Skip to main content

Environment Safety Improving Due to Railway Noise Management Decreasing of RMR Method Adaptation

  • Chapter
  • First Online:
Ecology in Transport: Problems and Solutions

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 124))

Abstract

World Health Organization, as well as number of scientists and doctors indicate in their works that during last few decades, the noise has a significant impact on the environment, especially noise from quickly developing transportation systems [1, 2]. Environment noise pollution is being aligned in the same row with the air, water and soil pollution. In EU member states, the EC recommended interim method is being used (RMR, Reken—en Meetvoorschrift Railverkeerslawaai) [3]. It is obvious that RMR modelling method has certain applicability limitations, especially taking into account it’s empirical character. If differences of local railway system are not taken into account correctly, the modelled noise levels can be significantly underpredicted. The monograph’s objective is to qualitatively evaluate the applicability of RMR method, to adopt it to Latvian Railway conditions [4, 5], to elaborate guidelines for simplified adaptation and to develop recommendations for RMR method improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO European Centre for Environment and Health: Burden of disease from environmental noise Quantification of healthy life years lost in Europe. URL: http://www.euro.who.int/__data/assets/pdf_file/0008/136466/e94888.pdf

  2. World Health Organization: Night noise guidelines for Europe. URL: http://www.euro.who.int/__data/assets/pdf_file/0017/43316/E92845.pdf

  3. Nederland Ministerie van Volkshuisvesting: Reken - en Meetvoorschrift Railverkeerslawaai (1996) URL: stillerverkeer.nl (In Dutch: Netherlands Ministry of Housing: Rail Traffic Noise Calculation and Measurement Regulations)

    Google Scholar 

  4. Latvijas Republikas Ministru kabinets: MK noteikumi. Nr. 16. Trokšņa novērtēšanas un pārvaldības kārtība. URL: https://likumi.lv/ta/id/263882-troksna-novertesanas-un-parvaldibas-kartiba (In Latvian: Cabinet of Ministers of the Republic of Latvia: Rules of Cabinet of Ministers. No. 16. Noise assessment and management procedures)

  5. Latvijas Republikas Ministru kabinets: MK noteikumi. Nr. 597. Transporta enerģijas aprites cikla siltumnīcefekta gāzu emisiju daudzuma un tā samazinājuma aprēķināšanas un ziņošanas kārtība. URL: https://likumi.lv/ta/id/301851-transporta-energijas-aprites-cikla-siltumnicefekta-gazu-emisiju-daudzuma-un-ta-samazinajuma-aprekinasanas-un-zinosanas-kartiba (In Latvian: Cabinet of Ministers of the Republic of Latvia: Rules of Cabinet of Ministers. No. 597. Procedures for the calculation and reporting of greenhouse gas emissions and reductions in the life cycle of transport energy)

  6. Panchenko S, Trubchaninova K, Korago I (2019) Minimization method for average packet delay in data transmission networks. Procedia Comput Sci 149:177–184

    Article  Google Scholar 

  7. LVS ISO 9613-2:2004 (2004) Akustika. Skaņas vājinājums, tai izplatoties ārējā vidē. 2. daļa: Vispārējā aprēķinu metode. Latvijas Valsts Standarts (In Latvian: acoustics. Sound attenuation as it propagates into the external environment. Part 2: general method of calculation. Latvian State Standard)

    Google Scholar 

  8. LVS EN ISO 3095:2005 (2005) Dzelzceļa aprīkojums. Akustika. Dzelzceļa ritošā sastāva radītā trokšņa mērīšana. Latvijas Valsts Standards (In Latvian: Railway equipment. Acoustics. Measurement of noise emitted by railway rolling stock. Latvian State Standard)

    Google Scholar 

  9. Thompson DJ, Janssens MHA, de Beer FG (1999) TWINS track–wheel interaction noise software, theoretical manual. Ver. 3.0. Silent Freight/silent track report. Den haag: TNO-report

    Google Scholar 

  10. Thompson DJ, Hemsworth B, Vincent N (1996) Experimental validation of the TWINS prediction program for rolling noise, part 1: description of the model and method. J Sound Vib 193(1):123–135

    Article  Google Scholar 

  11. Janssens MHA, Dittrich MG, de Beer FG, Jones CJC (2006) Railway noise measurement method for pass-by noise, total effective roughness, transfer functions and track spatial decay. J Sound Vib 293(3–5):1007–1028

    Article  Google Scholar 

  12. Thompson DJ, Jones CJC (2001) Study on the sensitivity of the indirect roughness method to variations in track and wheel parameters. STAIRRS report. ISVR contract report 01/21

    Google Scholar 

  13. Thompson DJ, Jones CJC (2001) The assessment of various vehicles for possible use as a quiet vehicle in order to measure track noise. STAIRRS report. ISVR contract report 01/20

    Google Scholar 

  14. de Beer FG, Jansen HW, Dittrich MG (2002) STAIRRS level 2 measurement methods: indirect roughness and transfer function. STAIRRS report. TNO-RPT-020079

    Google Scholar 

  15. Popov V (2019) Cross-polarization effect of radio waves propagation by forest vegetation in wireless communication systems on transport. Procedia Comput Sci 149:195–201

    Article  Google Scholar 

  16. Bruhl S, Roder A (2000) Acoustic noise source modelling based on microphone array measurements. J Sound Vib 231(3):611–618

    Article  Google Scholar 

  17. Schulte-Werning B, Jager K, Strube R, Willenbrink L (2003) Recent developments in noise research at Deutsche Bahn (noise assessment, source localization and specially monitored track). J Sound Vib 267(3):689–699

    Article  Google Scholar 

  18. Popov V, Skudnovs V, Shevchenko A, Vasiljevs A (2019) Railway heterogeneous communication network model investigations. Procedia Comput Sci 149:223–230

    Article  Google Scholar 

  19. Hanson C, Barsikow B (2000) Noise sources on Amtrak’s high speed train. In: Proceedings of internoise. Nice, pp 1057–1060

    Google Scholar 

  20. Popov V, Shevchenko A (2019) Analysis of standards and norms of electromagnetic irradiation levels in wireless communication systems on railway transport. Procedia Comput Sci 149:239–245

    Article  Google Scholar 

  21. Evseev D, Medvedev B, Medvedev P, Strautmanis G, Samoshkin S (2019) Acoustic emission approach to determining survivability in fatigue tests. Procedia Comput Sci 149:282–287

    Article  Google Scholar 

  22. Gavrilov P, Ivanov V (2019) Comparative analysis of P-65 (A, T) type weld joint metal structure. Procedia Comput Sci 149:314–318

    Article  Google Scholar 

  23. Dine C, Fodiman P (2000) New experimental methods for improved characterization of the noise emission levels of railway systems. J Sound Vib 231(3):631–638

    Article  Google Scholar 

  24. Frid A (2000) A quick and practical experimental method for separating wheel and track contributions to rolling noise. J Sound Vib 231(3):619–629

    Article  Google Scholar 

  25. Dittrich MG, Janssens MHA (2000) Improved measurement methods for railway noise. J Sound Vib 231(3):595–609

    Article  Google Scholar 

  26. Mukanov R, Kasenov A, Itybayeva G, Musina Z, Strautmanis G (2019) Modeling of the cutting head for treating holes in the railway. Procedia Comput Sci 149:355–359

    Article  Google Scholar 

  27. Pinchuk A, Dadoenkov P, Halutin D, Korago I (2019) Improved rolling system of railway stock on brake shoe. Procedia Comput Sci 149:258–263

    Article  Google Scholar 

  28. Gavrilov P, Ivanov V, Rumjancev A. The cross wing rail cladding layer of the type 1/11 DO, 60 E1 investigation. Procedia Comput Sci 149:336–343

    Google Scholar 

  29. Tatarinov A, Rumjancevs A, Mironovs V (2019) Assessment of cracks in pre-stressed concrete railway sleepers by ultrasonic testing. Procedia Comput Sci 149:324–330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareks Mezitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mezitis, M., Strautmanis, G., Baranovskis, A., Muhitovs, R. (2020). Environment Safety Improving Due to Railway Noise Management Decreasing of RMR Method Adaptation. In: Sładkowski, A. (eds) Ecology in Transport: Problems and Solutions. Lecture Notes in Networks and Systems, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-030-42323-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42323-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42322-3

  • Online ISBN: 978-3-030-42323-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics