Skip to main content

New Generation of Healthcare Services Based on Internet of Medical Things, Edge and Cloud Computing Infrastructures

  • Chapter
  • First Online:
IoT for Elderly, Aging and eHealth

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 108))

  • 350 Accesses

Abstract

In this chapter, we highlight and analyze the role of the Internet of Medical Things (IoMT), Edge and Cloud Computing Infrastructures to develop the new generation of healthcare systems for the elderly. The fast development in Edge computing technologies leads to the implementation and decentralized deployment of healthcare systems at a large scale. Indeed, offloading computation from upper levels of Cloud computing towards edge devices represents many benefits to the Cloud digital ecosystem. However, integrating these new paradigms and related technologies poses many challenges at design and implementation levels and data integration, data privacy, reliability and real-time control, anomaly detection, etc. We focus, in particular, on the IoMT data stream processing, which has become the basis for much real-time monitoring and diagnosis in healthcare applications. The presentation is exemplified by computations done with the real-life REALDISP dataset for activity recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Bank Group IBRD-IDA, Global Health Expenditure database, 2021 https://data.worldbank.org/indicator/.

  2. World Health Organization Statistics, 2021, http://www.who.int/mediacentre/factsheets/fs310/en/.

  3. Gao, W., Emaminejad, S., Nyein, H. Y., Challa, S., Chen, K., & Peck A. et al. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509–14.

    Google Scholar 

  4. Chen, C.-M., Agrawal, H., Cochinwala, M., & Rosenblut, D. (2004). Stream query processing for Healthcare bio-sensor applications. 20th International Conference on Data Engineering, 2004, IEEE.

    Google Scholar 

  5. Cosoli, G., Spinsante, S., Scardulla, F., D'Acquisto, L., & Scalise, L. (2021). Wireless ECG and cardiac monitoring systems: State of the art, available commercial devices and useful electronic components. Measurement, 177. https://doi.org/10.1016/j.measurement.2021.109243.

  6. Lv, W., & Guo, J. (2021). Real-time ECG signal acquisition and monitoring for sports competition process oriented to the Internet of Things, Measurement, Volume 169. https://doi.org/10.1016/j.measurement.2020.108359.

  7. Manisha, Dhull, S. K., & Singh, K. K. (2020). ECG beat classifiers: a journey from ANN To DNN. Procedia Computer Science, 167, 747–759. https://doi.org/10.1016/j.procs.2020.03.340.

  8. Yakut, O., Solak, S., & Bolat, E. D. (2014). Measuring ECG Signal using e-health sensor platform, international conference on chemistry, biomedical and environment engineering (ICCBEE'14).

    Google Scholar 

  9. Magana-Espinoza, P., Aquino-Santos, R., C ̃ ardenas-Benitez, N., Aguilar- Velasco, J., Buenrostro-Segura, C., & Edwards-Block, A. et al. (2014). WiSPH: A wireless sensor network-based home care monitoring system. Sensors, 14(4), 7096–7119.

    Google Scholar 

  10. Orha, I., & Oniga, S. (2013). Automated system for evaluating health status, 2013. IEEE 19th International Symposium for Design and technology in Electronic Packaging (SIITME), pp. 219–222.

    Google Scholar 

  11. Bora, P., Kanakaraja, P., Chiranjeevi, B., Jyothi Sri Sai, M., & Jeswanth, A. (2021). Smart real time health monitoring system using Arduino and Raspberry Pi, Materials Today: Proceedings, 2021, https://doi.org/10.1016/j.matpr.2021.02.290.

  12. Zhen, P., Han, Y., Dong, A., Yu., & Jiguo. (2021). CareEdge: A lightweight edge intelligence framework for ECG-based heartbeat detection. Procedia Computer Science, 187, 329–334. https://doi.org/10.1016/j.procs.2021.04.070

  13. Moghadas, E., Rezazadeh, J., & Farahbakhsh, R. (2020). An IoT patient monitoring based on fog computing and data mining: Cardiac arrhythmia use case. Internet of Things, 11. https://doi.org/10.1016/j.iot.2020.100251.

  14. Ritrovato, P., Xhafa, F., & Giordano, A. (2018). Edge and cluster computing as enabling infrastructure for internet of medical things. AINA 2018, pp. 717–723.

    Google Scholar 

  15. Greco, L., Ritrovato, P., & Xhafa, F. (2019). An edge-stream computing infrastructure for real-time analysis of wearable sensors data. Future Gener. Computer System, 93, 515–528.

    Article  Google Scholar 

  16. Krishnan, S. (2021). 2—Wearables design, Editor(s): Sri Krishnan, Biomedical signal analysis for connected healthcare. Academic Press, pp. 31–84, https://doi.org/10.1016/B978-0-12-813086-5.00002-5.

  17. Xhafa, F., Kilic, B., & Krause, P. (2020). Evaluation of IoT stream processing at edge computing layer for semantic data enrichment. Future General Computer System, 105, 730–736.

    Article  Google Scholar 

  18. Gonçalves, B., & Guizzardi, G. (2011). José G. Pereira Filho, Using an ECG reference ontology for semantic interoperability of ECG data, Journal of Biomedical Informatics, 44(1), 126–136. https://doi.org/10.1016/j.jbi.2010.08.007

    Article  Google Scholar 

  19. Londhe, A. N., & Atulkar, M. (2021). Semantic segmentation of ECG waves using hybrid channel-mix convolutional and bidirectional LSTM. Biomedical Signal Processing and Control, 63. https://doi.org/10.1016/j.bspc.2020.102162.

  20. Lima, V. C., Alves, D., Pellison, F. C., Yoshiura, V. T., Crepaldi, N. Y., & Lopes Rijo, R. P. C. (2018). Establishment of access levels for health sensitive data exchange through semantic web. Procedia Computer Science, 138, 191–196.https://doi.org/10.1016/j.procs.2018.10.027.

  21. Wu, H., Toti, G., Morley, K. I., Ibrahim, Z., Folarin, A., Kartoglu, I., Jackson, R., Agrawal, A., Stringer, C., Gale, D., Gorrell, G. M., Roberts, A., Broadbent, M., Stewart, R., & Dobson, R. J. B. (2017). SemEHR: surfacing semantic data from clinical notes in electronic health records for tailored care, trial recruitment, and clinical research. The Lancet, 390(3), S97, https://doi.org/10.1016/S0140-6736(17)33032-5.

  22. Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-time anomaly detection for streaming data. Neurocomputing, 262, 134–147. https://doi.org/10.1016/j.neucom.2017.04.070.

    Article  Google Scholar 

  23. Baños, O., Tóth, M. A., Damas, M., Pomares, H., & Rojas, I. (2014). Dealing with the effects of sensor displacement in wearable activity recognition. Sensors, 14(6), MDPI AG.

    Google Scholar 

  24. Baños, O., Damas, M., Pomares, H., Rojas, I., Tóth, M. A., & Amft, O. (2012). A benchmark dataset to evaluate sensor displacement in activity recognition. ACM Conference on Ubiquitous Computing, 2012, ACM.

    Google Scholar 

  25. Giordano, A. (2017). Semantic stream computing for large dataset analytics. Master Thesis, 2017, Faculty of Informatics of Barcelona, Universitat Politècnica de Catalunya, Spain (Supervised by Prof. Pierluigi Ritrovato and Prof. Fa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

WU, C.H., LAM, C.H.Y., XHAFA, F., TANG, V., IP, W.H. (2022). New Generation of Healthcare Services Based on Internet of Medical Things, Edge and Cloud Computing Infrastructures. In: Wu, C., Lam, C.H., Xhafa, F., Tang, V., Ip, W. (eds) IoT for Elderly, Aging and eHealth. Lecture Notes on Data Engineering and Communications Technologies, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-93387-6_5

Download citation

Publish with us

Policies and ethics