Skip to main content

PET Imaging of ABC Transporters at the Blood-Brain Barrier

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

The function of ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB) is to protect the brain from toxic compounds. Additionally, they play a crucial role in the onset and progression of several central nervous system (CNS) diseases as well as in drug resistance. Many compounds were identified as substrates, inhibitors, inducers, or activators for ABC transporters, causing important drug-drug interactions. PET imaging represents an excellent tool for assessing the function and expression of ABC transporters. Over the last years, many PET tracers with different characteristics have been developed, mainly for measuring P-glycoprotein (P-gp) function at the BBB. Although (R)-[11C]verapamil or [11C]N-desmethyl-loperamide are considered as the “gold standard” P-gp tracers, they have several drawbacks such as its high affinity to P-gp which limits its use for assessing P-gp increased function. Therefore, PET tracers with lower affinity to the transporter have been developed and studied in different species. The assessment of ABC transporters by PET imaging can provide new insight into the physiology and pathophysiology of different CNS diseases and may open new avenues for therapies. Moreover, PET can be used for screening the affinity of new entities toward various ABC transporters and thus enhance the development of CNS drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Hartz AMS, Elmquist WF, Bauer B (2011) Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr Pharm Des 17:2793–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzheimer A (1906) Über einen eigenartigen schweren Erkrankungsprozeß der Hirnrinde. Neurol Zentralblatt

    Google Scholar 

  • Aronica E, Sisodiya SM, Gorter JA (2012) Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 64:919–929

    Article  CAS  PubMed  Google Scholar 

  • van Assema DME, van Berckel BNM (2016) Blood-brain barrier ABC-transporter P-glycoprotein in Alzheimer’s disease: still a suspect? Curr Pharm Des 22:1–8

    Article  Google Scholar 

  • van Assema DME, Lubberink M, Bauer M et al (2012) Blood–brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 135:181–189

    Article  PubMed  Google Scholar 

  • Auvity S, Caillé F, Marie S et al (2018) P-glycoprotein (ABCB1) inhibits the influx and increases the efflux of 11 C-metoclopramide across the blood-brain barrier: a PET study on non-human primates. J Nucl Med 59(10):1609–1615

    Article  CAS  PubMed  Google Scholar 

  • Awouters F, Megens A, Verlinden M, Schuurkes J, Niemegeers C, Janssen PAJ (1993) Loperamide. Dig Dis Sci 38:977–995

    Article  CAS  PubMed  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet (London, England) 377(9770):1019–1031

    Article  Google Scholar 

  • Bankstahl JP, Kuntner C, Abrahim A et al (2008) Tariquidar-induced P-glycoprotein inhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and {PET}. J Nucl Med 49:1328–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels AL (2011) Blood-brain barrier P-glycoprotein function in neurodegenerative disease. Curr Pharm Des 17:2771–2777

    Article  CAS  PubMed  Google Scholar 

  • Bartels AL, van Berckel BNM, Lubberink M, Luurtsema G, Lammertsma AA, Leenders KL (2008a) Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson’s disease. Park Relat Disord 115(7):1001–1009

    CAS  Google Scholar 

  • Bartels AL, Willemsen ATM, Kortekaas R et al (2008b) Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm 115:1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer F, Kuntner C, Bankstahl JP et al (2010) Synthesis and in vivo evaluation of [11C]tariquidar, a positron emission tomography radiotracer based on a third-generation P-glycoprotein inhibitor. Bioorg Med Chem 18:5489–5497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer M, Karch R, Neumann F, et al (2009) Age dependency of cerebral P-gp function measured with (R)-[11C]verapamil and PET. Eur J Clin Pharmacol 65:941–946

    Google Scholar 

  • Bauer M, Karch R, Zeitlinger M et al (2013) Interaction of 11C-tariquidar and 11C-elacridar with P-glycoprotein and breast cancer resistance protein at the human blood-brain barrier. J Nucl Med 54:1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Tournier N, Langer O (2019) Imaging P-glycoprotein function at the blood–brain barrier as a determinant of the variability in response to central nervous system drugs. Clin Pharmacol Ther 105:1061–1064

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernstein H-G, Hildebrandt J, Dobrowolny H, Steiner J, Bogerts B, Pahnke J (2016) Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia: Circumscribed deficits in the habenula. Schizophr Res 177:52–58

    Article  PubMed  Google Scholar 

  • Brandt C, Bethmann K, Gastens AM, Löscher W (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211

    Article  CAS  PubMed  Google Scholar 

  • Breitenstein B, Brückl TM, Ising M, Müller-Myhsok B, Holsboer F, Czamara D (2015) ABCB1 gene variants and antidepressant treatment outcome: a meta-analysis. Am J Med Genet Part B Neuropsychiatr Genet

    Google Scholar 

  • Brenn A, Grube M, Jedlitschky G et al (2014) St. John’s wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model - role of P-glycoprotein. Brain Pathol 24:18–24

    Article  PubMed  Google Scholar 

  • Brzozowska NI, Smith KL, Zhou C et al (2017) Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice. Brain Behav Immun 65:251–261

    Article  CAS  PubMed  Google Scholar 

  • Carabotti M, Scirocco A, Maselli MA, Severi C (2009) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28:203–209

    Google Scholar 

  • Carson RE (2003) Tracer kinetic modeling in PET. In: Positron emission tomography. Springer-Verlag, London, pp 127–159

    Google Scholar 

  • Cen J, Liu L, Li M-S et al (2013) Alteration in P-glycoprotein at the blood-brain barrier in the early period of MCAO in rats. J Pharm Pharmacol 65:665–672

    Article  CAS  PubMed  Google Scholar 

  • Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD (2018) Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 59:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD (2015) P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: preliminary observations. Neurobiol Aging 36:2475–2482

    Article  CAS  PubMed  Google Scholar 

  • Church RM, Miller MC, Freestone D et al (2014) Amyloid-beta accumulation, neurogenesis, behavior, and the age of rats. Behav Neurosci

    Google Scholar 

  • Cirrito JR, Deane R, Fagan AM et al (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clinical Drug Interaction Studies — Study Design, Data Analysis, and Clinical Implications Guidance for Industry. 2017. https://www.fda.gov/downloads/drugs/guidances/ucm292362.pdf

  • Colabufo NA, Berardi F, Cantore M et al (2010) Perspectives of P-glycoprotein modulating agents in oncology and neurodegenerative diseases: Pharmaceutical, biological and diagnostic potentials. J Med Chem 53:1883–1897

    Article  CAS  PubMed  Google Scholar 

  • Colabufo NA, Contino M, Cantore M et al (2018) An innovative small molecule for promoting neuroreparative strategies. RSC Adv 8:5451–5458

    Article  CAS  Google Scholar 

  • Cole S, Bhardwaj G, Gerlach J et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science (80- ) 258:1650–1654

    Article  CAS  Google Scholar 

  • Cunningham VJ, Parker CA, Rabiner EA, Gee AD, Gunn RN (2005) PET studies in drug development: methodological considerations. Drug Discov Today Technol 2:311–315

    Article  CAS  PubMed  Google Scholar 

  • Dauchy S, Dutheil F, Weaver RJ et al (2008) {ABC} transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 107:1518–1528

    Article  CAS  PubMed  Google Scholar 

  • Dazert P, Suofu Y, Grube M et al (2006) Differential regulation of transport proteins in the periinfarct region following reversible middle cerebral artery occlusion in rats. Neuroscience 142:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Allikmets R (2001) Complete characterization of the human ABC gene family. J Bioenerg Biomembr 33(6):475–479

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Hamon Y, Chimini G (2001) The human ATP-binding cassette transporter superfamily. Genome Res

    Google Scholar 

  • Deeken JF, Loscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    Article  CAS  PubMed  Google Scholar 

  • Dewanjee S, Dua T, Bhattacharjee N et al (2017) Natural products as alternative choices for P-glycoprotein (P-gp) inhibition. Molecules 22:871

    Article  PubMed Central  Google Scholar 

  • Dinis-Oliveira RJ, Duarte JA, Remião F, Sánchez-Navarro A, Bastos ML, Carvalho F (2006) Single high dose dexamethasone treatment decreases the pathological score and increases the survival rate of paraquat-intoxicated rats. Toxicology 227:73–85

    Article  CAS  PubMed  Google Scholar 

  • Dörner B, Kuntner C, Bankstahl JP et al (2009) Synthesis and small-animal positron emission tomography evaluation of [11C]-elacridar as a radiotracer to assess the distribution of P-glycoprotein at the blood-brain barrier. J Med Chem 52:6073–6082

    Article  PubMed  PubMed Central  Google Scholar 

  • Dörner B, Kuntner C, Bankstahl JP et al (2011) Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein. Bioorganic Med Chem 19:2190–2198

    Article  Google Scholar 

  • Doyle LA, Yang W, Abruzzo LV et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95:15665–15670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droździk M, Białecka M, Myśliwiec K, Honczarenko K, Stankiewicz J, Sych Z (2003) Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics 13:259–263

    Article  PubMed  Google Scholar 

  • ElAli A, Hermann DM (2010) Apolipoprotein E controls {ATP}-binding cassette transporters in the ischemic brain. Sci Signal 3:ra72–ra72

    Article  PubMed  Google Scholar 

  • Elsinga P, Hendrikse N, Bart J, Vaalburg W, Waarde A (2004) PET studies on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding of drugs within the CNS. Curr Pharm Des

    Google Scholar 

  • Feldmann M, Koepp M (2012) P-glycoprotein imaging in temporal lobe epilepsy: In vivo PET experiments with the Pgp substrate [ 11 C]-verapamil. Epilepsia 53:60–63

    Article  PubMed  Google Scholar 

  • Feldmann M, Asselin MC, Liu J et al (2013) P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol

    Google Scholar 

  • Feng B, Mills JB, Davidson RE et al (2008) In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 36:268–275

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JI, Williams RT, Henderson MJ, Norris MD, Haber M (2016) ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Updat 26:1–9

    Article  PubMed  Google Scholar 

  • Foster JA, McVey Neufeld K-A (2013) Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    Article  CAS  Google Scholar 

  • Fox E, Bates SE (2007) Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther 7:447–459

    Article  CAS  PubMed  Google Scholar 

  • Fusi F, Durante M, Gorelli B, Perrone MG, Nicola Antonio C, Saponara S (2017) MC225, a novel probe for P-glycoprotein PET Imaging at the blood-brain barrier. J Cardiovasc Pharmacol 70:1

    Article  Google Scholar 

  • Galante E, Okamura T, Sander K et al (2014) Development of purine-derived 18F-labeled pro-drug tracers for imaging of MRP1 activity with PET. J Med Chem 57:1023–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gameiro M, Silva R, Rocha-Pereira C et al (2017) Cellular models and in vitro assays for the screening of modulators of P-gp, MRP1 and BCRP. Molecules 22:4–6

    Article  Google Scholar 

  • Gray E, Rice C, Hares K et al (2014) Reductions in neuronal peroxisomes in multiple sclerosis grey matter. Mult Scler J 20:651–659

    Article  Google Scholar 

  • Guideline on the Investigation of Drug Interactions. 2012. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

  • Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21:635–652

    Article  CAS  PubMed  Google Scholar 

  • Haber M, Smith J, Bordow SB et al (2006) Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J Clin Oncol 24:1546–1553

    Article  CAS  PubMed  Google Scholar 

  • Haimeur A, Conseil G, Deeley RG, Cole SPC (2004) The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab 5:21–53

    Article  CAS  PubMed  Google Scholar 

  • Haran JP, Bhattarai SK, Foley SE et al (2019) Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. Pettigrew MM, ed. MBio 10:1–14

    Article  Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10):383–388

    Article  CAS  PubMed  Google Scholar 

  • Hartz AMS, Miller DS, Bauer B (2010) Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer ‘s disease. Mol Pharmacol 77:715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartz AMS, Pekcec A, Soldner ELB, Zhong Y, Schlichtiger J, Bauer B (2017) P-gp protein expression and transport activity in rodent seizure models and human epilepsy. Mol Pharm 14:999–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslam IS, Pitre A, Schuetz JD, Paus R (2013) Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle? Trends Pharmacol Sci 34:599–604

    Article  CAS  PubMed  Google Scholar 

  • Haslam IS, El-Chami C, Faruqi H, Shahmalak A, O’Neill CA, Paus R (2015) Differential expression and functionality of ATP-binding cassette transporters in the human hair follicle. Br J Dermatol 172:1562–1572

    Article  CAS  PubMed  Google Scholar 

  • Häussermann K, Benz B, Gekeler V, Schumacher K, Eichelbaum M (1991) Effects of verapamil enantiomers and major metabolites on the cytotoxicity of vincristine and daunomycin in human lymphoma cell lines. Eur J Clin Pharmacol 40:53–59

    Article  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Pu H, Tian J et al (2005) HIV-Tat protein induces P-glycoprotein expression in brain microvascular endothelial cells. J Neurochem 93:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Hendrikse NH, Schinkel AH, De Vries EGE et al (1998) Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol 124:1413–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hippius H, Neundörfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5(1):101–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosten B, Boisgard R, Jacob A et al (2013) [11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood–brain barrier: a PET study using Bcrp TGEM knockout rats. Eur J Pharm Sci 50:520–525

    Article  CAS  PubMed  Google Scholar 

  • Hsueh W, Kesner AL, Gangloff A et al (2006) Predicting chemotherapy response to paclitaxel with 18F-Fluoropaclitaxel and PET. J Nucl Med 47:1995–1999

    CAS  PubMed  Google Scholar 

  • Jablonski MR, Jacob DA, Campos C et al (2012) Selective increase of two ABC drug efflux transporters at the blood–spinal cord barrier suggests induced pharmacoresistance in ALS. Neurobiol Dis 47:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonski MR, Markandaiah SS, Jacob D et al (2014) Inhibiting drug efflux transporters improves efficacy of ALS therapeutics. Ann Clin Transl Neurol 1:996–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  • Kamel F, Hoppin JA (2004) Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 112:950–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan P, John C, Zoghbi SS et al (2009) Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 86:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan P, Brimacombe KR, Zoghbi SS et al (2010) N-desmethyl-loperamide is selective for P-glycoprotein among three ATP-binding cassette transporters at the blood-brain barrier. Drug Metab Dispos 38:917–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan P, Telu S, Shukla S et al (2011a) The “specific” P-glycoprotein inhibitor tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem Neurosci 2:82–89

    Article  CAS  PubMed  Google Scholar 

  • Kannan P, Brimacombe KR, Kreisl WC et al (2011b) Lysosomal trapping of a radiolabeled substrate of P-glycoprotein as a mechanism for signal amplification in {PET}. Proc Natl Acad Sci 108:2593–2598

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann AM, Krise JP (2007) Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 96:729–746

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Yamasaki T, Konno F et al (2010a) Evaluation of limiting brain penetration related to P-glycoprotein and breast cancer resistance protein using [11C]{GF}120918 by {PET} in mice. Mol Imaging Biol 13:152–160

    Article  Google Scholar 

  • Kawamura K, Konno F, Yui J et al (2010b) Synthesis and evaluation of [11C]{XR}9576 to assess the function of drug efflux transporters using {PET}. Ann Nucl Med 24:403–412

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Yamasaki T, Konno F et al (2011) Synthesis and in vivo evaluation of 18F-fluoroethyl GF120918 and XR9576 as positron emission tomography probes for assessing the function of drug efflux transporters. Bioorg Med Chem 19:861–870

    Article  CAS  PubMed  Google Scholar 

  • Keangpraphun T, Towanabut S, Chinvarun Y, Kijsanayotin P (2015) Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy. J Clin Pharm Ther

    Google Scholar 

  • Kilic E, Spudich A, Kilic Ü et al (2008) ABCC1: a gateway for pharmacological compounds to the ischaemic brain. Brain 131:2679–2689

    Article  PubMed  Google Scholar 

  • de Klerk OL, Willemsen ATM, Roosink M et al (2009) Locally increased P-glycoprotein function in major depression: a PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood-brain barrier. Int J Neuropsychopharmacol 12:895–904

    Article  PubMed  Google Scholar 

  • Kooij G, van Horssen J, de Lange ECM et al (2010) T lymphocytes impair P-glycoprotein function during neuroinflammation. J Autoimmun 34:416–425

    Article  CAS  PubMed  Google Scholar 

  • Kooij G, Mizee MR, van Horssen J et al (2011) Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain 134:555–570

    Article  PubMed  Google Scholar 

  • Koong AC, Chen EY, Giaccia AJ (1994) Hypoxia causes the activation of nuclear factor kB through the phosphorylation of IkBα on tyrosine residues1. Cancer Res

    Google Scholar 

  • Kortekaas R, Leenders KL, van Oostrom JCH et al (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179

    Article  CAS  PubMed  Google Scholar 

  • Kreisl WC, Liow JS, Kimura N et al (2010) P-glycoprotein function at the blood-brain barrier in humans can be quantified with the substrate radiotracer 11C-N-desmethyl-loperamide. J Nucl Med 51:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer H, Gautier J-C, Beaune P, Henderson C, Wolf CR, Eichelbaum M (1993) Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn-Schmiedeberg{\textquotesingle}s Arch Pharmacol 348(3):332–337

    CAS  Google Scholar 

  • Krohn M, Lange C, Hofrichter J et al (2011) Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest 121:3924–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhnke D, Jedlitschky G, Grube M et al (2007) MDR1-P-glycoprotein (ABCB1) mediates transport of Alzheimer’s amyloid-β peptides—implications for the mechanisms of Aβ clearance at the blood–brain barrier. Brain Pathol 17:347–353

    Article  CAS  PubMed  Google Scholar 

  • Kuntner C (2014) Kinetic modeling in pre-clinical positron emission tomography. Z Med Phys 24:274–285

    Article  PubMed  Google Scholar 

  • Kuntner C, Stout D (2014) Quantitative preclinical PET imaging: opportunities and challenges. Front Phys 2:1–12

    Article  Google Scholar 

  • Kuntner C, Bankstahl JP, Bankstahl M et al (2009) Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[11C]verapamil {PET}. Eur J Nucl Med Mol Imaging 37:942–953

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuntner C, Bankstahl JP, Bankstahl M et al (2010) Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[11C]verapamil PET. Eur J Nucl Med Mol Imaging 37:942–953

    Article  CAS  PubMed  Google Scholar 

  • Laberge P, Martineau P, Sebajang H, Lalonde G (2001) Verapamil intoxication after substitution of immediate-release for extended-release verapamil. Am J Heal Pharm 58:402–405

    Article  CAS  Google Scholar 

  • Laćan G, Plenevaux A, Rubins DJ et al (2008) Cyclosporine, a P-glycoprotein modulator, increases [18F]MPPF uptake in rat brain and peripheral tissues: microPET and ex vivo studies. Eur J Nucl Med Mol Imaging 35:2256–2266

    Article  PubMed  Google Scholar 

  • Lai BCL, Marion SA, Teschke K, Tsui JKC (2002) Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism Relat Disord 8:297–309

    Article  CAS  PubMed  Google Scholar 

  • Lam FC, Liu R, Lu P et al (2001) β-Amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–158

    Article  CAS  PubMed  Google Scholar 

  • Langer O (2016) Use of PET imaging to evaluate transporter-mediated drug-drug interactions. J Clin Pharmacol:S143–S156

    Google Scholar 

  • Langer O, Bauer M, Hammers A et al (2007) Pharmacoresistance in epilepsy: a pilot PET study with the P-glycoprotein substrate R -[ 11 C]verapamil. Epilepsia 48:1774–1784

    Article  CAS  PubMed  Google Scholar 

  • Lazarova N, Zoghbi SS, Hong J et al (2008) Synthesis and evaluation of [N-methyl-11C]N-desmethyl-loperamide as a new and improved {PET} radiotracer for imaging P-gp function. J Med Chem 51:6034–6043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarowski A, Caltana L, Merelli A, Rubio MD, Ramos AJ, Brusco A (2007) Neuronal mdr-1 gene expression after experimental focal hypoxia: A new obstacle for neuroprotection? J Neurol Sci 258(1–2):84–92

    Article  CAS  PubMed  Google Scholar 

  • Le Bars D, Lemaire C, Ginovart N et al (1998) High-yield radiosynthesis and preliminary in vivo evaluation of p-[18F]MPPF, a fluoro analog of WAY-100635. Nucl Med Biol 25:343–350

    Article  PubMed  Google Scholar 

  • Lee C-M, Farde L (2006) Using positron emission tomography to facilitate CNS drug development. Trends Pharmacol Sci 27:310–316

    Article  CAS  PubMed  Google Scholar 

  • Leopoldo M, Contino M, Berardi F, Perrone R, Colabufo NA (2014) PET radiotracers for imaging P-glycoprotein: the challenge for early diagnosis in AD. ChemMedChem 9:38–42

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang H, Assaraf YG et al (2016) Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 27:14–29

    Article  CAS  PubMed  Google Scholar 

  • Linton KJ, Higgins CF (2007) Structure and function of ABC transporters: the ATP switch provides flexible control. Pflügers Arch - Eur J Physiol 453:555–567

    Article  CAS  Google Scholar 

  • Liu X (2019) ABC family transporters. In: Liu X, Pan G (eds) Drug transporters in drug disposition, effects and Toxicity. Springer Singapore, Singapore, pp 13–100

    Chapter  Google Scholar 

  • Liu X, Ma T, Qu B, Ji Y, Liu Z (2013) Pesticide-induced gene mutations and Parkinson disease risk: a meta-analysis. Genet Test Mol Biomarkers 17:826–832

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chi N, Zhang JY, Zhu W, Bian YS, Chen HG (2015) Isolation and characterization of cancer stem cells from medulloblastoma. Genet Mol Res 14:3355–3361

    Article  CAS  PubMed  Google Scholar 

  • Löscher W, Potschka H (2005a) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602

    Article  PubMed  Google Scholar 

  • Löscher W, Potschka H (2005b) Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2:86–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Löscher W, Potschka H (2005c) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76:22–76

    Article  PubMed  Google Scholar 

  • Loscher W, Luna-Tortos C, Romermann K, Fedrowitz M (2012) Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr Pharm Des 17(26):2808–2828

    Article  Google Scholar 

  • Lubberink M (2016) Kinetic models for measuring P-glycoprotein function at the blood-brain barrier with positron emission tomography. Curr Pharm Des 22:5786–5792

    Article  CAS  PubMed  Google Scholar 

  • Lund M, Petersen TS, Dalhoff KP (2017) Clinical implications of P-glycoprotein modulation in drug-drug interactions. Drugs 77:859–883

    Article  CAS  PubMed  Google Scholar 

  • Luurtsema G, Windhorst AD, Mooijer MPJ, Herscheid JDM, Lammertsma AA, Franssen EJF (2002) Fully automated high yield synthesis of (R)- and (S)-[11C]verapamil for measuring P-glycoprotein function with positron emission tomography. J Label Compd Radiopharm 45:1199–1207

    Article  CAS  Google Scholar 

  • Luurtsema G, Molthoff CFM, Windhorst AD et al (2003) (R)- and (S)-[11C]verapamil as {PET}-tracers for measuring P-glycoprotein function: in vitro and in vivo evaluation. Nucl Med Biol 30:747–751

    Article  CAS  PubMed  Google Scholar 

  • Luurtsema G, Molthoff CFM, Schuit RC, Windhorst AD, Lammertsma AA, Franssen EJF (2005a) Evaluation of (R)-[11C]verapamil as {PET} tracer of P-glycoprotein function in the blood{\textendash}brain barrier: kinetics and metabolism in the rat. Nucl Med Biol 32:87–93

    Article  CAS  PubMed  Google Scholar 

  • Luurtsema G, Molthoff CFM, Schuit RC, Windhorst AD, Lammertsma AA, Franssen EJF (2005b) Evaluation of (R)-[11C]verapamil as PET tracer of P-glycoprotein function in the blood-brain barrier: kinetics and metabolism in the rat. Nucl Med Biol 32:87–93

    Article  CAS  PubMed  Google Scholar 

  • Luurtsema G, Schuit RC, Klok RP et al (2009) Evaluation of [11C]laniquidar as a tracer of P-glycoprotein: radiosynthesis and biodistribution in rats. Nucl Med Biol 36:643–649

    Article  CAS  PubMed  Google Scholar 

  • Luurtsema G, Elsinga P, Dierckx R, Boellaard R, Waarde A (2016) PET tracers for imaging of ABC transporters at the blood-brain barrier: principles and strategies. Curr Pharm Des 22:5779–5785

    Article  CAS  PubMed  Google Scholar 

  • Macé S, Cousin E, Ricard S et al (2005) ABCA2 is a strong genetic risk factor for early-onset Alzheimer’s disease. Neurobiol Dis 18:119–125

    Article  PubMed  Google Scholar 

  • Macintyre AC, Cutler DJ (1988) The potential role of lysosomes in tissue distribution of weak bases. Biopharm Drug Dispos 9:513–526

    Article  CAS  PubMed  Google Scholar 

  • Mahringer A, Fricker G (2016) ABC transporters at the blood-brain barrier. Expert Opin Drug Metab Toxicol 12:499–508

    Article  CAS  PubMed  Google Scholar 

  • Mairinger S, Langer O, Kuntner C et al (2010) Synthesis and in vivo evaluation of the putative breast cancer resistance protein inhibitor [11C]methyl 4-((4-(2-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl)phenyl)amino-carbonyl)-2-(quinoline-2-carbonylamino)benzoate. Nucl Med Biol 37:637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansor S, Boellaard R, Froklage FE et al (2015) Quantification of dynamic 11C-phenytoin PET studies. J Nucl Med 56:1372–1377

    Article  CAS  PubMed  Google Scholar 

  • Mao Q, Unadkat JD (2015) Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J 17:65–82

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Berridge G, Higgins CF, Mistry P, Charlton P, Callaghan R (2000) Communication between multiple drug binding sites on P-glycoprotein. Mol Pharmacol 58:624–632

    Article  CAS  PubMed  Google Scholar 

  • Marzolini C, Paus E, Buclin T, Kim RB (2004) Polymorphisms in human MDR1 (P-glycoprotein): Recent advances and clinical relevance. Clin Pharmacol Ther

    Google Scholar 

  • Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McTavish D, Sorkin EM (1989) Verapamil. Drugs 38:19–76

    Article  CAS  PubMed  Google Scholar 

  • Milane A, Fernandez C, Dupuis L et al (2010) P-glycoprotein expression and function are increased in an animal model of amyotrophic lateral sclerosis. Neurosci Lett 472:166–170

    Article  CAS  PubMed  Google Scholar 

  • Miller DS, Bauer B, Hartz AMS (2008) Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 60:196–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moerman L, Dumolyn C, Boon P, De Vos F (2012) The influence of mass of [11C]-laniquidar and [11C]-N-desmethyl-loperamide on P-glycoprotein blockage at the blood{\textendash}brain barrier. Nucl Med Biol 39:121–125

    Article  CAS  PubMed  Google Scholar 

  • Morris ED, Endres CJ, Schmidt KC, Christian BT, Muzic RF, Fisher RE. Kinetic modeling in positron emission tomography. In: Emission tomography. 46. Elsevier; Amsterdam 2004:499–540

    Google Scholar 

  • Morris ME, Rodriguez-Cruz V, Felmlee MA (2017) SLC and ABC transporters: expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers. AAPS J 19(5):1317–1331

    Article  PubMed  PubMed Central  Google Scholar 

  • Muzi M, Mankoff DA, Link JM et al (2009) Imaging of cyclosporine inhibition of P-glycoprotein activity using 11C-verapamil in the brain: studies of healthy humans. J Nucl Med 50:1267–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Z, Bikadi Z, Rosenberg MF, Mao Q (2010) Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 11:603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien FE, Dinan TG, Griffin BT, Cryan JF (2012) Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol 165:289–312

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien FE, Moloney GM, Scott KA et al (2015) Chronic P-glycoprotein inhibition increases the brain concentration of escitalopram: potential implications for treating depression. Pharmacol Res Perspect 3:1–11

    Google Scholar 

  • Okamura T, Kikuchi T, Okada M et al (2009) Noninvasive and quantitative assessment of the function of multidrug resistance-associated protein 1 in the living brain. J Cereb Blood Flow Metab 29:504–511

    Article  CAS  PubMed  Google Scholar 

  • Osgood D, Miller MC, Messier AA, Gonzalez L, Silverberg GD (2017) Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier. Neurobiol Aging 57:178–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019;0:1–23

    Google Scholar 

  • Parrish K, Sarkaria J, Elmquist W (2015) Improving drug delivery to primary and metastatic brain tumors: Strategies to overcome the blood-brain barrier. Clin Pharmacol Ther 97:336–346

    Article  CAS  PubMed  Google Scholar 

  • Passchier J, van Waarde A, Doze P, Elsinga PH, Vaalburg W (2000) Influence of P-glycoprotein on brain uptake of [18F]MPPF in rats. Eur J Pharmacol 407:273–280

    Article  CAS  PubMed  Google Scholar 

  • Pauli-Magnus C, von Richter O, Burk O et al (2000) Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther 293:376–382

    CAS  PubMed  Google Scholar 

  • Pereira CD, Martins F, Wiltfang J, da Cruz e Silva OAB, Rebelo S (2017) ABC transporters are key players in Alzheimer’s disease. J Alzheimers Dis 61:463–485

    Article  Google Scholar 

  • Pezzoli G, Cereda E (2013) Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 80:2035–2041

    Article  CAS  PubMed  Google Scholar 

  • Pike VW (2009) PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci 30:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porro A, Haber M, Diolaiti D et al (2010) Direct and coordinate regulation of ATP-binding cassette transporter genes by Myc factors generates specific transcription signatures that significantly affect the chemoresistance phenotype of cancer cells. J Biol Chem 285:19532–19543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottier G, Marie S, Goutal S et al (2016) Imaging the impact of the P-glycoprotein (ABCB1) function on the brain kinetics of metoclopramide. J Nucl Med 57:309–314

    Article  CAS  PubMed  Google Scholar 

  • Qosa H, Miller DS, Pasinelli P, Trotti D (1628) Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res 2015:298–316

    Google Scholar 

  • Raaphorst RM, Luurtsema G, Schuit RC et al (2017a) Synthesis and evaluation of new fluorine-18 labeled verapamil analogs to investigate the function of P-glycoprotein in the blood–brain barrier. ACS Chem Neurosci 8:1925–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaphorst RM, Savolainen H, Cantore M et al (2017b) Comparison of in vitro assays in selecting radiotracers for in vivo P-glycoprotein PET imaging. Pharmaceuticals (Basel) 10:1–25

    Article  Google Scholar 

  • Rahmim A, Lodge MA, Karakatsanis NA et al (2019) Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging 46:501–518

    Article  PubMed  Google Scholar 

  • Riddell DR, Zhou H, Comery TA et al (2007) The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Neurosci 34:621–628

    Article  CAS  PubMed  Google Scholar 

  • Robillard KR, Hoque MT, Bendayan R (2014) Expression of ATP-binding cassette membrane transporters in a HIV-1 transgenic rat model. Biochem Biophys Res Commun 444:531–536

    Article  CAS  PubMed  Google Scholar 

  • Rosenhagen MC, Uhr M (2011) The clinical impact of ABCB1 polymorphisms on the treatment of psychiatric diseases. Curr Pharm Des 17:2843–2851

    Article  CAS  PubMed  Google Scholar 

  • Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG (2018) Efflux proteins at the blood–brain barrier: review and bioinformatics analysis. Xenobiotica 48:506–532

    Article  CAS  PubMed  Google Scholar 

  • Sane R, Wu S-P, Zhang R, Gallo JM (2014) The effect of ABCG2 and ABCC4 on the pharmacokinetics of methotrexate in the brain. Drug Metab Dispos 42:537–540

    Article  PubMed  PubMed Central  Google Scholar 

  • Savolainen H, Cantore M, Colabufo NA, Elsinga PH, Windhorst AD, Luurtsema G (2015) Synthesis and preclinical evaluation of three novel fluorine-18 labeled radiopharmaceuticals for P-glycoprotein PET imaging at the blood-brain barrier. Mol Pharm 12:2265–2275

    Article  CAS  PubMed  Google Scholar 

  • Savolainen H, Windhorst AD, Elsinga PH et al (2017a) Evaluation of [ 18 F]MC225 as a PET radiotracer for measuring P-glycoprotein function at the blood–brain barrier in rats: Kinetics, metabolism, and selectivity. J Cereb Blood Flow Metab 37:1286–1298

    Article  CAS  PubMed  Google Scholar 

  • Savolainen H, Windhorst AD, Elsinga PH et al (2017b) Evaluation of [18F]MC225 as a PET radiotracer for measuring P-glycoprotein function at the blood-brain barrier in rats: kinetics, metabolism, and selectivity. J Cereb Blood Flow Metab 37:1286–1298

    Article  CAS  PubMed  Google Scholar 

  • Schaheen L (2006) Suppression of the cup-5 mucolipidosis type IV-related lysosomal dysfunction by the inactivation of an ABC transporter in C. elegans. Development 133:3939–3948

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Schachter SC (2014) Drug treatment of epilepsy in adults. BMJ 348:g254–g254

    Article  PubMed  Google Scholar 

  • Shapiro AB, Ling V (1997) Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem 250:130–137

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AB, Fox K, Lam P, Ling V (2001) Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Eur J Biochem 259:841–850

    Article  Google Scholar 

  • Sharom FJ (2008) {ABC} multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127

    Article  CAS  Google Scholar 

  • Silva R, Sousa E, Carmo H et al (2014) Induction and activation of P-glycoprotein by dihydroxylated xanthones protect against the cytotoxicity of the P-glycoprotein substrate paraquat. Arch Toxicol 88:937–951

    Article  CAS  PubMed  Google Scholar 

  • Silva R, Vilas-Boas V, Carmo H et al (2015) Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 149:1–123

    Article  CAS  PubMed  Google Scholar 

  • Spudich A, Kilic E, Xing H et al (2006) Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat Neurosci 9:487–488

    Article  CAS  PubMed  Google Scholar 

  • Stavchansky SA, Tilbury RS, McDonald JM, Ting CT, Kostenbauder HB (1978) In vivo distribution of carbon-11 phenytoin and its major metabolite, and their use in scintigraphic imaging. J Nucl Med 19:936–941

    CAS  PubMed  Google Scholar 

  • Steece-Collier K, Maries E, Kordower JH (2002) Etiology of Parkinson’s disease: genetics and environment revisited. Proc Natl Acad Sci U S A 99:13972–13974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers MA, Moore JL, McAuley JW (2004) Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann Pharmacother 38:1631–1634

    Article  PubMed  Google Scholar 

  • Syvänen S, Eriksson J (2013) Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem Neurosci 4:225–237

    Article  PubMed  Google Scholar 

  • Syvänen S, Russmann V, Verbeek J et al (2013) [11C]quinidine and [11C]laniquidar PET imaging in a chronic rodent epilepsy model: Impact of epilepsy and drug-responsiveness. Nucl Med Biol 40:764–775

    Article  PubMed  Google Scholar 

  • Szabo L (1989) (S)-emopamil, a novel calcium and serotonin antagonist for the treatment of cerebrovascular disorders. 2nd communication: brain penetration, cerebral vascular and metabolic effects. Arzneimittelforschung 39:309–314

    CAS  PubMed  Google Scholar 

  • Tamaki A, Ierano C, Szakacs G, Robey RW, Bates SE (2011) The controversial role of ABC transporters in clinical oncology. Essays Biochem 50(1):209–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Hartz AMS, Bauer B (2017) Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol

    Google Scholar 

  • Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15:647–652

    Article  CAS  PubMed  Google Scholar 

  • Tournier N, Cisternino S, Peyronneau M-A et al (2012) Discrepancies in the P-glycoprotein-mediated transport of 18F-MPPF: a pharmacokinetic study in mice and non-human primates. Pharm Res 29:2468–2476

    Article  CAS  PubMed  Google Scholar 

  • Tournier N, Stieger B, Langer O (2018) Imaging techniques to study drug transporter function in vivo. Pharmacol Ther 189:104–122

    Article  CAS  PubMed  Google Scholar 

  • Tournier N, Bauer M, Pichler V et al (2019) Impact of P-glycoprotein function on the brain kinetics of the weak substrate 11 C-metoclopramide assessed with PET imaging in humans. J Nucl Med 60:985–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyohara J (2016) Importance of P-gp PET imaging in pharmacology. Curr Pharm Des 22:5830–5836

    Article  CAS  PubMed  Google Scholar 

  • Toyohara J, Okamoto M, Aramaki H, Zaitsu Y, Shimizu I, Ishiwata K (2016) ( R )-[ 11 C]Emopamil as a novel tracer for imaging enhanced P-glycoprotein function. Nucl Med Biol 43:52–62

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y et al (2011) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117:333–345

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Nakagawa T, Huang C-l et al (2009) The expression of P-glycoprotein is increased in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model. Neuropathol Appl Neurobiol 35:147–155

    Article  CAS  PubMed  Google Scholar 

  • Verbeek J, Eriksson J, Syvänen S et al (2012a) [11C]phenytoin revisited: synthesis by [11C]CO carbonylation and first evaluation as a P-gp tracer in rats. EJNMMI Res 2:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbeek J, Syvänen S, Schuit RC et al (2012b) Synthesis and preclinical evaluation of [11C]D617, a metabolite of (R)-[11C]verapamil. Nucl Med Biol 39:530–539

    Article  CAS  PubMed  Google Scholar 

  • Verbeek J, Eriksson J, Syvänen S et al (2018) Synthesis and preliminary preclinical evaluation of fluorine-18 labelled isatin-4-(4-methoxyphenyl)-3-thiosemicarbazone ([18F]4FIMPTC) as a novel PET tracer of P-glycoprotein expression. EJNMMI Radiopharm Chem 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  • van Vliet EA, Redeker S, Aronica E, Edelbroek PM, Gorter JA (2005) Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia 46:1569–1580

    Article  PubMed  Google Scholar 

  • Vogelgesang S, Jedlitschky G (2014) In vitro models of the human blood-brain barrier and the impact of efflux transporters on neurological disorders: the work of Cioni et al. (2012). Front Psych 5:128

    Google Scholar 

  • Vogelgesang S, Cascorbi I, Schroeder E et al (2002a) Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541

    Article  CAS  PubMed  Google Scholar 

  • Vogelgesang S, Cascorbi I, Schroeder E et al (2002b) Deposition of Alzheimer{\textquotesingle}s ??-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541

    Article  CAS  PubMed  Google Scholar 

  • Vogelgesang S, Glatzel M, Walker LC, Kroemer HK, Aguzzi A, Warzok RW (2006) Cerebrovascular P-glycoprotein expression is decreased in Creutzfeldt–Jakob disease. Acta Neuropathol 111:436–443

    Article  CAS  PubMed  Google Scholar 

  • Volk HA, Löscher W (2005) Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain 128:1358–1368

    Article  PubMed  Google Scholar 

  • Waghray D, Zhang Q (2018) Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment. J Med Chem 61:5108–5121

    Article  CAS  PubMed  Google Scholar 

  • Wagner CC, Bauer M, Karch R et al (2009) A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and {PET}. J Nucl Med 50:1954–1961

    Article  PubMed  PubMed Central  Google Scholar 

  • Wanek T, Kuntner C, Bankstahl JP et al (2011) A comparative small-animal {PET} evaluation of [11C]tariquidar, [11C]elacridar and (R)-[11C]verapamil for detection of P-glycoprotein-expressing murine breast cancer. Eur J Nucl Med Mol Imaging 39:149–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Wanek T, Kuntner C, Bankstahl JP et al (2012) A novel PET protocol for visualization of breast cancer resistance protein function at the blood-brain barrier. J Cereb Blood Flow Metab 32:2002–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanek T, Mairinger S, Langer O (2013) Radioligands targeting P-glycoprotein and other drug efflux proteins at the blood-brain barrier. J Label Compd Radiopharm 56:68–77

    Article  CAS  Google Scholar 

  • Wanek T, Römermann K, Mairinger S et al (2015) Factors governing P-glycoprotein-mediated drug-drug interactions at the blood-brain barrier measured with positron emission tomography. Mol Pharm 12:3214–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q (2015) ABCB1 gene C3435T polymorphism and drug resistance in epilepsy: evidence based on 8604 subjects. Med Sci Monit

    Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci

    Google Scholar 

  • Wang G-X, Wang D-W, Liu Y, Ma Y-H (2016) Intractable epilepsy and the P-glycoprotein hypothesis. Int J Neurosci 126:385–392

    Article  CAS  PubMed  Google Scholar 

  • Westerlund M, Belin AC, Olson L, Galter D (2008) Expression of multi-drug resistance 1 mRNA in human and rodent tissues: reduced levels in Parkinson patients. Cell Tissue Res 334:179–185

    Article  CAS  PubMed  Google Scholar 

  • Westerlund M, Belin AC, Anvret A et al (2009) Association of a polymorphism in the ABCB1 gene with Parkinson’s disease. Park Relat Disord

    Google Scholar 

  • Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607

    Article  CAS  PubMed  Google Scholar 

  • Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26

    Google Scholar 

  • Wolf A, Bauer B, Hartz AMS (2012) ABC transporters and the Alzheimer’s disease enigma. Front Psych 3:1–14

    Google Scholar 

  • Wulkersdorfer B, Wanek T, Bauer M, Zeitlinger M, Müller M, Langer O (2014) Using positron emission tomography to study transporter-mediated drug–drug interactions in tissues. Clin Pharmacol Ther 96:206–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong H, Callaghan D, Jones A et al (2009) ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for A 1-40 peptides. J Neurosci 29:5463–5475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Välitalo PA, Wong YC et al (2018) Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. Eur J Pharm Sci 112:168–179

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Liu H, Liu X et al (2008) Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro. Neurosci Lett 434:299–303

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang YD, Strong JM, Reynolds KS, Huang S-M (2008) A regulatory viewpoint on transporter-based drug interactions. Xenobiotica 38:709–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Kwan P, Zuo Z, Baum L (2010) In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci 86:899–905

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV (2015) Establishment and dysfunction of the blood-brain barrier. Cell 163:1064–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Hou D, Feng X, Lin F, Luo J (2017) Role of ABC transporters in the pathology of Alzheimer’s disease. Rev Neurosci 28(2):155–159

    Article  CAS  PubMed  Google Scholar 

  • Zhou S-F (2008) Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38:802–832

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci

    Google Scholar 

  • Zoghbi SS, Liow J-S, Yasuno F et al (2008) 11C-loperamide and its N-desmethyl radiometabolite are avid substrates for brain permeability-glycoprotein efflux. J Nucl Med 49:649–656

    Article  CAS  PubMed  Google Scholar 

  • Zoufal V, Mairinger S, Krohn M et al (2020) Measurement of cerebral ABCC1 transport activity in wild-type and APP/PS1-21 mice with positron emission tomography. J Cereb Blood Flow Metab 40(5):954–965

    Article  CAS  PubMed  Google Scholar 

  • Zschiedrich K, König IR, Brüggemann N et al (2009) MDR1 variants and risk of Parkinson disease. J Neurol 256:115–120

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Luurtsema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Varela, L. et al. (2021). PET Imaging of ABC Transporters at the Blood-Brain Barrier. In: Dierckx, R.A., Otte, A., de Vries, E.F., van Waarde, A., Lammertsma, A.A. (eds) PET and SPECT of Neurobiological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-53176-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53176-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53175-1

  • Online ISBN: 978-3-030-53176-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics