.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.

    Article  CAS  PubMed  Google Scholar 

  4. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37(7):559–69.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26(2):259–71.

    Article  CAS  PubMed  Google Scholar 

  6. Badr NM, Berditchevski F, Shaaban AM. The immune microenvironment in breast carcinoma: predictive and prognostic role in the neoadjuvant setting. Pathobiology. 2020;87(2):61–74.

    Article  CAS  PubMed  Google Scholar 

  7. de la Cruz-Merino L, Barco-Sánchez A, Henao Carrasco F, Nogales Fernández E, Vallejo Benítez A, Brugal Molina J, et al. New insights into the role of the immune microenvironment in breast carcinoma. Clin Dev Immunol. 2013;2013: 785317.

    PubMed  PubMed Central  Google Scholar 

  8. Ran S, Volk L, Hall K, Flister MJ. Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology. 2010;17(4):229–51.

    Article  PubMed  Google Scholar 

  9. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al. SEER Cancer Statistics Review, 1975–2017. In: National Cancer Institute. 2020. https://seer.cancer.gov/csr/1975_2017/. Accessed 27 Jul 2021.

  10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  PubMed  Google Scholar 

  11. Colzani E, Johansson ALV, Liljegren A, Foukakis T, Clements M, Adolfsson J, et al. Time-dependent risk of developing distant metastasis in breast cancer patients according to treatment, age and tumour characteristics. Br J Cancer. 2014;110(5):1378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibert-Ramos A, López C, Bosch R, Fontoura L, Bueno G, García-Rojo M, et al. Immune response profile of primary tumour, sentinel and non-sentinel axillary lymph nodes related to metastasis in breast cancer: an immunohistochemical point of view. Histochem Cell Biol. 2019;152(3):177–93.

    Article  CAS  PubMed  Google Scholar 

  13. Chang AY, Bhattacharya N, Mu J, Setiadi AF, Carcamo-Cavazos V, Lee GH, et al. Spatial organization of dendritic cells within tumor draining lymph nodes impacts clinical outcome in breast cancer patients. J Transl Med. 2013;11:242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Faghih Z, Erfani N, Haghshenas MR, Safaei A, Talei AR, Ghaderi A. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett. 2014;158(1–2):57–65.

    Article  CAS  PubMed  Google Scholar 

  15. Li M, Li A, Zhou S, Xu Y, Xiao Y, Bi R, et al. Heterogeneity of PD-L1 expression in primary tumors and paired lymph node metastases of triple negative breast cancer. BMC Cancer. 2018;18(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med. 2005;2(9): e284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. López C, Bosch R, Orero G, Korzynska A, García-Rojo M, Bueno G, et al. The immune response in nonmetastatic axillary lymph nodes is associated with the presence of axillary metastasis and breast cancer patient outcome. Am J Pathol. 2020;190(3):660–73.

    Article  PubMed  CAS  Google Scholar 

  18. López C, Gibert-Ramos A, Bosch R, Korzynska A, García-Rojo M, Bueno G, et al. Differences in the immune response of the nonmetastatic axillary lymph nodes between triple-negative and luminal a breast cancer surrogate subtypes. Am J Pathol. 2021;191(3):545–54.

    Article  PubMed  CAS  Google Scholar 

  19. Li X, Yang J, Peng L, Sahin AA, Huo L, Ward KC, et al. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat. 2017;161(2):279–87.

    Article  PubMed  Google Scholar 

  20. Howlader N, Cronin KA, Kurian AW, Andridge R. Differences in breast cancer survival by molecular subtypes in the United States. Cancer Epidemiol Biomarkers Prev. 2018;27(6):619–26.

    Article  CAS  PubMed  Google Scholar 

  21. WHO Classification of Tumours Editorial Board. Breast Tumours. WHO Classification of Tumours series, vol. 2. 5th ed. Lyon: International Agency for Research on Cancer; 2019.

    Google Scholar 

  22. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165(6):710–8.

