Skip to main content

Type 2 Cardiorenal Syndrome

  • Chapter
  • First Online:
Textbook of Cardiorenal Medicine

Abstract

The impact of chronic heart disease leading to long term effects in the kidney is known as cardiorenal syndrome type 2 (CRS2). The combination of dysfunction in these two organs is notorious for its significant morbidity. The pathophysiology of CRS2 due to chronic heart failure with reduced ejection fraction (HFrEF) involves hemodynamic factors such as decrease in cardiac output and increase in venous congestion, neurohormonal activation and chronic inflammation while in heart failure with preserved ejection fraction (HFpEF) the hallmark of this condition is an increase in right and left sided heart filling pressures, compromised cardiac filling and consequent inadequate stroke volume reserve. Regardless of the initial trigger, fibrosis appears to be the common aftermath of the chronic inflammatory milieu of cardiorenal syndrome.

The utility of biomarkers in identifying patients at risk for or affected by CRS2 remains unclear. Although estimated glomerular filtration rate and urine albumin to creatinine ratio remain the most widely used markers of kidney impairment with established prognostic impact in cardiovascular disease, contemporary evidence inferred from cohorts of patients treated with neprilysin inhibitors has disputed the concept of albuminuria as a marker of irreversible podocyte injury.

Possible mitigators of CRS2 in HFrEF are neurohormonal blockers such as the inhibitors of the renin-angiotensin system, mineralocorticoid antagonists and the angiotensin receptor-neprilysin inhibitors. For patients with type 2 diabetes who have prominent cardiovascular and renal disease, the sodium-glucose co-transporter 2 inhibitor and the glucagon-like peptide-1 receptor agonist are additional options. Once symptoms become refractory to maximum tolerated medical therapy, devices such as cardiac resynchronization therapy and left ventricular assist devices may be offered. Unlike HFrEF, data on the use of the above mentioned drug classes in HFpEF is scarce and guidelines recommend treatment of congestion and comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shlipak MG, Massie BM. The clinical challenge of cardiorenal syndrome. Circulation. 2004;110(12):1514–7.

    Article  PubMed  Google Scholar 

  3. McCullough PA, Kellum JA, Haase M, Muller C, Damman K, Murray PT, et al. Pathophysiology of the cardiorenal syndromes: executive summary from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Blood Purif. 2014;37(Suppl 2):2–13; PMID: 25196564. 2013.

    Article  CAS  Google Scholar 

  4. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39.

    Article  PubMed  Google Scholar 

  5. Bock JS, Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121(23):2592–600.

    Article  PubMed  Google Scholar 

  6. Testani JM, Coca SG, Shannon RP, Kimmel SE, Cappola TP. Influence of renal dysfunction phenotype on mortality in the setting of cardiac dysfunction: analysis of three randomized controlled trials. Eur J Heart Fail. 2011;13(11):1224–30.

    Article  PubMed  PubMed Central  Google Scholar 

  7. De Vecchis R, Baldi C. Cardiorenal syndrome type 2: from diagnosis to optimal management. Ther Clin Risk Manag. 2014;10:949–61.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cruz DN, Schmidt-Ott KM, Vescovo G, House AA, Kellum JA, Ronco C, et al. Pathophysiology of cardiorenal syndrome type 2 in stable chronic heart failure: workgroup statements from the eleventh consensus conference of the acute dialysis quality initiative (ADQI). Contrib Nephrol. 2013;182:117–36.

    Article  PubMed  Google Scholar 

  9. Cody RJ, Ljungman S, Covit AB, Kubo SH, Sealey JE, Pondolfino K, et al. Regulation of glomerular filtration rate in chronic congestive heart failure patients. Kidney Int. 1988;34(3):361–7.

    Article  CAS  PubMed  Google Scholar 

  10. Leithe ME, Margorien RD, Hermiller JB, Unverferth DV, Leier CV. Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure. Circulation. 1984;69(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  11. Merrill AJ. Edema and decreased renal blood flow in patients with chronic congestive heart failure: evidence of “forward failure” as the primary cause of edema. J Clin Invest. 1946;25(3):389–400.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mullens W, Martens P. Exploiting the natriuretic peptide pathway to preserve glomerular filtration in heart failure. JACC Heart Fail. 2018;6(6):499–502.

