Skip to main content

Technological Quality in Process Innovation for Renewable Energy Buildings

  • Conference paper
  • First Online:
Improving Energy Efficiency in Commercial Buildings and Smart Communities

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 641 Accesses

Abstract

The building sector is one of the main indicators of environmental and economic sustainability because in the European Union (EU), it is responsible for around 40% of air pollution and 36% of final consumption.

Therefore, new building processes are aimed, above all, at environmental requalification with reconversion of the built environment, focusing on technological quality to achieve a 30% improvement in energy efficiency by 2030.

The objectives are process innovation and energy efficiency in construction, in accordance with the latest European Commission (EC) regulations and decisions, with achievement of a 35% share of energy consumed in the EU being obtained from renewable sources.

The performance capacity of the systems and products, with durability of the components, is aimed at building quality in accordance with the International Organization for Standardization (ISO) standard 8402 and ecosustainable control of energy production, with incentives for companies adopting smart energy solutions.

Innovative methodologies involve the application of efficient energy systems through the use of distributed generation, cogeneration and trigeneration with consumption control by sophisticated digital systems.

This chapter highlights new projects integrating design of efficient plants and new models for building with efficient systems and self-consumption of electrical energy for consumers and participation in the renewable energy community, with use of concentrated solar photovoltaic technology for energy self-production, solar thermal systems, and more.

These projects integrate passive systems and efficient double- and triple-skin architectural envelopes; sustainable and intelligent heating, ventilation and air conditioning (HVAC) systems; and smart materials with ecodesign. The challenges are environmental protection, reductions in CO2 emissions, and containment of global warming to 2 °C, with innovation in new building processes that highlight technological quality in architecture, using renewable energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The descriptive indicators come from the indicators in the World Bank core set, the United Nations Conference on Sustainable Development (UN-CSD) of the USA, and the structural indicators issued by the European Council and the Organization for Economic Co-operation and Development (OECD), among the main international institutions.

  2. 2.

    In multilayer insulating glass, at least two sheets of glass, sealed only along the edge, enclose a hermetically sealed space between the panels (SZR Scheibenzwischenraum o LZR, 8/16 mm). They usually use float glass, single-layer safety glass (ESG) or compound laminated glass (VG), reinforced glass (TVG), or laminated safety glass (VSG). The insulating glass panel is independent of the frame, constituting an autonomous system.

References

  1. Energy and air pollution – World energy outlook 2016 special – IEA. OECD/IEA 2016, World energy outlook special report: Energy and air pollution, IEA. Retrieved from www.iea.org/t&c, https://www.iea.org/.../WorldEnergyOutlookSpecialReport2016EnergyandAirPollution. Accessed January 2018.

  2. COM (2016) 773 final, Ecodesign Working Plan 2016–2019 – European Commission – Europa. Retrieved from https://ec.europa.eu/energy/sites/ener/.../com_2016_773.en_pdf. Accessed January 2018.

  3. The emissions gap report 2017 – UNEP document repository home. Retrieved from https://wedocs.unep.org/bitstream/handle/20.500.11822/22070/EGR_2017.pdf. Accessed January 2018.

  4. UNI EN 16883:2017, Conservation of cultural heritage – Guidelines for improving the energy performance of historic buildings. Retrieved from www.uni.com. Accessed January 2018.

  5. Development of innovative educational material for building-integrated photovoltaics. Retrieved from http://www.dem4bipv.eu/bipv/bipv-market/. Accessed February 2018.

  6. UNI EN ISO 8402:1995 Gestione per la qualità ed assicurazione della qualità. Retrieved from http://store.uni.com/catalogo/index.php/uni-en-iso-8402-1995.html. Accessed December 2017.

  7. Directive 2010/31/EU of the European Parliament and of the Council. Retrieved from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:PDF. Accessed November 2017.

  8. Renewables 2017 global status report – REN21. Retrieved from www.ren21.net/wp-content/.../2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf. Accessed January 2018.

