Skip to main content

A Shared Neural Encoding Model for the Prediction of Subject-Specific fMRI Response

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

Abstract

The increasing popularity of naturalistic paradigms in fMRI (such as movie watching) demands novel strategies for multi-subject data analysis, such as use of neural encoding models. In the present study, we propose a shared convolutional neural encoding method that accounts for individual-level differences. Our method leverages multi-subject data to improve the prediction of subject-specific responses evoked by visual or auditory stimuli. We showcase our approach on high-resolution 7T fMRI data from the Human Connectome Project movie-watching protocol and demonstrate significant improvement over single-subject encoding models. We further demonstrate the ability of the shared encoding model to successfully capture meaningful individual differences in response to traditional task-based facial and scenes stimuli. Taken together, our findings suggest that inter-subject knowledge transfer can be beneficial to subject-specific predictive models. (Our code is available at https://github.com/mk2299/SharedEncoding_MICCAI.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., Malach, R.: Intersubject synchronization of cortical activity during natural vision. Science 303(5664), 1634–1640 (2004)

    Article  Google Scholar 

  2. Sonkusare, S., Breakspear, M., Guo, C.: Naturalistic stimuli in neuroscience: critically acclaimed. Trends Cogn. Sci. (Regul. Ed.) 23(8), 699–714 (2019)

    Article  Google Scholar 

  3. Schultz, J., Pilz, K.S.: Natural facial motion enhances cortical responses to faces. Exp. Brain Res. 194(3), 465–475 (2009)

    Article  Google Scholar 

  4. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  5. Hasson, U., Malach, R., Heeger, D.J.: Reliability of cortical activity during natural stimulation. Trends Cogn. Sci. (Regul. Ed.) 14(1), 40–48 (2010)

    Article  Google Scholar 

  6. Chen, P.-H.C., Chen, J., Yeshurun, Y., Hasson, U., Haxby, J.V., Ramadge, P. J.. A reduced-dimension fMRI shared response model. In: NIPS (2015)

    Google Scholar 

  7. Varoquaux, G., Poldrack, R.A.: Predictive models avoid excessive reductionism in cognitive neuroimaging. Curr. Opin. Neurobiol. 55, 1–6 (2019)

    Article  Google Scholar 

  8. Kell, A.J.E., Yamins, D.L., Shook, E.N., Norman-Haignere, S.V., McDermott, J.H.: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy. Neuron 98(3), 630–644 (2018)

    Article  Google Scholar 

  9. Guclu, U., van Gerven, M.A.: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35(27), 10005–10014 (2015)

    Article  Google Scholar 

  10. Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., DiCarlo, J.J.: Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111(23), 8619–8624 (2014)

    Article  Google Scholar 

  11. Wen, H., Shi, J., Zhang, Y., Lu, K.H., Cao, J., Liu, Z.: Neural encoding and decoding with deep learning for dynamic natural vision. Cereb. Cortex 28(12), 4136–4160 (2018)

    Article  Google Scholar 

  12. Dubois, J., Adolphs, R.: Building a science of individual differences from fMRI. Trends Cogn. Sci. (Regul. Ed.) 20(6), 425–443 (2016)

    Article  Google Scholar 

  13. Wen, H., Shi, J., Chen, W., Liu, Z.: Transferring and generalizing deep-learning-based neural encoding models across subjects. NeuroImage 176, 152–163 (2018)

    Article  Google Scholar 

  14. Güçlü, U., van Gerven, M.A.J.: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects. NeuroImage 145, 329–336 (2017)

    Article  Google Scholar 

  15. Lin, T.-Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2016)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)

    Google Scholar 

  17. Hershey, S., et al.: CNN architectures for large-scale audio classification. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 131–135 (2016)

    Google Scholar 

  18. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  19. Abu-El-Haija, S., et al.: Youtube-8m: a large-scale video classification benchmark. ArXiv arxiv:1609.08675 (2016)

  20. Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron (2018). https://github.com/facebookresearch/detectron

  21. Hershley, S., et al.: Models for audioset: a large scale dataset of audio events (2016). https://github.com/tensorflow/models/tree/master/research/audioset/vggish

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR arxiv:1412.6980 (2014)

  23. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  24. Vu, A.T., et al.: Tradeoffs in pushing the spatial resolution of fMRI for the 7T human connectome project. Neuroimage 154, 23–32 (2017)

    Article  Google Scholar 

  25. Tavor, I., Jones, O.P., Mars, R.B., Smith, S.M., Behrens, T.E., Jbabdi, S.: Task-free MRI predicts individual differences in brain activity during task performance. Science 352(6282), 216–220 (2016)

    Article  Google Scholar 

  26. Kanwisher, N., McDermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17(11), 4302–4311 (1997)

    Article  Google Scholar 

  27. Nasr, S., et al.: Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31(39), 13771–13785 (2011)

    Article  Google Scholar 

  28. Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01LM012719 (MS), R01AG053949 (MS), R21NS10463401 (AK), R01NS10264601A1 (AK), the NSF NeuroNex grant 1707312 (MS), the NSF CAREER 1748377 grant (MS) and Anna-Maria and Stephen Kellen Foundation Junior Faculty Fellowship (AK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Khosla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khosla, M., Ngo, G.H., Jamison, K., Kuceyeski, A., Sabuncu, M.R. (2020). A Shared Neural Encoding Model for the Prediction of Subject-Specific fMRI Response. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics