Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Celestial OPEs and w1+∞ algebra from worldsheet in string theory

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 20 January 2022
  • Volume 2022, article number 101, (2022)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Celestial OPEs and w1+∞ algebra from worldsheet in string theory
Download PDF
  • Hongliang Jiang1 
  • 376 Accesses

  • 25 Citations

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Celestial operator product expansions (OPEs) arise from the collinear limit of scattering amplitudes and play a vital role in celestial holography. In this paper, we derive the celestial OPEs of massless fields in string theory from the worldsheet. By studying the worldsheet OPEs of vertex operators in worldsheet CFT and further examining their behaviors in the collinear limit, we find that new vertex operators for the massless fields in string theory are generated and become dominant in the collinear limit. Mellin transforming to the conformal basis yields exactly the celestial OPEs in celestial CFT. We also derive the celestial OPEs from the collinear factorization of string amplitudes and the results derived in these two different methods are in perfect agreement with each other. Our final formulae of celestial OPEs are applicable to general dimensions, corresponding to Einstein-Yang-Mills theory supplemented by some possible higher derivative interactions. Specializing to 4D, we reproduce all the celestial OPEs for gluon and graviton in the literature. We consider various string theories, including the open and closed bosonic string, as well as the closed superstring theory with \( \mathcal{N} \) = 1 and \( \mathcal{N} \) = 2 worldsheet supersymmetry. In the case of \( \mathcal{N} \) = 2 string, we also derive all the \( \overline{\mathrm{SL}\left(2,\mathbb{R}\right)} \) descendant contributions in the celestial OPE; the soft sector of such OPE just yields the w1+∞ algebra after rewriting in terms of chiral modes. Our stringy derivation of celestial OPEs thus initiates the first step towards the microscopic realization of celestial CFT dual to string theory in flat spacetime.

Article PDF

Download to read the full article text

Similar content being viewed by others

Celestial operator products from the worldsheet

Article Open access 10 June 2022

Celestial open strings at one-loop

Article Open access 06 October 2023

All-order celestial OPE in the MHV sector

Article Open access 31 March 2023

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Field Theory and Polynomials
  • Operator Theory
  • Polytopes
  • Rings and Moons
  • String Theory
  • Heliospheric Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].

  2. L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].

  6. A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].

    Article  ADS  Google Scholar 

  7. T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. A.-M. Raclariu, Lectures on Celestial Holography, arXiv:2107.02075 [INSPIRE].

  9. S. Pasterski, Lectures on celestial amplitudes, Eur. Phys. J. C 81 (2021) 1062 [arXiv:2108.04801] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Stieberger and T.R. Taylor, Strings on Celestial Sphere, Nucl. Phys. B 935 (2018) 388 [arXiv:1806.05688] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems, Class. Quant. Grav. 36 (2019) 205018 [arXiv:1905.09224] [INSPIRE].

  12. E. Casali and A. Sharma, Celestial double copy from the worldsheet, JHEP 05 (2021) 157 [arXiv:2011.10052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Guevara, E. Himwich, M. Pate and A. Strominger, Holographic symmetry algebras for gauge theory and gravity, JHEP 11 (2021) 152 [arXiv:2103.03961] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Strominger, w1+∞ and the Celestial Sphere, arXiv:2105.14346 [INSPIRE].

  15. H. Jiang, Holographic Chiral Algebra: Supersymmetry, Infinite Ward Identities, and EFTs, arXiv:2108.08799 [INSPIRE].

  16. S. Banerjee, S. Ghosh and R. Gonzo, BMS symmetry of celestial OPE, JHEP 04 (2020) 130 [arXiv:2002.00975] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Guevara, Celestial OPE blocks, arXiv:2108.12706 [INSPIRE].

  18. W. Fan, A. Fotopoulos and T.R. Taylor, Soft Limits of Yang-Mills Amplitudes and Conformal Correlators, JHEP 05 (2019) 121 [arXiv:1903.01676] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Extended Super BMS Algebra of Celestial CFT, JHEP 09 (2020) 198 [arXiv:2007.03785] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Jiang, Celestial superamplitude in \( \mathcal{N} \) = 4 SYM theory, JHEP 08 (2021) 031 [arXiv:2105.10269] [INSPIRE].

  21. M. Pate, A.-M. Raclariu, A. Strominger and E.Y. Yuan, Celestial operator products of gluons and gravitons, Rev. Math. Phys. 33 (2021) 2140003 [arXiv:1910.07424] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  22. E. Himwich, M. Pate and K. Singh, Celestial Operator Product Expansions and w1+∞ Symmetry for All Spins, arXiv:2108.07763 [INSPIRE].

  23. T. Adamo, W. Bu, E. Casali and A. Sharma, Celestial OPEs from the worldsheet, talk given at the Workshop on Celestial Amplitudes and Flat Space Holography, Corfu, Greece, 29 August–5 September 2021 and online pdf version at http://www.physics.ntua.gr/corfu2021/ Talks/tim_adamo@gmail_com_01.pdf.

  24. S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].

  25. H. Ooguri and C. Vafa, Geometry of N = 2 strings, Nucl. Phys. B 361 (1991) 469 [INSPIRE].

  26. H. Ooguri and C. Vafa, Selfduality and N = 2 String MAGIC, Mod. Phys. Lett. A 5 (1990) 1389 [INSPIRE].

  27. N. Marcus, A Tour through N = 2 strings, in proceedings of the International Workshop on String Theory, Quantum Gravity and the Unification of Fundamental Interactions, Rome, Italy, 21–26 September 1992, hep-th/9211059 [INSPIRE].

  28. S. Ebert, A. Sharma and D. Wang, Descendants in celestial CFT and emergent multi-collinear factorization, JHEP 03 (2021) 030 [arXiv:2009.07881] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. C.P. Boyer and J.F. Plebanski, An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces, J. Math. Phys. 26 (1985) 229 [INSPIRE].

  30. D. Kapec and P. Mitra, A d-Dimensional Stress Tensor for Minkd+2 Gravity, JHEP 05 (2018) 186 [arXiv:1711.04371] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Polchinski, String theory. Volune 2. Superstring theory and beyond, in Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2007).

  32. J. de Boer and S.N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Friedan, S.H. Shenker and E.J. Martinec, Covariant Quantization of Superstrings, Phys. Lett. B 160 (1985) 55 [INSPIRE].

  34. J. Polchinski, String theory. Volume 1. An introduction to the bosonic string, in Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2007).

  35. H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

  36. A. Atanasov, A. Ball, W. Melton, A.-M. Raclariu and A. Strominger, (2, 2) Scattering and the celestial torus, JHEP 07 (2021) 083 [arXiv:2101.09591] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. E.S. Fradkin and A.A. Tseytlin, Quantization of Two-Dimensional Supergravity and Critical Dimensions for String Models, Phys. Lett. B 106 (1981) 63 [INSPIRE].

  38. R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, in Theoretical and Mathematical Physics, Springer (2013).

Download references

Author information

Authors and Affiliations

  1. Centre for Theoretical Physics, Department of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK

    Hongliang Jiang

Authors
  1. Hongliang Jiang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Hongliang Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2110.04255

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H. Celestial OPEs and w1+∞ algebra from worldsheet in string theory. J. High Energ. Phys. 2022, 101 (2022). https://doi.org/10.1007/JHEP01(2022)101

Download citation

  • Received: 21 October 2021

  • Revised: 06 December 2021

  • Accepted: 28 December 2021

  • Published: 20 January 2022

  • DOI: https://doi.org/10.1007/JHEP01(2022)101

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal and W Symmetry
  • Gauge-gravity correspondence
  • Scattering Amplitudes
  • Superstrings and Heterotic Strings
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature