Skip to main content

Environmental Impacts of the Brazilian Energy Mix—An LCA Approach to Past, Present, and Future Scenarios

  • Chapter
  • First Online:
Water, Energy and Food Nexus in the Context of Strategies for Climate Change Mitigation

Abstract

The compositions of the world’s energy mix undergo modifications over time. Fossil resource depletion and the high rates of greenhouse gases related to non-renewable energy-based matrixes influence adaptation processes. Under these circumstances, in 2007 the Brazilian Ministry of Mines and Energy (MME) published the National Energy Plan (PNE 2030), which directs the future development of the Brazilian electricity mix. Knowing that different energy sources generate different environmental burdens, the objective of this work was to characterize the potential impacts (e.g. greenhouse gases and land use) of the configuration of the Brazilian energy mix in the years 2005 (baseline), 2010, 2018, 2020 and 2030. Thus, it is possible to understand how the expansion of energy production influences the environmental impacts of the electrical sector. The impacts were evaluated through Life Cycle Assessment, employing the OpenLCA 1.9.0 software, and based on the ecoinvent 3.5 database alongside literature data. The current energy mix’s impact is more significant than it was in 2005 (greenhouse gas emissions, for example, increased by approximately 20%). If the PNE 2030 projections are correct, the impact of the future Brazilian energy mix will be significant than it was in 2005, and as it is today. The main contributing factor to this situation is electricity production by biomass and natural gas. To reverse this scenario, more investments should be made in cleaner sources, especially in wind farms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Associação Brasileira De Energia Eólica (ABEEL) – Dados ABEEolica. Available at: http://abeeolica.org.br/dados-abeeolica/. Accessed in July 2019

  • Agência Nacional De Energia Elétrica (ANEEL) (2019) Matriz Energética Brasileira – Operação e Capacidade do Brasil. Available at http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.cfm Accessed in July 2019

  • Coelho SO (2014) Avaliação das Emissões Atmosféricas das Principais Termelétricas Brasileiras a Gás Natural – Ano Base 2013. Trabalho Final de Curso apresentado ao Colegiado do Curso de Engenharia Sanitária e Ambiental da Universidade Federal de Juiz de Fora, como requisito parcial à obtenção do título de Engenheiro Sanitarista e Ambiental. UNIVERSIDADE FEDERAL DE JUIZ DE FORA – UFJF. 2014

    Google Scholar 

  • Elia V, Gnoni MG, Tornese F (2017) Measuring circular economy strategies through index methods: a critical analysis. J Cleaner Prod 142:2741–2751

    Google Scholar 

  • Empresa De Pesquisa Energética (EPE) (2007) Plano Nacional de Energia 2030. Rio de Janeiro

    Google Scholar 

  • Empresa De Pesquisa Energética (EPE) (2019a) Balanço Energético Nacional 2019 – Relatório Síntese/Ano Base 2018. Rio de Janeiro

    Google Scholar 

  • Empresa De Pesquisa Energética (EPE) (2019b) Mapa de Infraestrutura de Gasodutos de Transporte. Available at: http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/mapa-da-infraestrutura-de-gasodutos-de-transporte. Accessed in July 2019

  • Gagnon L, Bélanger C, Uchiyama Y (2002) Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy Hydropower Soc Environ 21st century 30(14), 1267–1278

    Google Scholar 

  • Galindro BM, Zanghelini GM, Soares SR (2019) Use of benchmarking techniques to improve communication in life cycle assessment: a general review. J Cleaner Prod 213, 143–157

    Google Scholar 

  • IEA, IRENA, UN Statistics, World Bank and WHO (2018, forthcoming), Tracking SDG 7: Progress Towards Sustainable Energy. A Joint Report of the Custodian Agencies

    Google Scholar 

  • International Energy Agency (IEA) (2017), Energy access outlook: World Energy Outlook Special Report, OECD/IEA, Paris

    Google Scholar 

  • International Enegy Agency (IEA) (2018) world energy outlook 2018. Executive Summary, Paris

    Google Scholar 

  • International Renewable Energy Agency (IRENA) (2017) Rethinking energy: accelerating the energy transition, Abu Dhabi

    Google Scholar 

  • International Standarts Organization (ISO) (2006a) ISO 14040 International standard. Environmental management…life cycle assessment-principles and framework. Available at: https://www.iso.org/standard/37456.html. Accessed in July 2019

  • International Standarts Organization (ISO) (2006b) ISO 14044 Environmental Management-Life Cycle Assessment-Requirements and Guidelines. Available at: https://www.iso.org/standard/38498.html. Accessed in:July 2019

  • Intergovernmental Panel On Climate Change (IPCC) (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/. Accessed in:July /2019

  • Noi CD, Ciroth A, Srocka M (2017) OpenLCA 1.7: comprehensive user manual. Greendelta, Berlim, 104p

    Google Scholar 

  • NORTE ENERGIA (2019) UHE Belo Monte – A usina. Available at https://www.norteenergiasa.com.br/pt-br/uhe-belo-monte/a-usina. Accessed in July 2019

  • Pré CONSULTANTS (2013) SimaPro database manual: methods library. Report version 2.5 Available at: http://www.pre-sustainability.com/download/DatabaseManualMethods-oct2013.pdf. Accessed in July 2019

  • Rijksinstituut Voor Volksgezond (RIVM) (2016) ReCiPe 2016 v1.1—2A harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: Characteriztion. Bilthoven

    Google Scholar 

  • Schreiber A, Marx J, Zapp, P. Comparative life cycle assessment of electricity generation by different wind turbine types. Journal of Cleaner Production, vol 233, pp 561–572

    Google Scholar 

  • Turconi R, Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew Sustain Energy Rev. 28, 555–565, Dec 2013

    Google Scholar 

  • United Nations (2017) Transforming our world—The 2030 agenda for sustainable development

    Google Scholar 

  • United Nations (2018) Accelerating SDG 7 Achievement: policy briefs in support of the first SDG 7 review at the UN high-level political forum 2018

    Google Scholar 

  • World Energy Council (WEC) (2019) - World Energy Insights Brief - Global energy scenarios comparison. London. 2019

    Google Scholar 

  • Yu P et al (2019) Life cycle assessment of transformation from a sub-critical power plant into a polygeneration plant. Energy Convers Manage 198:111801

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Rogerio Antunes de Souza Junior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Souza Junior, H.R.A., Dantas, T.E.T., Cherubini, E., Zanghelini, G.M., Soares, S.R. (2020). Environmental Impacts of the Brazilian Energy Mix—An LCA Approach to Past, Present, and Future Scenarios. In: Leal Filho, W., de Andrade Guerra, J.B.S. (eds) Water, Energy and Food Nexus in the Context of Strategies for Climate Change Mitigation. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-57235-8_15

Download citation

Publish with us

Policies and ethics