    Article  PubMed  Google Scholar 

  23. Callau C, Lejeune M, Korzynska A, García M, Bueno G, Bosch R, et al. Evaluation of cytokeratin-19 in breast cancer tissue samples: a comparison of automatic and manual evaluations of scanned tissue microarray cylinders. Biomed Eng Online. 2015;14(Suppl 2):S2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pelekanou V, Villarroel-Espindola F, Schalper KA, Pusztai L, Rimm DL. CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers. Breast Cancer Res. 2018;20(1):154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pinder SE, Brown JP, Gillett C, Purdie CA, Speirs V, Thompson AM, et al. The manufacture and assessment of tissue microarrays: suggestions and criteria for analysis, with breast cancer as an example. J Clin Pathol. 2013;66(3):169–77.

    Article  CAS  PubMed  Google Scholar 

  26. Fernández-Carrobles MDM, Bueno G, Déniz O, Salido J, García-Rojo M. Automatic handling of tissue microarray cores in high-dimensional microscopy images. IEEE J Biomed Health Inform. 2014;18(3):999–1007.

    Article  Google Scholar 

  27. Roszkowiak L, Lopez C. PATMA: parser of archival tissue microarray. PeerJ. 2016;4: e2741.

    Article  PubMed  PubMed Central  Google Scholar 

  28. López C, Lejeune M, Bosch R, Korzynska A, García-Rojo M, Salvadó MT, et al. Digital image analysis in breast cancer: an example of an automated methodology and the effects of image compression. Stud Health Technol Inform. 2012;179:155–71.

    PubMed  Google Scholar 

  29. Korzynska A, Roszkowiak L, Zak J, Lejeune M, Orero G, Bosch R, et al. The METINUS Plus method for nuclei quantification in tissue microarrays of breast cancer and axillary node tissue section. Biomed Signal Process Control. 2017;32:1–9.

    Article  Google Scholar 

  30. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.

    Article  CAS  PubMed  Google Scholar 

  31. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol. 2013;31(7):860–7.

    Article  CAS  PubMed  Google Scholar 

  32. Tian Z, Tang J, Liao X, Yang Q, Wu Y, Wu G. An immune-related prognostic signature for predicting breast cancer recurrence. Cancer Med. 2020;9(20):7672–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu S, Hu C, Liu L, Cai L, Du X, Yu Q, et al. Comprehensive analysis and establishment of a prediction model of alternative splicing events reveal the prognostic predictor and immune microenvironment signatures in triple negative breast cancer. J Transl Med. 2020;18(1):286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwamoto M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H, Nohara T, et al. Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer. 2003;104(1):92–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ni C, Yang L, Xu Q, Yuan H, Wang W, Xia W, et al. CD68- and CD163-positive tumor infiltrating macrophages in non-metastatic breast cancer: a retrospective study and meta-analysis. J Cancer. 2019;10(19):4463–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan ZY, Luo RZ, Peng RJ, Wang SS, Xue C. High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco Targets Ther. 2014;7:1475–80.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hu G, Wang S. Prognostic role of tumor-infiltrating CD57-positive lymphocytes in solid tumors: a meta-analysis. Oncotarget. 2018;9(8):8111–9.

    Article  PubMed  Google Scholar 

  38. Peng GL, Li L, Guo YW, Yu P, Yin XJ, Wang S, et al. CD8(+) cytotoxic and FoxP3(+) regulatory T lymphocytes serve as prognostic factors in breast cancer. Am J Transl Res. 2019;11(8):5039–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012;14(2):R48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aerts-Toegaert C, Heirman C, Tuyaerts S, Corthals J, Aerts JL, Bonehill A, et al. CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur J Immunol. 2007;37(3):686–95.

    Article  CAS  PubMed  Google Scholar 

  41. Poindexter NJ, Sahin A, Hunt KK, Grimm EA. Analysis of dendritic cells in tumor-free and tumor-containing sentinel lymph nodes from patients with breast cancer. Breast Cancer Res. 2004;6(4):R408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kichler-Lakomy C, Budinsky AC, Wolfram R, Hellan M, Wiltschke C, Brodowicz T, et al. Deficiences in phenotype expression and function of dentritic cells from patients with early breast cancer. Eur J Med Res. 2006;11(1):7–12.

    CAS  PubMed  Google Scholar 

  43. Kashimura S, Saze Z, Terashima M, Soeta N, Ohtani S, Osuka F, et al. CD83(+) dendritic cells and Foxp3(+) regulatory T cells in primary lesions and regional lymph nodes are inversely correlated with prognosis of gastric cancer. Gastric Cancer. 2012;15(2):144–53.

    Article  CAS  PubMed  Google Scholar 

  44. Furihata M, Ono Y, Ichikawa K, Tomita S, Fujimori T, Kubota K. Prognostic significance of CD83 positive, mature dendritic cells in the gallbladder carcinoma. Oncol Rep. 2005;14(2):353–6.

    CAS  PubMed  Google Scholar 

  45. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24.

    Article  CAS  PubMed  Google Scholar 

  46. Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, et al. Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res. 2004;10(22):7466–74.

    Article  CAS  PubMed  Google Scholar 

  47. Mansfield AS, Heikkila P, von Smitten K, Vakkila J, Leidenius M. Metastasis to sentinel lymph nodes in breast cancer is associated with maturation arrest of dendritic cells and poor co-localization of dendritic cells and CD8+ T cells. Virchows Arch. 2011;459(4):391–8.

    Article  CAS  PubMed  Google Scholar 

  48. La Rocca G, Anzalone R, Corrao S, Magno F, Rappa F, Marasà S, et al. CD1a down-regulation in primary invasive ductal breast carcinoma may predict regional lymph node invasion and patient outcome. Histopathology. 2008;52(2):203–12.

    Article  PubMed  Google Scholar 

  49. Kanao H, Enomoto T, Kimura T, Fujita M, Nakashima R, Ueda Y, et al. Overexpression of LAMP3/TSC403/DC-LAMP promotes metastasis in uterine cervical cancer. Cancer Res. 2005;65(19):8640–5.

    Article  CAS  PubMed  Google Scholar 

  50. Ishigami S, Ueno S, Matsumoto M, Okumura H, Arigami T, Uchikado Y, et al. Prognostic value of CD208-positive cell infiltration in gastric cancer. Cancer Immunol Immunother. 2010;59(3):389–95.

    Article  CAS  PubMed  Google Scholar 

  51. The Lancet Oncology. Calling time on the immunotherapy gold rush. Lancet Oncol. 2017;18(8):981.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Barbara Tomàs, María del Mar Barbera, Noelia Burgues, Ainhoa Montserrat, Almudena Nagera, Montse Salvadó, Ana Suñé, Beatriu Domenech, Anna Guasch, Marita Curto, and Marc Iniesta for their skilful technical assistance.

Funding

Carlos López is the guarantor of this work and, as such, had full access to all the data in the study. He takes responsibility for the integrity of the data and the accuracy of the data analysis. This work was funded by projects PI11/0488 (Principal Investigator: C.L.) and PI13/02501 (Principal investigator: M.L.) of the Institute of Health Carlos III, which is the main public research body that funds, manages and carries out biomedical research in Spain. It was co-funded by the European Union European Regional Development Fund. It was also supported by the Project AIDPATH FP7-PEOPLE Project ID: 612471 (Principal Investigator: G.B.). The biopsies were selected from the Banc de Tumors of the HTVC, member of the Xarxa de Bancs de Tumors de Catalunya (XBTC), sponsored by the Oncology Master Plan for Catalonia (Pla Director d’Oncologia de Catalunya).

Author information

Authors and Affiliations

Authors

Contributions

CL, RB, DM and ML designed the study and selected the sample. CL, JFGF, SMG, JCR, MA, JG, MB, SRV, MLL and ML collected data and reviewed the clinical records. CL, ESC, JCR and ML processed the samples. CL, AK, MGR, GB, LR and JB digitized the samples and developed image analysis procedures. CL, AGN, ESC, AR and ML did the statistical analysis. CL, AGN, ESC and ML designed the figures. All the authors have read and reviewed the article and made significant contributions to the interpretation of the data.

Corresponding authors

Correspondence to Carlos López or Esther Sauras Colón.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Hospital Joan XXIII de Tarragona (Reference number: 24p/2012) and by the Research Committee of the HTVC. All patients provided their written informed consent to participate in the study and for the use of their biopsy tissues and clinical data, in accordance with Spanish law. We followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Supplementary file2 (PDF 7224 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, C., Bosch, R., Korzynska, A. et al. CD68 and CD83 immune populations in non-metastatic axillary lymph nodes are of prognostic value for the survival and relapse of breast cancer patients. Breast Cancer 29, 618–635 (2022). https://doi.org/10.1007/s12282-022-01336-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-022-01336-2

Keywords

Navigation