  9. Renewable power generation costs in 2017 – IRENA. Retrieved from https://www.irena.org/-/media/Files/IRENA/.../IRENA_2017_Power_Costs_2018.pdf. Accessed January 2018.

  10. Durapanel. Retrieved from https://www.durapanel.co.nz/about-us/. Accessed January 2018.

  11. EIA – CBECS lighting report (May 17, 2017). Trends in lighting in commercial buildings. Retrieved from https://www.eia.gov/consumption/commercial/. Accessed January 2018.

  12. Service Public de Wallonie. (2017). ISSOL architecture BIPV, active facades & building skins. Technological constructions photovoltaic Brise Soleil. Namur: Service Public de Wallonie. Atelier d’Architecture Thierrry Lanotte, http://www.issol.eu/nl/home-nl/. Accessed February 2018.

  13. Mocerino, C. (2017). TOP OFFICE Tecnologie intelligenti di riqualificazione. Rome: Gangemi Editore S.p.A. International. ISBN:978-884923540-L.

    Google Scholar 

  14. JFA Jacques Ferrier. Project. Métropole Rouen Normandie 2017. Retrieved from http://www.jacques-ferrier.com/projets/metropole-rouen-normandie/#4;#7;#9;#15;#20. Accessed February 2018.

  15. de Santoli, L., Perini, G. P., & Rossetti, S. Certificare la sostenibilità dei Beni Culturali-Il caso della Galleria Borghese. AjCARR Journal, 43, 8-marzo-2017. ISSN:2038–2723. Accessed March 2018.

    Google Scholar 

  16. Nuova sede ACCA, Bagnoli Irpino: Presentazione. Company Profile. ACCA software. Retrieved from https://ihc2015.info/skin/acca-acca.akp. La nuova sede ACCA-Concept, Prof. Renato De Fusco. Retrieved from https://www.acca.it/nuova-sede. Accessed February 2018.

  17. Alur, R. (2015). Principles of cyber-physical systems. Cambridge: MIT Press. ISBN:9780262029117.

    Google Scholar 

  18. Nuova sede ACCA, un edificio in armonia con il territorio. Retrieved from https://www.infobuild.it/progetti/nuova-sede-acca-un-edificio-in-armonia-con-il-territorio/. Accessed February 2018.

  19. Nuova sede ACCA. Retrieved from https://www.acca.it/nuova-sede. Accessed February 2018.

  20. Time-lapse del trasferimento di ACCA software nella nuova sede di Bagnoli Irpino, cover image 480 × 360. Retrieved from https://www.youtube.com/watch. Accessed February 2018.

  21. Nuova sede ACCA, un edificio in armonia con il territorio. Retrieved from http://www.infobuild.it/progetti/nuova-sede-acca-un-edificio-in-armonia-con-il-territorio/. Accessed February 2018.

  22. La nuova sede ACCA. Retrieved from http://download.acca.it/Files/Relazione-Tecnica-Nuova-Sede ACCA.pdf. Accessed February 2018.

  23. Mocerino, C. (2017). Sistemi Intelligenti in Architettura. Seminario di Studi, Università di Salerno. Rome: Gangemi Editore S.p.A. International. ISBN:978-884923548-7.

    Google Scholar 

  24. Market data: Energy efficient buildings – Europe Energy efficient commercial building technologies: Market analysis and forecasts for Western and Eastern Europe. Navigant research – Release Date: 3Q 2017. Retrieved from www.navigantresearch.com. Accessed January 2018.

  25. Mocerino, C. (2017). Interoperable process: efficient systems in new constructive and product performances. Journal of Civil Engineering and Architecture, 11, ISSN 1934-7359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mocerino, C. (2020). Technological Quality in Process Innovation for Renewable Energy Buildings. In: Bertoldi, P. (eds) Improving Energy Efficiency in Commercial Buildings and Smart Communities. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-31459-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31459-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31458-3

  • Online ISBN: 978-3-030-31459-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics