Skip to main content
Log in

Dipeptide nanoparticle and aptamer-based hybrid fluorescence platform for enrofloxacin determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel fluorescence platform was fabricated for enrofloxacin determination by using cDNA-modified dipeptide fluorescence nanoparticles (FDNP-cDNA) and aptamer-modified magnetic Fe3O4 nanoparticles (Fe3O4-Apt). The FDNP were prepared via tryptophan-phenylalanine self-assembling. When magnetic Fe3O4-Apt incubated with standard solution or sample extracts, the target enrofloxacin was selectively captured by the aptamer on the surface of the Fe3O4 nanoparticles. After removing interference by washing with phosphate-buffered saline, the FDNP-cDNA was added, which can bind to the aptamer on the surface of the Fe3O4 nanoparticles not occupied by the analyte. The higher the concentration of the target enrofloxacin in the standard or sample solution is, the less the FDNP-cDNA can be bound with the Fe3O4 nanoparticles, and the more the FDNP-cDNA can be observed in the supernatant. Fluorescence intensity (Ex/Em = 310/380 nm) increased linearly in the enrofloxacin concentration range 0.70 to 10.0 ng/mL with a detection limit of 0.26 ng/mL (S/N = 3). Good recoveries (88.17–99.30%) were obtained in spiked lake water, chicken, and eel samples with relative standard deviation of 2.7–6.2% (n = 3).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cai Y, Zhan J, Shen H, Mao D, Ji S, Liu R, Bing Y, Kong D, Wang L, Yang Z (2016) Optimized ratiometric fluorescent probes by peptide self-assembly. Anal Chem 88:740–745

    Article  CAS  Google Scholar 

  2. Cui Z, Li Z, Jin Y, Ren T, Chen J, Wang X, Zhong K, Tang L, Tang Y, Cao M (2020) Novel magnetic fluorescent probe based on carbon quantum dots-doped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk. Food Chem 328:127063

    Article  CAS  Google Scholar 

  3. Tang Y, Liu H, Gao J, Liu X, Gao X, Lu X, Fang G, Wang J, Li J (2018) Upconversion particle@Fe3O4@molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones. Talanta 181:95–103

    Article  CAS  Google Scholar 

  4. Hu M, Yang H, Li Z, Zhang L, Zhu P, Yan M, Yu J (2020) Signal-switchable lab-on-paper photoelectrochemical aptasensing system integrated triple-helix molecular switch with charge separation and recombination regime of type-II CdTe@CdSe core-shell quantum dots. Biosens Bioelectron 147:111786

    Article  CAS  Google Scholar 

  5. Li Q, Yang X, Zhang L, Wang Y, He Z (2020) Thermally induced structural transition of peptide nanofibers into nanoparticles with enhanced fluorescence properties. ChemPlusChem 85:1523–1528

    Article  CAS  Google Scholar 

  6. Lim X (2016) The nanolight revolution is coming. Nature 531:26–28

    Article  CAS  Google Scholar 

  7. Fan Z, Sun L, Huang Y, Wang Y, Zhang M (2016) Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat Nanotechnol 11:388–394

    Article  CAS  Google Scholar 

  8. Gazit E (2016) Peptide nanostructures: Aromatic dipeptides light up. Nat Nanotechnol 11:309–310

    Article  CAS  Google Scholar 

  9. Na N, Mu X, Liu Q, Wen J, Wang F, Ouyang J (2013) Self-assembly of diphenylalanine peptides into microtubes with “turn on” fluorescence using an aggregation-induced emission molecule. Chem Commun 49:10076–10078

    Article  CAS  Google Scholar 

  10. Tao K, Chen Y, Orr AA, Tian Z, Makam P, Gilead S, Si M, Rencus-Lazar S, Qu S, Zhang M, Tamamis M, Gazit E (2020) Enhanced fluorescence for bioassembly by environment-switching doping of metal ions. Adv Funct Mater 10:1909614

    Article  Google Scholar 

  11. Sun L, Liu D, Fu D, Yue T, Scharre D, Zhang L (2021) Fluorescent peptide nanoparticles to detect amyloid-beta aggregation in cerebrospinal fluid and serum for Alzheimer’s disease diagnosis and progression monitoring. Chem Eng J 405:126733

    Article  CAS  Google Scholar 

  12. Zhu Z, Tian D, Gao P, Wang K, Li Y, Shu X, Zhu J, Zhao Q (2018) Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging. J Am Chem Soc 140:17484–17491

    Article  CAS  Google Scholar 

  13. Fan Z, Chang Y, Cui C, Sun L, Wang DH, Pan Z, Zhang M (2018) Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat Commun 9:2605

    Article  Google Scholar 

  14. Liu X, Su L, Zhu L, Gao X, Wang Y, Bai F, Tang Y, Li J (2016) Hybrid material for enrofloxacin sensing based on aptamer-functionalized magnetic nanoparticle conjugated with upconversion nanoprobes. Sensor Actuat B-Chem 233:394–401

    Article  CAS  Google Scholar 

  15. Tian R, Ji J, Zhou Y, Du Y, Yan J (2020) Terminal-conjugated non-aggregated constraints of gold nanoparticles on lateral flow strips for mobile phone readouts of enrofloxacin. Biosens Bioelectron 160:112218

    Article  CAS  Google Scholar 

  16. Teglia CM, Guiez M, Culzoni MJ, Cerutti S (2021) Determination of residual enrofloxacin in eggs due to long term administration to laying hens Analysis of the consumer exposure assessment to egg derivatives. Food Chem 351:129279

    Article  CAS  Google Scholar 

  17. Marques RZ, Wistuba N, Brito JCM, Bernardoni V, Rocha DC, Gomes MP (2021) Crop irrigation (soybean, bean, and corn) with enrofloxacin-contaminated water leads to yield reductions and antibiotic accumulation. Ecotox Environ Safe 216:112193

    Article  CAS  Google Scholar 

  18. Wang Z, Zhang H, Ni H, Zhang S, Shen J (2014) Development of a highly sensitive and specific immunoassay for enrofloxacin based on heterologous coating haptens. Anal Chim Acta 820:152–158

    Article  CAS  Google Scholar 

  19. Xu Y, Jiang D, Zhang M, Zhang Z, Wang K (2020) High-performance photoelectrochemical aptasensor for enrofloxacin based on Bi-doped ultrathin polymeric carbon nitride nanocomposites with SPR effect and carbon vacancies. Sensor Actuat B-Chem 316:128142

    Article  CAS  Google Scholar 

  20. Wagil M, Kumirska J, Stolte S, Puckowski A, Maszkowska J, Stepnowski P, Białk-Bielińska A (2014) Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in northern Poland. Sci Total Environ 493:1006–1013

    Article  CAS  Google Scholar 

  21. Xu X, Liu L, Jia Z, Shu Y (2015) Determination of enrofloxacin and ciprofloxacin in foods of animal origin by capillary electrophoresis with field amplified sample stacking-sweeping technique. Food Chem 176:219–225

    Article  CAS  Google Scholar 

  22. Guo W, Vilaplana L, Hansson J, Marco MP, Wijngaart W (2020) Immunoassays on thiolene synthetic paper generate a superior fluorescence signal. Biosens Bioelectron 163:112279

    Article  CAS  Google Scholar 

  23. Zhang Z, Liu Q, Zhang M, You F, Hao N, Ding C, Wang K (2021) Simultaneous detection of enrofloxacin and ciprofloxacin in milk using a bias potentials controlling-based photoelectrochemical aptasensor. J Hazard Mater 416:125988

    Article  CAS  Google Scholar 

  24. Lee SH, Ahn JY, Lee KA, Um HJ, Sekhon SS, Park TS, Min J, Kim YH (2015) Analytical bioconjugates, aptamers, enable specific quantitative detection of listeria monocytogenes. Biosens Bioelectron 68:272–280

    Article  CAS  Google Scholar 

  25. Harleen K, Bruno JG, Amit K, Kumar ST (2018) Aptamers in the therapeutics and diagnostics pipelines. Theranostics 8:4016–4032

    Article  Google Scholar 

  26. Kang YY, Song JH, Jung HS, Kwak G, Yu G, Ahn JH, Sun HK, Hyejung M (2018) Implication of multivalent aptamers in DNA and DNA-RNA hybrid structures for efficient drug delivery in vitro and in vivo. J Ind Eng Chem 60:250–258

    Article  CAS  Google Scholar 

  27. Tao K, Fan Z, Sun L, Makam P, Tian Z, Ruegsegger M, Shaham-Niv S, Hansford D, Aizen R, Pan Z, Galster S, Ma J, Yuan F, Si M, Qu S, Zhang M, Gazit E, Li J (2018) Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat Commun 9:3217

    Article  Google Scholar 

  28. Wang LY, Bao J, Wang L, Zhang F, Li YD (2006) One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem Eur J 12:6341–6347

    Article  CAS  Google Scholar 

  29. U.S. Department of Health and Human Services, Food and Drug Administration, Guidance for Industry, Bioanalytical Method Validation, 2018. https://www.fda.gov/media/70858/download. Accessed 7 Feb 2022

  30. European Medicines Agency, Guideline on Bioanalytical Method Validation, 2011. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf. Accessed 7 Feb 2022

  31. Mayes ML, Perreault L (2018) Conformational structures and vibrational spectroscopic investigation of isolated dityrosine and tryptophan-tyrosine dipeptides: a theoretical study. Comput Theor Chem 1131:99–109

    Article  CAS  Google Scholar 

  32. Aymard C, Kanso H, Serrano MJ, Pagán R, Noguer T, Istamboulie G (2022) Development of a new dual electrochemical immunosensor for a rapid and sensitive detection of enrofloxacin in meat samples. Food Chem 370:131016

    Article  CAS  Google Scholar 

  33. Chen J, Xu F, Jiang H, Hou Y, Rao Q, Guo P, Ding S (2009) A novel quantum dot-based fluoroimmunoassay method for detection of enrofloxacin residue in chicken muscle tissue. Food Chem 113:1197–1201

    Article  CAS  Google Scholar 

  34. Cinquina AL, Roberti P, Giannetti L, Longo L, Draisci R, Fagiolo A, Brizioli NR (2003) Determination of enrofloxacin and its metabolite ciprofloxacin in goat milk by high-performance liquid chromatography with diode-array detection. J Chromatogr A 987:221–226

    Article  CAS  Google Scholar 

  35. Lolo M, Pedreira S, Fente C, Vázquez BI, Cepeda A (2003) Use of the diphasic dialysis as a new extraction procedure in the determination of enrofloxacin and ciprofloxacin in egg. Anal Chim Acta 480:123–130

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (No. 2017YFF0211300) and the Scientific Research Foundation for the Introduced Talent of Hebei Agricultural University (No. YJ201911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 885 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Yan, R., Wang, S. et al. Dipeptide nanoparticle and aptamer-based hybrid fluorescence platform for enrofloxacin determination. Microchim Acta 189, 96 (2022). https://doi.org/10.1007/s00604-022-05182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05182-z

Keywords

Navigation