Skip to main content

Advertisement

Log in

Arsenic and lead in the soils of San Antonio–El Triunfo mining district, B.C.S., México: a human health risk assessment

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The MD SA-ET in Baja California Sur, Mexico, had over 200 years of intermittent mining activities. Studies in the area have reported Pb, Cd, Zn, and As dispersion from waste to soils, sediments, and groundwater, suggesting that even after all this time, biogeochemical processes have not completely mitigated the risk. Furthermore, evaluating how the fine particles in soils could control the human health risk by geochemical and mineralogical mechanisms has not yet been initiated. This study discusses the geoavailability and bioaccessibility based on the environmental and human health risks in an arid environment where the population is currently exposed to abandoned mining waste. The results show that urban soils (US) and stream sediments (SS) have very high total concentrations of As and Pb, but with low geoavailability, suggesting low environmental risk. Despite this, bioaccessibilities up to 100% were observed for As and Pb in the US, suggesting high risks for the inhabitants of San Antonio and El Triunfo towns. The blood Pb levels and the carcinogenic risk for As exposure assessed here show maximum values of 115.77 µgPb dL−1 and 85 × 10–4, respectively, which exceed the recommended limits according to USEPA. Chemical identification of microparticles (< 250 μm) by SEM–EDS shows bright metal solids with high iron content, commonly interpreted as iron oxide. However, it was possible to identify microparticles (< 5 μm) rich in Fe associated with ultrafine particles (< 1 μm) with high Pb and As contents. We conclude that differences between the geoavailability and bioaccessibility for soils and sediments in this study indicate that the solid microphases (possible Fe-oxides and oxyhydroxides) present in the fine soil fraction from MD SA-ET may control the geoavailability and bioavailability of As and Pb, as well as the environmental and human health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad K, Muhammad S, Ali W, Jadoon IA, Rasool A (2020) Occurrence, source identification and potential risk evaluation of heavy metals in sediments of the Hunza River and its tributaries Gilgit-Baltistan. Environ Technol Innov 18:100700

    Article  Google Scholar 

  • Ahumada Mexía R (2017) Identificación de residuos tóxicos mineros por percepción remota y su verificación geoquímica en El Triunfo (BCS): propuesta metodológica para priorizar acciones de restauración (Doctoral dissertation, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas)

  • American Society for Testing and Materials (1985) ATMS D-3987 standard test method for shake extraction of solid waste with water. Ann Book ASTM Stand 11(04):1–5

    Google Scholar 

  • Carrillo A, Drever JI (1998) Adsorption of arsenic by natural aquifer material in the San Antonio-El Triunfo mining area, Baja California. Mexico Environ Geol 35(4):251–257

    Article  Google Scholar 

  • Carrillo-Chávez A, Drever JI, Martínez M (2000) Arsenic content and groundwater geochemistry of the San Antonio-El Triunfo, Carrizal and Los Planes aquifers in southernmost Baja California. Mexico Environ Geol 39(11):1295–1303

    Article  Google Scholar 

  • Colín-Torres CG, Murillo-Jiménez JM, Del Razo LM, Sánchez-Peña LC, Becerra-Rueda OF, Marmolejo-Rodríguez AJ (2014) Urinary arsenic levels influenced by abandoned mine tailings in the Southernmost Baja California Peninsula, Mexico. Environ Geochem Health 36(5):845–854

    Article  Google Scholar 

  • Cruz EF (2013) Caracterización megascópica e implicaciones geológicas de algunas pegmatitas de la Provincia Geológica Complejo Plutónico de La Paz, Baja California Sur, México (Doctoral dissertation, UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR)

  • Doyi INY, Isley CF, Soltani NS, Taylor MP (2019) Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environ Int 133:105125. https://doi.org/10.1016/j.envint.2019.105125

    Article  Google Scholar 

  • García-Rico L, Meza-Figueroa D, Gandolfi AJ, Del Río-Salas R, Romero FM, Meza-Montenegro MM (2016) Dust–metal sources in an urbanized arid zone: implications for health-risk assessments. Arch Environ Contam Toxicol 70(3):522–533

    Article  Google Scholar 

  • Guney M, Bourges CMJ, Chapuis RP, Zagury GJ (2017) Lung bioaccessibility of As, Cu, Fe, Mn, Ni, Pb, and Zn in fine fraction (< 20 μm) from contaminated soils and mine tailings. Sci Total Environ 579:378–386

    Article  Google Scholar 

  • Gutiérrez-Caminero L, Weber B, Wurl J, Carrera-Muñoz M (2015) Tracing toxic elements sources using lead isotopes: an example from the San Antonio–El Triunfo mining district, Baja California Sur, México. Appl Geochem 59:23–32

    Article  Google Scholar 

  • Hernández-Cruz B, de Luna-Cruz F, Sánchez-Cruz JA, Martín Romero F (2015) Dispersión hídrica de arsénico en el distrito minero de San Antonio-El Triunfo, Baja California Sur, México. Tecnología y Ciencias Del Agua 6(5):113–122

    Google Scholar 

  • Hernández-Mendiola E, Romero FM, Gutiérrez-Ruiz M, Rico CAM (2016) Solid phases controlling the mobility of potentially toxic elements and the generation of acid drainage in abandoned mine gold wastes from San Antonio–El Triunfo mining district, Baja California Sur, México. Environ Earth Sci 75(11):969

    Article  Google Scholar 

  • Hu X, Zhang Y, Luo J, Wang T, Lian H, Ding Z (2011) Bioaccessibility and health risk of arsen c, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ Pollut 159:1215–1221. https://doi.org/10.1016/j.envpol.2011.01.037

    Article  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press. https://doi.org/10.1201/b10158

    Article  Google Scholar 

  • Kozin PA (2014) Charge development at iron oxyhydroxide surfaces: the interplay between surface structure, particle morphology and counterion identity (Doctoral dissertation, Umeå universitet)

  • Laidlaw MA, Mohmmad SM, Gulson BL, Taylor MP, Kristensen LJ, Birch G (2017) Estimates of potential childhood lead exposure from contaminated soil using the US EPA IEUBK model in Sidney, Australia. Environ Res 156:781–790

    Article  Google Scholar 

  • Laidlaw MAS, Gordon C, Taylor MP, Ball AS (2018) Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia. Environ Geochem Health 40:2785–2793. https://doi.org/10.1007/s10653-018-0144-6

    Article  Google Scholar 

  • Lim HS, Lee JS, Chon HT, Sager M (2008) Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J Geochem Explor 96(2–3):223–230

    Article  Google Scholar 

  • Marmolejo-Rodríguez AJ, Sánchez-Martínez MA, Romero-Guadarrama JA, Sánchez-González A, Magallanes-Ordóñez VR (2011) Migration of As, Hg, Pb, and Zn in arroyo sediments from a semiarid coastal system influenced by the abandoned gold mining district at El Triunfo, Baja California Sur Mexico. J Environ Monitor 13(8):2182–2189

    Article  Google Scholar 

  • Méndez-Rodríguez LC, Alvarez-Castañeda ST (2016) Assessment of trace metals in soil, vegetation and rodents in relation to metal mining activities in an arid environment. Bull Environ Contam Toxicol 97(1):44–49

    Article  Google Scholar 

  • Meza-Figueroa D, Barboza-Flores M, Romero FM, Acosta-Elias M, Hernández-Mendiola E, Maldonado Escalante F, Pedroza-Montero M (2020) Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. Sci Total Environ 713:136481

    Article  Google Scholar 

  • Naranjo-Pulido A, Romero-Schmidt H, Méndez-Rodríguez L, Acosta-Vargas B, Ortega-Rubio A (2002) Soil arsenic contamination in the Cape Region, B. C. S., Mexico. J Environ Biol 23(4):347–352

    Google Scholar 

  • Pérez-Briceño A (2009) Elaboración de un modelo hidrogeológico de la Cuenca de San Juan de los Planes, BCS, Mediante el uso de un sistema de información geográfica (SIG) y un modelo digital de elevación (MDE). Bachelor in Geology Thesis UABCS

  • Posada Ayala IH (2011) Geoquímica ambiental del distrito minero San Antonio, sedimentos de los arroyos de la cuenca de San Juan de los Planes y plataforma continental de Bahía La Ventana, BCS, México (Doctoral dissertation)

  • Roussel H, Waterlot C, Pelfrêne A, Pruvot C, Mazzuca M, Douay F (2010) Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Arch Environ Contam Toxicol 58(4):945–954

    Article  Google Scholar 

  • Ruby MV, Davis A, Kempton JH, Drexler JW, Bergstrom PD (1992) Lead bioavailability-dissolution kinetics under simulated gastric conditions. Environ Sci Technol 26(6):1242–1248

    Article  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30(2):422–430

    Article  Google Scholar 

  • Rusch B, Hanna K, Humbert B (2010) Coating of quartz silica with iron oxides: characterization and surface reactivity of iron coating phases. Colloids Surf A 353(2–3):172–180

    Article  Google Scholar 

  • Sánchez-Martínez MA, Marmolejo-Rodríguez AJ, Millán-Gómez R, Sánchez-González A, Magallanes-Ordóñez VR, Romero-Guadarrama JA, Murillo-Jiménez JM (2013) Sediment accumulation of Ag, Cu, and Ni through a semi-arid basin as a by-product of the El Triunfo gold mine, Baja California Sur, Mexico. J Iber Geol 39(1):97–110

    Article  Google Scholar 

  • Schaaf P, Böhnel H, Pérez-Venzor JA (2000) Pre-Miocene palaeogeography of the Los Cabos block, Baja California sur: geochronological and palaeomagnetic constraints. Tectonophysics 318(1–4):53–69

    Article  Google Scholar 

  • SEMARNAT (2004) Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1 (2004). Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Diario Oficial de la Federación

  • Shumilin E, Mirlean N, Choumiline K, Ostrooumov M (2015) Increasing arsenic mobility in the fine fraction of the dry stream sediments of the semi-arid San Antonio gold mining district (Baja California peninsula, Mexico). Environ Earth Sci 73(8):4689–4700

    Article  Google Scholar 

  • Stewart LR, Farver JR, Gorsevski PV, Miner JG (2014) Spatial prediction of blood lead levels in children in Toledo, OH using fuzzy sets and the site-specific IEUBK model. Appl Geochem 45:120–129

    Article  Google Scholar 

  • Tepanosyan G, Sahakyan L, Belyaeva O, Asmaryan S, Saghatelyan A (2018) Continuous impact of mining activities on soil heavy metals levels and human health. Sci Total Environ 639:900–909

    Article  Google Scholar 

  • USEPA (1991a) Risk assessment guidance for superfund, volume I: human health evaluation manual (part b, development of risk-based preliminary remediation goals). Office of emergency and remedial response. EPA/540/R-92/003

  • U.S. EPA (1991b) Human health evaluation manual, supplemental guidance: “standard default exposure factors”. OSWER directive 9285.6–03

  • U.S. EPA (1999) Short sheet: IEUBK model bioavailability variable. EPA #540-F-00–006. Available at: 〈https://www.epa.gov/superfund/lead-superfund-sites-guidance. Accessed 18 May 2020

  • U.S. EPA (2014) “Method 6010D (SW-846): inductively coupled plasma-atomic emission spectrometry”, revision 4., Washington DC

  • U.S. EPA (2015) SW‐846 method 6200: field portable x‐ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment

  • U.S. EPA (2020) Lead at superfund sites: Software and user’s manuals [Online]. Available: https://www.epa.gov/superfund/lead-superfund-sites-software-and-users-manuals. Accessed May, 2020

  • U.S. EPA IRIS. integrated risk information system. http://www.epa.gov/iris/. Accessed 30 Dec 2021

  • Velázquez-Pedroza K, Murillo-Jiménez JM, Marmolejo-Rodríguez AJ, Nava-Sánchez EH, Morales-Puente PA, Wurl J, Hernández-Pérez E (2019) Caracterización hidrogeoquímica en la cuenca hidrológica el carrizal, baja california sur, México. Revista Internacional De Contaminación Ambiental 35(1):47–64

    Article  Google Scholar 

  • Volke-Sepúlveda T, Solórzano-Ochoa G, Rosas-Domínguez A, Izumikawa C, Aguilar GE, Velasco-Trejo JA, Flores-Martínez S (2003) Remediación de sitios contaminados por metales provenientes de jales mineros en los distritos de El Triunfo-San Antonio y Santa Rosalía, Baja California Sur. Centro Nacional de Investigación y Capacitación Ambiental Instituto Nacional de Ecología

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    Article  Google Scholar 

  • Wurl J, Mendez-Rodriguez L, Acosta-Vargas B (2014) Arsenic content in groundwater from the southern part of the San Antonio-El Triunfo mining district, Baja California Sur, Mexico. J Hydrol 518:447–459

    Article  Google Scholar 

  • Wurl J, Imaz Lamadrid M, Mendez-Rodriguez L, Acosta Vargas B (2018) Arsenic concentration in the surface water of a former mining area: the La Junta Creek, Baja California Sur, Mexico. Int J Environ Res Public Health 15(3):437

    Article  Google Scholar 

  • Yang K, Cattle SR (2015) Bioaccessibility of lead in urban soil of Broken Hill, Australia: a study based on in vitro digestion and the IEUBK model. Sci Total Environ 538:922–933

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Instituto Nacional de Ecología y Cambio Climático (INECC) for their analytical support and Q. Astrid Vázquez Salgado for their support in obtaining the MEB-EDS images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ernesto Hernández-Mendiola or Francisco Martín-Romero.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Mendiola, E., Martín-Romero, F., Meza-Figueroa, D. et al. Arsenic and lead in the soils of San Antonio–El Triunfo mining district, B.C.S., México: a human health risk assessment. Environ Earth Sci 81, 42 (2022). https://doi.org/10.1007/s12665-021-10137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-10137-3

Keywords

Navigation