    Article  PubMed  Google Scholar 

  13. Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs. 1990;39(Suppl 4):10–21; discussion 2–4.

    Article  PubMed  Google Scholar 

  14. Dupont M, Mullens W, Finucan M, Taylor DO, Starling RC, Tang WH. Determinants of dynamic changes in serum creatinine in acute decompensated heart failure: the importance of blood pressure reduction during treatment. Eur J Heart Fail. 2013;15(4):433–40.

    Article  CAS  PubMed  Google Scholar 

  15. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51(3):300–6.

    Article  PubMed  Google Scholar 

  17. Damman K, Navis G, Smilde TD, Voors AA, van der Bij W, van Veldhuisen DJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;9(9):872–8.

    Article  PubMed  Google Scholar 

  18. Hanberg JS, Sury K, Wilson FP, Brisco MA, Ahmad T, Ter Maaten JM, et al. Reduced cardiac index is not the dominant driver of renal dysfunction in heart failure. J Am Coll Cardiol. 2016;67(19):2199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Binanay C, Califf RM, Hasselblad V, O'Connor CM, Shah MR, Sopko G, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625–33.

    Article  PubMed  Google Scholar 

  20. Drazner MH, Brown RN, Kaiser PA, Cabuay B, Lewis NP, Semigran MJ, et al. Relationship of right- and left-sided filling pressures in patients with advanced heart failure: a 14-year multi-institutional analysis. J Heart Lung Transplant. 2012;31(1):67–72.

    Article  PubMed  Google Scholar 

  21. Drazner MH, Velez-Martinez M, Ayers CR, Reimold SC, Thibodeau JT, Mishkin JD, et al. Relationship of right- to left-sided ventricular filling pressures in advanced heart failure: insights from the ESCAPE trial. Circ Heart Fail. 2013;6(2):264–70.

    Article  PubMed  Google Scholar 

  22. Grodin JL, Drazner MH, Dupont M, Mullens W, Taylor DO, Starling RC, et al. A disproportionate elevation in right ventricular filling pressure, in relation to left ventricular filling pressure, is associated with renal impairment and increased mortality in advanced decompensated heart failure. Am Heart J. 2015;169(6):806–12.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Costanzo MR, Ronco C, Abraham WT, Agostoni P, Barasch J, Fonarow GC, et al. Extracorporeal ultrafiltration for fluid overload in heart failure: current status and prospects for further research. J Am Coll Cardiol. 2017;69(19):2428–45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ciccone MM, Iacoviello M, Gesualdo L, Puzzovivo A, Antoncecchi V, Doronzo A, et al. The renal arterial resistance index: a marker of renal function with an independent and incremental role in predicting heart failure progression. Eur J Heart Fail. 2014;16(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  25. Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20(1):248–54.

    Article  CAS  PubMed  Google Scholar 

  26. Hillege HL, Girbes AR, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  27. Afsar B, Ortiz A, Covic A, Solak Y, Goldsmith D, Kanbay M. Focus on renal congestion in heart failure. Clin Kidney J. 2016;9(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  28. Hayakawa H, Raij L. Nitric oxide synthase activity and renal injury in genetic hypertension. Hypertension. 1998;31(1 Pt 2):266–70.

    Article  CAS  PubMed  Google Scholar 

  29. Viswanathan G, Gilbert S. The cardiorenal syndrome: making the connection. Int J Nephrol. 2010;2011:283137.

    PubMed  PubMed Central  Google Scholar 

  30. Ter Maaten JM, Rao VS, Hanberg JS, Perry Wilson F, Bellumkonda L, Assefa M, et al. Renal tubular resistance is the primary driver for loop diuretic resistance in acute heart failure. Eur J Heart Fail. 2017;19(8):1014–22.

    Article  PubMed  CAS  Google Scholar 

  31. Rao VS, Planavsky N, Hanberg JS, Ahmad T, Brisco-Bacik MA, Wilson FP, et al. Compensatory distal reabsorption drives diuretic resistance in human heart failure. J Am Soc Nephrol. 2017;28(11):3414–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Colombo PC, Ganda A, Lin J, Onat D, Harxhi A, Iyasere JE, et al. Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart Fail Rev. 2012;17(2):177–90.

    Article  CAS  PubMed  Google Scholar 

  33. Lu J, Wang X, Wang W, Muniyappa H, Deshmukh A, Hu C, et al. Abrogation of lectin-like oxidized LDL receptor-1 attenuates acute myocardial ischemia-induced renal dysfunction by modulating systemic and local inflammation. Kidney Int. 2012;82(4):436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Entin-Meer M, Ben-Shoshan J, Maysel-Auslender S, Levy R, Goryainov P, Schwartz I, et al. Accelerated renal fibrosis in cardiorenal syndrome is associated with long-term increase in urine neutrophil gelatinase-associated lipocalin levels. Am J Nephrol. 2012;36(2):190–200.

    Article  CAS  PubMed  Google Scholar 

  35. Zannad FRP. Cardiorenal syndrome revisited. Circulation. 2018;138:929–44.

    Article  PubMed  Google Scholar 

  36. Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJ, Yusuf S, et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation. 2006;113(5):671–8.

    Article  PubMed  Google Scholar 

  37. Damman K, Valente MA, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69.

    Article  PubMed  Google Scholar 

  38. Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, et al. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail. 2016;18(6):588–98.

    Article  PubMed  Google Scholar 

  39. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.

    Article  PubMed  Google Scholar 

  40. Damman K, Voors AA, Navis G, van Veldhuisen DJ, Hillege HL. The cardiorenal syndrome in heart failure. Prog Cardiovasc Dis. 2011;54(2):144–53.

    Article  PubMed  Google Scholar 

  41. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8.

    Article  PubMed  Google Scholar 

  42. Abudiab MM, Redfield MM, Melenovsky V, Olson TP, Kass DA, Johnson BD, et al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15(7):776–85.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114(20):2138–47.

    Article  PubMed  Google Scholar 

  44. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107(5):714–20.

    Article  PubMed  Google Scholar 

  45. Schwartzenberg S, Redfield MM, From AM, Sorajja P, Nishimura RA, Borlaug BA. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol. 2012;59(5):442–51.

    Article  PubMed  Google Scholar 

  46. Fu S, Zhao S, Ye P, Luo L. Biomarkers in cardiorenal syndromes. Biomed Res Int. 2018;2018:9617363.

    PubMed  PubMed Central  Google Scholar 

  47. Yang H, Liu J, Luo H, Zeng X, Tang X, Ma L, et al. Improving the diagnostic accuracy of acute myocardial infarction with the use of high-sensitive cardiac troponin T in different chronic kidney disease stages. Sci Rep. 2017;7:41350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fu S, Luo L, Ye P, Yi S, Liu Y, Zhu B, et al. The ability of NT-proBNP to detect chronic heart failure and predict all-cause mortality is higher in elderly Chinese coronary artery disease patients with chronic kidney disease. Clin Interv Aging. 2013;8:409–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Damman K, Hillege HL, van Veldhuisen DJ. Albuminuria in heart failure: a CHARMing new risk factor? Lancet. 2009;374(9689):506–8.

    Article  PubMed  Google Scholar 

  50. Dries DL, Exner DV, Domanski MJ, Greenberg B, Stevenson LW. The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 2000;35(3):681–9.

    Article  CAS  PubMed  Google Scholar 

  51. Smilde TD, van Veldhuisen DJ, Navis G, Voors AA, Hillege HL. Drawbacks and prognostic value of formulas estimating renal function in patients with chronic heart failure and systolic dysfunction. Circulation. 2006;114(15):1572–80.

    Article  PubMed  Google Scholar 

  52. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106(14):1777–82.

    Article  CAS  PubMed  Google Scholar 

  53. Arnlov J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D, et al. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham heart study. Circulation. 2005;112(7):969–75.

    Article  PubMed  CAS  Google Scholar 

  54. de Boer RA, Nayor M, de Filippi CR, Enserro D, Bhambhani V, Kizer JR, et al. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol. 2018;3(3):215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Katz DH, Burns JA, Aguilar FG, Beussink L, Shah SJ. Albuminuria is independently associated with cardiac remodeling, abnormal right and left ventricular function, and worse outcomes in heart failure with preserved ejection fraction. JACC Heart Fail. 2014;2(6):586–96.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jackson CE, Solomon SD, Gerstein HC, Zetterstrand S, Olofsson B, Michelson EL, et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet. 2009;374(9689):543–50.

    Article  CAS  PubMed  Google Scholar 

  57. Jackson CE, MacDonald MR, Petrie MC, Solomon SD, Pitt B, Latini R, et al. Associations of albuminuria in patients with chronic heart failure: findings in the ALiskiren observation of heart failure treatment study. Eur J Heart Fail. 2011;13(7):746–54.

    Article  CAS  PubMed  Google Scholar 

  58. Damman K, Gori M, Claggett B, Jhund PS, Senni M, Lefkowitz MP, et al. Renal effects and associated outcomes during angiotensin-Neprilysin inhibition in heart failure. JACC Heart Fail. 2018;6(6):489–98.

    Article  PubMed  Google Scholar 

  59. Bilous R, Chaturvedi N, Sjolie AK, Fuller J, Klein R, Orchard T, et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann Intern Med. 2009;151(1):11–20, w3-4.

    Article  PubMed  Google Scholar 

  60. Marre M, Lievre M, Chatellier G, Mann JF, Passa P, Menard J. Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: randomised, double blind, placebo controlled trial (the DIABHYCAR study). BMJ. 2004;328(7438):495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Costanzo MR, Barasch J. Creatinine and cystatin C: not the troponin of the kidney. Circulation. 2018;137(19):2029–31.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brisco MA, Testani JM. Novel renal biomarkers to assess cardiorenal syndrome. Curr Heart Fail Rep. 2014;11(4):485–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valente MA, Hillege HL, Navis G, Voors AA, Dunselman PH, van Veldhuisen DJ, et al. The chronic kidney disease epidemiology collaboration equation outperforms the modification of diet in renal disease equation for estimating glomerular filtration rate in chronic systolic heart failure. Eur J Heart Fail. 2014;16(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  64. Bragadottir G, Redfors B, Ricksten SE. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury--true GFR versus urinary creatinine clearance and estimating equations. Crit Care. 2013;17(3):R108.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bakris GL, Weir M. ACE inhibitors and protection against kidney disease progression in patients with type 2 diabetes: what’s the evidence. J Clin Hypertens. 2002;4(6):420–3.

    Article  CAS  Google Scholar 

  66. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316(23):1429–35.

    Article  Google Scholar 

  67. Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325(5):293–302.

    Article  PubMed  Google Scholar 

  68. Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325(5):303–10.

    Article  CAS  PubMed  Google Scholar 

  69. Yusuf S, Pitt B, Davis CE, Hood WB Jr, Cohn JN. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;327(10):685–91.

    Article  CAS  PubMed  Google Scholar 

  70. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345(23):1667–75.

    Article  CAS  PubMed  Google Scholar 

  71. Chinese Cardiac Study (CCS-1) Collaborative Group. Oral captopril versus placebo among 14,962 patients with suspected acute myocardial infarction: a multicenter, randomized, double-blind, placebo controlled clinical trial. Chin Med J (Engl). 1997;110(11):834–8.

    Google Scholar 

  72. Swedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the cooperative new Scandinavian Enalapril survival study II (CONSENSUS II). N Engl J Med. 1992;327(10):678–84.

    Article  CAS  PubMed  Google Scholar 

  73. Gruppo Italiano per lo Studio della Sopravvivenza nell'infarto Miocardico. GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet. 1994;343(8906):1115–22.

    Google Scholar 

  74. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet. 1995;345(8951):669–85.

    Article  Google Scholar 

  75. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med. 2001;135(2):73–87.

    Article  CAS  PubMed  Google Scholar 

  76. UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ. 1998;317(7160):713–20.

    Article  PubMed Central  Google Scholar 

  77. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  78. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    Article  CAS  PubMed  Google Scholar 

  79. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  80. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21.

    Article  CAS  PubMed  Google Scholar 

  81. Mehdi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol. 2009;20(12):2641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006;1(5):940–51.

    Article  CAS  PubMed  Google Scholar 

  83. Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(3):542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ritz E, Tomaschitz A. Aldosterone and the kidney: a rapidly moving frontier (an update). Nephrol Dialysis Transplant. 2014;29(11):2012–9.

    Article  CAS  Google Scholar 

  85. Currie G, Taylor AH, Fujita T, Ohtsu H, Lindhardt M, Rossing P, et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2016;17(1):127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kolkhof P, Jaisser F, Kim SY, Filippatos G, Nowack C, Pitt B. Steroidal and novel non-steroidal mineralocorticoid receptor antagonists in heart failure and Cardiorenal diseases: comparison at bench and bedside. Handb Exp Pharmacol. 2017;243:271–305.

    Article  CAS  PubMed  Google Scholar 

  87. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Filippatos G, Anker SD, Bohm M, Gheorghiade M, Kober L, Krum H, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016;37(27):2105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. [Internet]. Ce. Hungary—National Institute of Pharmacy 2015 Sept 29—Eudra CT number 2015–002168-17, Efficacy and safety of finerenone in subjects with chronic heart failure at high risk of recurrent heart failure decompensation. https://www.clinicaltrialsregister.eu/ctr-search/trial/2015-002168-17/HU#E

  90. Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27(19):2338–45.

    Article  CAS  PubMed  Google Scholar 

  91. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362(9386):777–81.

    Article  CAS  PubMed  Google Scholar 

  92. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359(23):2456–67.

    Article  CAS  PubMed  Google Scholar 

  93. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92.

    Article  CAS  PubMed  Google Scholar 

  94. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. J Card Fail. 2017;23(8):628–51.

    Article  PubMed  Google Scholar 

  95. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

    Article  PubMed  CAS  Google Scholar 

  96. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–95.

    Article  CAS  PubMed  Google Scholar 

  97. Solomon SD, Rizkala AR, Gong J, Wang W, Anand IS, Ge J, et al. Angiotensin receptor Neprilysin inhibition in heart failure with preserved ejection fraction: rationale and design of the PARAGON-HF trial. JACC Heart Fail. 2017;5(7):471–82.

    Article  PubMed  Google Scholar 

  98. de Albuquerque RN, Neeland IJ, McCullough PA, Toto RD, McGuire DK. Effects of sodium glucose co-transporter 2 inhibitors on the kidney. Diab Vasc Dis Res. 2018;15(5):375–86.

    Article  CAS  Google Scholar 

  99. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  100. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    Article  CAS  PubMed  Google Scholar 

  101. Fitchett D, Butler J, van de Borne P, Zinman B, Lachin JM, Wanner C, et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME(R) trial. Eur Heart J. 2018;39(5):363–70.

    Article  CAS  PubMed  Google Scholar 

  102. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.

    Article  CAS  PubMed  Google Scholar 

  103. EMPagliflozin outcomE tRial in Patients With chrOnic HeaRt Failure With Reduced Ejection Fraction) EMPEROR-Reduced. ClinicalTrialsgov website: https://clinicaltrials.gov/ct2/show/NCT03057977. Updated June 13, 2017. Accessed June 2017.

  104. EMPagliflozin outcomE tRial in Patients With chrOnic HeaRt Failure With Preserved Ejection Fraction (EMPEROR-Preserved). ClinicalTrialsgov website: https://clinicaltrials.gov/ct2/show/NCT03057951. Updated June 13, 2017 Accessed June 2017.

  105. Jardine MJ, Mahaffey KW, Neal B, Agarwal R, Bakris GL, Brenner BM, et al. The Canagliflozin and renal endpoints in diabetes with established nephropathy clinical evaluation (CREDENCE) study rationale, design, and baseline characteristics. Am J Nephrol. 2017;46(6):462–72.

    Article  CAS  PubMed  Google Scholar 

  106. AstraZeneca. A study to evaluate the effect of dapagliflozin on renal outcomes and cardiovascular mortality in patients with chronic kidney disease (Dapa-CKD). In: ClinicalTrialsgov [Internet]. Bethesda, MD: National Library of Medicine (US); 2000. https://clinicaltrials.gov/ct2/show/NCT03036150.

    Google Scholar 

  107. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.

    Article  CAS  PubMed  Google Scholar 

  109. Rocha NA, McCullough PA. Cardiovascular outcomes in diabetic kidney disease: insights from recent clinical trials. Kidney Int Suppl. 2018;8(1):8–17.

    Article  Google Scholar 

  110. MacIsaac RJ, Thomas MC. Effects of diabetes medications targeting the incretin system on the kidney. Clin J Am Soc Nephrol. 2018;13(2):321–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jeevanantham V, Turagam M, Shanberg D, Reddy M, Atoui M, Daubert JP, et al. Cardiac resynchronization therapy prevents progression of renal failure in heart failure patients. Indian Pacing Electrophysiol J. 2016;16(4):115–9.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–50.

    Article  CAS  PubMed  Google Scholar 

  113. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49.

    Article  CAS  PubMed  Google Scholar 

  114. Obeng-Gyimah EK, Deo R. Cardiorenal resynchronization therapy: strengthening the heart and kidneys. Clin J Am Soc Nephrol. 2015;10(10):1705–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Young JB, Abraham WT, Smith AL, Leon AR, Lieberman R, Wilkoff B, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD trial. JAMA. 2003;289(20):2685–94.

    Article  PubMed  Google Scholar 

  116. Boerrigter G, Costello-Boerrigter LC, Abraham WT, Sutton MG, Heublein DM, Kruger KM, et al. Cardiac resynchronization therapy improves renal function in human heart failure with reduced glomerular filtration rate. J Card Fail. 2008;14(7):539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Adelstein EC, Shalaby A, Saba S. Response to cardiac resynchronization therapy in patients with heart failure and renal insufficiency. PACE. 2010;33(7):850–9.

    Article  PubMed  Google Scholar 

  118. Kimura S, Ito M, Chinushi M, Tanaka K, Tanabe Y, Hosaka Y, et al. Preservation of renal function in response to cardiac resynchronization therapy. Circ J. 2008;72(11):1794–9.

    Article  CAS  PubMed  Google Scholar 

  119. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    Article  CAS  PubMed  Google Scholar 

  120. Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: a kidney's perspective. Heart Fail Rev. 2015;20(4):519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WW, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75.

    Article  PubMed  Google Scholar 

  122. Sandner SE, Zimpfer D, Zrunek P, Rajek A, Schima H, Dunkler D, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87(4):1072–8.

    Article  PubMed  Google Scholar 

  123. Ootaki C, Yamashita M, Ootaki Y, Kamohara K, Weber S, Klatte RS, et al. Reduced pulsatility induces periarteritis in kidney: role of the local renin-angiotensin system. J Thorac Cardiovasc Surg. 2008;136(1):150–8.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Welp H, Rukosujew A, Tjan TD, Hoffmeier A, Kosek V, Scheld HH, et al. Effect of pulsatile and non-pulsatile left ventricular assist devices on the renin-angiotensin system in patients with end-stage heart failure. Thorac Cardiovasc Surg. 2010;58(Suppl 2):S185–8.

    Article  PubMed  Google Scholar 

  125. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24.

    Article  PubMed  Google Scholar 

  126. Puhlman M. Continuous-flow left ventricular assist device and the right ventricle. AACN Adv Crit Care. 2012;23(1):86–90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rocha, N., McCullough, P.A. (2021). Type 2 Cardiorenal Syndrome. In: McCullough, P.A., Ronco, C. (eds) Textbook of Cardiorenal Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-57460-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57460-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57459-8

  • Online ISBN: 978-3-030-57460-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics