Skip to main content
Log in

Contrast-enhanced ultrasound: a comprehensive review of safety in children

  • Contrast-enhanced ultrasound (CEUS) in children
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Contrast-enhanced ultrasound (CEUS) has been increasingly used in pediatric radiology practice worldwide. For nearly two decades, CEUS applications have been performed with the off-label use of gas-containing second-generation ultrasound contrast agents (UCAs). Since 2016, the United States Food and Drug Administration (FDA) has approved the UCA Lumason for three pediatric indications: the evaluation of focal liver lesions and echocardiography via intravenous administration and the assessment of vesicoureteral reflux via intravesical application (contrast-enhanced voiding urosonography, ceVUS). Prior to the FDA approval of Lumason, numerous studies with the use of second-generation UCAs had been conducted in adults and children. Comprehensive protocols for clinical safety evaluations have demonstrated the highly favorable safety profile of UCA for intravenous, intravesical and other intracavitary uses. The safety data on CEUS continue to accumulate as this imaging modality is increasingly utilized in clinical settings worldwide. As of August 2021, 57 pediatric-only original research studies encompassing a total of 4,518 children with 4,906 intravenous CEUS examinations had been published. As in adults, there were a few adverse events; the majority of these were non-serious, although very rarely serious anaphylactic reactions were reported. In the published pediatric-only intravenous CEUS studies included in our analysis, the overall incidence rate of serious adverse events was 0.22% (10/4,518) of children and 0.20% (10/4,906) of all CEUS examinations. Non-serious adverse events from the intravenous CEUS were observed in 1.20% (54/4,518) of children and 1.10% (54/4,906) of CEUS examinations. During the same time period, 31 studies with the intravesical use of UCA were conducted in 12,362 children. A few non-serious adverse events were encountered (0.31%; 38/12,362), but these were most likely attributable to the bladder catheterization rather than the UCA. Other developing clinical applications of UCA in children, including intracavitary and intralymphatic, are ongoing. To date, no serious adverse events have been reported with these applications. This article reviews the existing pediatric CEUS literature and provides an overview of safety-related information reported from UCA uses in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piscaglia F, Bolondi L (2006) The safety of Sonovue in abdominal applications: retrospective analysis of 23,188 investigations. Ultrasound Med Biol 32:1369–1375

    Article  PubMed  Google Scholar 

  2. Tang C, Fang K, Guo Y et al (2017) Safety of sulfur hexafluoride microbubbles in sonography of abdominal and superficial organs: retrospective analysis of 30,222 cases. J Ultrasound Med 36:531–538

    Article  PubMed  Google Scholar 

  3. Hu C, Feng Y, Huang P et al (2019) Adverse reactions after the use of SonoVue contrast agent: characteristics and nursing care experience. Medicine 98:e17745

    Article  PubMed  PubMed Central  Google Scholar 

  4. European Medicines Agency (n.d.) SonoVue. Annex 1: summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/sonovue-epar-product-information_en.pdf. Accessed 29 Mar 2021

  5. Dietrich CF, Augustiniene R, Batko T et al (2021) European Federation of Societies for ultrasound in medicine and biology (EFSUMB): an update on the pediatric CEUS registry on behalf of the “EFSUMB pediatric CEUS registry working group.” Ultrasound in Medicine and Biology 42:270–277

    Google Scholar 

  6. Riccabona M (2012) Application of a second-generation US contrast agent in infants and children — a European questionnaire-based survey. Pediatr Radiol 42:1471–1480

    Article  PubMed  Google Scholar 

  7. Mao M, Xia B, Chen W et al (2019) The safety and effectiveness of intravenous contrast-enhanced sonography in Chinese children — a single center and prospective study in China. Front Pharmacol 10:1447

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yusuf GT, Sellars ME, Deganello A et al (2017) Retrospective analysis of the safety and cost implications of pediatric contrast-enhanced ultrasound at a single center. AJR Am J Roentgenol 208:446–452

    Article  PubMed  Google Scholar 

  9. Torres A, Koskinen SK, Gjertsen H, Fischler B (2017) Contrast-enhanced ultrasound using sulfur hexafluoride is safe in the pediatric setting. Acta Radiol 58:1395–1399

    Article  PubMed  Google Scholar 

  10. Piskunowicz M, Kosiak W, Batko T et al (2015) Safety of intravenous application of second-generation ultrasound contrast agent in children: prospective analysis. Ultrasound Med Biol 41:1095–1099

    Article  PubMed  Google Scholar 

  11. Torres A, Koskinen SK, Gjertsen H, Fischler B (2018) Contrast-enhanced ultrasound for identifying circulatory complications after liver transplants in children. Pediatr Transplant 23:e13327

    Article  PubMed  Google Scholar 

  12. Menichini G, Sessa B, Trinci M et al (2015) Accuracy of contrast-enhanced ultrasound (CEUS) in the identification and characterization of traumatic solid organ lesions in children: a retrospective comparison with baseline US and CE-MDCT. Radiol Med 120:989–1001

    Article  PubMed  Google Scholar 

  13. Knieling F, Strobel D, Rompel O et al (2016) Spectrum, applicability and diagnostic capacity of contrast-enhanced ultrasound in pediatric patients and young adults after intravenous application — a retrospective trial. Ultraschall Med 37:619–626

    Article  CAS  PubMed  Google Scholar 

  14. Di Renzo D, Persico A, Lisi G et al (2020) Contrast-enhanced ultrasonography (CEUS) in the follow-up of pediatric abdominal injuries: value and timing. J Ultrasound 23:151–155

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pschierer K, Grothues D, Rennert J et al (2015) Evaluation of the diagnostic accuracy of CEUS in children with benign and malignant liver lesions and portal vein anomalies. Clin Hemorheol Microcirc 61:333–345

    Article  CAS  PubMed  Google Scholar 

  16. Jacob J, Deganello A, Sellars ME et al (2013) Contrast enhanced ultrasound (CEUS) characterization of grey-scale sonographic indeterminate focal liver lesions in pediatric practice. Ultraschall Med 34:529–540

    Article  CAS  PubMed  Google Scholar 

  17. Stenzel M (2013) Intravenous contrast-enhanced sonography in children and adolescents — a single center experience. J Ultrason 13:133–144

    Article  PubMed  PubMed Central  Google Scholar 

  18. Torres A, Koskinen SK, Gjertsen H et al (2021) Contrast-enhanced ultrasound is useful for the evaluation of focal liver lesions in children. Australas J Ultrasound Med 24:143–150

    Article  PubMed  Google Scholar 

  19. Karmazyn B, Saglam D, Rao GS et al (2021) Initial experience with contrast-enhanced ultrasound in the first week after liver transplantation in children: a useful adjunct to Doppler ultrasound. Pediatr Radiol 51:248–256

    Article  PubMed  Google Scholar 

  20. Jung HJ, Choi MH, Pai KS et al (2020) Diagnostic performance of contrast-enhanced ultrasound for acute pyelonephritis in children. Sci Rep 10:10715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Durkin N, Deganello A, Sellars ME et al (2015) Post-traumatic liver and splenic pseudoaneurysms in children: diagnosis, management, and follow-up screening using contrast enhanced ultrasound (CEUS). J Pediatr Surg 51:289–292

    Article  PubMed  Google Scholar 

  22. Fang C, Bernardo S, Sellars ME et al (2018) Contrast-enhanced ultrasound in the diagnosis of pediatric focal nodular hyperplasia and hepatic adenoma: interobserver reliability. Pediatr Radiol 49:82–90

    Article  PubMed  Google Scholar 

  23. Bonini G, Pezzotta G, Morzenti C et al (2007) Contrast-enhanced ultrasound with SonoVue in the evaluation of postoperative complications in pediatric liver transplant recipients. J Ultrasound 10:99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valentino M, Serra C, Pavlica P et al (2008) Blunt abdominal trauma: diagnostic performance of contrast-enhanced US in children — initial experience. Radiology 246:903–909

    Article  PubMed  Google Scholar 

  25. Squires JH, Beluk NH, Lee VK et al (2021) Feasibility and safety of neonatal brain contrast-enhanced ultrasound: a prospective study using MRI as reference standard. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.21.26274

  26. Ponorac S, Gosnak RD, Urlep D et al (2021) Contrast-enhanced ultrasonography in the evaluation of Crohn disease activity in children: comparison with histopathology. Pediatr Radiol 51:410–418

    Article  PubMed  Google Scholar 

  27. Mudambi K, Sandberg J, Bass D, Rubesova E (2019) Contrast enhanced ultrasound: comparing a novel modality to MRI to assess for bowel disease in pediatric Crohn’s patients. Transl Gastroenterol Hepatol 5:13

    Article  Google Scholar 

  28. Back SJ, Chauvin NA, Ntoulia A et al (2019) Intraoperative contrast-enhanced ultrasound imaging of femoral head perfusion in developmental dysplasia of the hip: a feasibility study. J Ultrasound Med 39:247–257

    Article  PubMed  Google Scholar 

  29. Kastler A, Manzoni P, Chapuy S et al (2014) Transfontanellar contrast enhanced ultrasound in infants: initial experience. J Neuroradiol 41:251–258

    Article  PubMed  Google Scholar 

  30. Bowen DK, Back SJ, Van Batavia JP et al (2020) Does contrast-enhanced ultrasound have a role in evaluation and management of pediatric renal trauma? A preliminary experience. J Pediatr Surg 55:2740–2745

    Article  PubMed  Google Scholar 

  31. El-Ali AM, McCormick A, Thakrar D et al (2020) Contrast-enhanced ultrasound of congenital and infantile hemangiomas: preliminary results from a case series. AJR Am J Roentgenol 214:658–664

    Article  PubMed  Google Scholar 

  32. Deganello A, Rafailidis V, Sellars ME et al (2017) Intravenous and intracavitary use of contrast-enhanced ultrasound in the evaluation and management of complicated pediatric pneumonia. J Ultrasound Med 36:1943–1954

    Article  PubMed  Google Scholar 

  33. Kapur J, Oscar H (2015) Contrast enhanced ultrasound of kidneys in children with renal failure. J Med Ultrasound 23:86–97

    Article  Google Scholar 

  34. Hwang M, Sridharan A, Darge K et al (2019) Novel quantitative contrast-enhanced ultrasound detection of hypoxic ischemic injury in neonates and infants: pilot study 1. J Ultrasound Med 38:2025–2038

    Article  PubMed  Google Scholar 

  35. Hains DS, Cohen HL, McCarville MB et al (2017) Elucidation of renal scars in children with vesicoureteral reflux using contrast-enhanced ultrasound: a pilot study. Kidney Int Rep 2:420–424

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sridharan A, Riggs B, Darge K et al (2021) The wash-out of contrast-enhanced ultrasound for evaluation of hypoxic ischemic injury in neonates and infants: preliminary findings. Ultrasound Q. https://doi.org/10.1097/RUQ.0000000000000560

  37. Chan JP, Back SJ, Vatsky S et al (2021) Utility of contrast-enhanced ultrasound for solid mass surveillance and characterization in children with tuberous sclerosis complex: an initial experience. Pediatr Nephrol 36:1775–1784

    Article  PubMed  Google Scholar 

  38. Svensson JF, Larsson A, Uusijarvi J et al (2008) Oophoropexy, hyperbaric oxygen therapy, and contrast-enhanced ultrasound after asynchronous bilateral ovarian torsion. J Pediatr Surg 43:1380–1384

    Article  PubMed  Google Scholar 

  39. Rafailidis V, Deganello A, Sellars ME et al (2017) Pediatric adrenal trauma: evaluation and follow-up with contrast-enhanced ultrasound (CEUS). J Ultrasound 20:325–331

    Article  PubMed  Google Scholar 

  40. Oldenburg A, Hohmann J, Skrok J et al (2004) Imaging of paediatric splenic injury with contrast-enhanced ultrasonography. Pediatr Radiol 34:351–354

    Article  PubMed  Google Scholar 

  41. Glutig K, Alhussami I, Kruger PC et al (2021) Case report: report of 2 different cases of ovarian teratoma evaluated by dynamic contrast-enhanced ultrasound. Front Pediatr 9:681404

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thimm MA, Cuffari C, Garcia A et al (2019) Contrast-enhanced ultrasound and shear wave elastography evaluation of Crohn’s disease activity in three adolescent patients. Pediatr Gastroenterol Hepatol Nutr 22:282–290

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hwang M, De Jong Jr RM, Herman S et al (2018) Novel contrast-enhanced ultrasound evaluation in neonatal hypoxic ischemic injury: clinical application and future directions. J Ultrasound Med 36:2379–2386

    Article  Google Scholar 

  44. Luo XL, Liu D, Yang JJ et al (2009) Primary gastrointestinal stromal tumor of the liver: a case report. World J Gastroenterol 15:3704–3707

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kljucevsek D, Glusic M, Velikonja O (2021) Clinical value of contrast-enhanced ultrasound in atypical wilms tumor. Indian J Pediatr 88:517–518

    Article  PubMed  Google Scholar 

  46. Sekej M, Vadnjal Donlagic S, Kljucevsek D (2020) Contrast-enhanced ultrasound for the characterization of infantile hepatic hemangioma in premature neonate. Cureus 12:e9580

    PubMed  PubMed Central  Google Scholar 

  47. Trinci M, Ianniello S, Galluzzo M et al (2019) A rare case of accessory spleen torsion in a child diagnosed by ultrasound (US) and contrast-enhanced ultrasound (CEUS). J Ultrasound 22:99–102

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lorenz N, Schuster F, Steinbach F et al (2019) Segmental testicular infarction after methamphetamine abuse in a 16-year-old — diagnosis by using contrast-enhanced ultrasound (CEUS). Ultraschall Med 40:253–254

    Article  PubMed  Google Scholar 

  49. Hwang M, Riggs BJ, Saade-Lemus S et al (2018) Bedside contrast-enhanced ultrasound diagnosing cessation of cerebral circulation in a neonate: a novel bedside diagnostic tool. Neuroradiol J 31:578–580

    Article  PubMed  PubMed Central  Google Scholar 

  50. Piorkowska MA, Dezman R, Sellars ME et al (2018) Characterization of a hepatic haemangioma with contrast-enhanced ultrasound in an infant. Ultrasound 26:178–181

    Article  PubMed  Google Scholar 

  51. Aguirre Pascual E, Fontanilla T, Perez I et al (2017) Wandering spleen torsion — use of contrast-enhanced ultrasound. BJR Case Rep 3:20150342

    PubMed  Google Scholar 

  52. Al Bunni F, Deganello A, Sellars ME et al (2014) Contrast-enhanced ultrasound (CEUS) appearances of an adrenal phaeochromocytoma in a child with Von Hippel-Lindau disease. J Ultrasound 17:307–311

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yusuf GT, Sellars ME, Huang DY et al (2013) Cortical necrosis secondary to trauma in a child: contrast-enhanced ultrasound comparable to magnetic resonance imaging. Pediatr Radiol 44:484–487

    Article  PubMed  Google Scholar 

  54. Mandry D, Bressenot A, Galloy MA et al (2007) Contrast-enhanced ultrasound in fibro-lamellar hepatocellular carcinoma: a case report. Ultraschall Med 28:547–552

    Article  CAS  PubMed  Google Scholar 

  55. Valentino M, Galloni SS, Rimondi MR et al (2006) Contrast-enhanced ultrasound in non-operative management of pancreatic injury in childhood. Pediatr Radiol 36:558–560

    Article  PubMed  Google Scholar 

  56. Coleman JL, Navid F, Furman WL et al (2014) Safety of ultrasound contrast agents in the pediatric oncologic population: a single-institution experience. AJR Am J Roentgenol 202:966–970

    Article  PubMed  PubMed Central  Google Scholar 

  57. McCarville MB, Coleman JL, Guo J et al (2016) Use of quantitative dynamic contrast-enhanced ultrasound to assess response to antiangiogenic therapy in children and adolescents with solid malignancies: a pilot study. AJR Am J Roentgenol 206:933–939

    Article  PubMed  PubMed Central  Google Scholar 

  58. McMahon CJ, Ayres NA, Bezold LI et al (2005) Safety and efficacy of intravenous contrast imaging in pediatric echocardiography. Pediatr Cardiol 26:413–417

    Article  CAS  PubMed  Google Scholar 

  59. McCarville MB, Kaste SC, Hoffer FA et al (2012) Contrast-enhanced sonography of malignant pediatric abdominal and pelvic solid tumors: preliminary safety and feasibility data. Pediatr Radiol 42:824–833

    Article  PubMed  PubMed Central  Google Scholar 

  60. Armstrong LB, Mooney DP, Paltiel H et al (2017) Contrast enhanced ultrasound for the evaluation of blunt pediatric abdominal trauma. J Pediatr Surg 53:548–552

    Article  PubMed  Google Scholar 

  61. Kutty S, Xiao Y, Olson J et al (2016) Safety and efficacy of cardiac ultrasound contrast in children and adolescents for resting and stress echocardiography. J Am Soc Echocardiogr 29:655–662

    Article  PubMed  Google Scholar 

  62. Cvitkovic-Roic A, Turudic D, Milosevic D et al (2021) Contrast-enhanced voiding urosonography in the diagnosis of intrarenal reflux. J Ultrasound. https://doi.org/10.1007/s40477-021-00568-w

  63. Papadopoulou F, Ntoulia A, Siomou E et al (2014) Contrast-enhanced voiding urosonography with intravesical administration of a second-generation ultrasound contrast agent for diagnosis of vesicoureteral reflux: prospective evaluation of contrast safety in 1,010 children. Pediatr Radiol 44:719–728

    Article  PubMed  Google Scholar 

  64. Papadopoulou F, Anthopoulou A, Siomou E et al (2009) Harmonic voiding urosonography with a second-generation contrast agent for the diagnosis of vesicoureteral reflux. Pediatr Radiol 39:239–244

    Article  PubMed  Google Scholar 

  65. Duran C, del Riego J, Riera L et al (2012) Voiding urosonography including urethrosonography: high-quality examinations with an optimised procedure using a second-generation US contrast agent. Pediatr Radiol 42:660–667

    Article  PubMed  Google Scholar 

  66. Kis E, Nyitrai A, Varkonyi I et al (2010) Voiding urosonography with second-generation contrast agent versus voiding cystourethrography. Pediatr Nephrol 25:2289–2293

    Article  PubMed  Google Scholar 

  67. Woźniak MM, Osemlak P, Ntoulia A et al (2018) 3D/4D contrast-enhanced urosonography (ceVUS) in children — is it superior to the 2D technique? J Ultrason 18:120–125

    Article  PubMed  PubMed Central  Google Scholar 

  68. Piskunowicz M, Swieton D, Rybczynska D et al (2016) Premature destruction of microbubbles during voiding urosonography in children and possible underlying mechanisms: post hoc analysis from the prospective study. Biomed Res Int 2016:1764692

    Article  PubMed  PubMed Central  Google Scholar 

  69. Battelino N, Kljucevsek D, Tomazic M et al (2016) Vesicoureteral refux detection in children: a comparison of the midline-to-orifice distance measurement by ultrasound and voiding urosonography. Pediatr Nephrol 31:957–964

    Article  PubMed  Google Scholar 

  70. Ključevšek D, Pecanac O, Tomazic M et al (2019) Potential causes of insufficient bladder contrast opacification and premature microbubble destruction during contrast-enhanced voiding urosonography in children. J Clin Ultrasound 47:36–41

    Article  PubMed  Google Scholar 

  71. Zhang W, Cai B, Zhang X et al (2018) Contrast-enhanced voiding urosonography with intravesical administration of ultrasound contrast agent for the diagnosis of pediatric vesicoureteral reflux. Exp Ther Med 16:4546–4552

    PubMed  PubMed Central  Google Scholar 

  72. Ascenti G, Zimbaro G, Mazziotti S et al (2004) Harmonic US imaging of vesicoureteric reflux in children: usefulness of a second generation US contrast agent. Pediatr Radiol 34:481–487

    Article  PubMed  Google Scholar 

  73. Simicic Majce A, Arapovic A, Saraga-Babic M et al (2021) Intrarenal reflux in the light of contrast-enhanced voiding urosonography. Front Pediatr 9:642077

    Article  PubMed  PubMed Central  Google Scholar 

  74. Woźniak MM, Wieczorek AP, Pawelec A et al (2016) Two-dimensional (2D), three-dimensional static (3D) and real-time (4D) contrast enhanced voiding urosonography (ceVUS) versus voiding cystourethrography (VCUG) in children with vesicoureteral reflux. Eur J Radiol 85:1238–1245

    Article  PubMed  Google Scholar 

  75. Kljucevsek D, Battelino N, Tomazic M et al (2012) A comparison of echo-enhanced voiding urosonography with X-ray voiding cystourethrography in the first year of life. Acta Paediatr 101:e235–e239

    Article  PubMed  Google Scholar 

  76. Siomou E, Giapros V, Serbis A et al (2020) Voiding urosonography and voiding cystourethrography in primary vesicoureteral reflux associated with mild prenatal hydronephrosis: a comparative study. Pediatr Radiol 50:1271–1276

    Article  PubMed  Google Scholar 

  77. Giordano M, Marzolla R, Puteo F et al (2007) Voiding urosonography as first step in the diagnosis of vesicoureteral reflux in children: a clinical experience. Pediatr Radiol 37:674–677

    Article  PubMed  Google Scholar 

  78. Fernandez-Ibieta M, Parrondo-Muinos C, Fernandez-Masaguer LC et al (2016) Voiding urosonography with second-generation contrast as a main tool for examining the upper and lower urinary tract in children. Pilot study. Actas Urol Esp 40:183–189

    Article  CAS  PubMed  Google Scholar 

  79. Velasquez M, Emerson MG, Diaz E et al (2019) The learning curve of contrast-enhanced 'microbubble' voiding urosonography — validation study. J Pediatr Urol 15:385.e1–385.e6

    Article  CAS  Google Scholar 

  80. Marschner CA, Schwarze V, Stredele R et al (2021) Safety assessment and diagnostic evaluation of patients undergoing contrast-enhanced urosonography in the setting of vesicoureteral reflux confirmation. Clin Hemorheol Microcirc. https://doi.org/10.3233/CH-219110

  81. Benya EC, Prendergast FM, Liu DB et al (2021) Assessment of distal ureteral and ureterovesical junction visualization on contrast-enhanced voiding urosonography. Pediatr Radiol 51:1406–1411

    Article  PubMed  Google Scholar 

  82. Kim D, Choi YH, Choi G et al (2021) Contrast-enhanced voiding urosonography for the diagnosis of vesicoureteral reflux and intrarenal reflux: a comparison of diagnostic performance with fluoroscopic voiding cystourethrography. Ultrasonography 40:530–537

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kuzmanovska D, Risteski A, Kambovska M et al (2017) Voiding urosonography with second-generation ultrasound contrast agent for diagnosis of vesicoureteric reflux: first local pilot study. Open Access Maced J Med Sci 5:215–221

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wong LS, Tse KS, Fan TW et al (2014) Voiding urosonography with second-generation ultrasound contrast versus micturating cystourethrography in the diagnosis of vesicoureteric reflux. Eur J Pediatr 173:1095–1101

    Article  CAS  PubMed  Google Scholar 

  85. Mane N, Sharma A, Patil A et al (2018) Comparison of contrast-enhanced voiding urosonography with voiding cystourethrography in pediatric vesicoureteral reflux. Turk J Urol 44:261–267

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ntoulia A, Back SJ, Shellikeri S et al (2018) Contrast-enhanced voiding urosonography (ceVUS) with the intravesical administration of the ultrasound contrast agent Optison for vesicoureteral reflux detection in children: a prospective clinical trial. Pediatr Radiol 48:216–226

    Article  PubMed  Google Scholar 

  87. Faizah MZ, Hamzaini AH, Kanaheswari Y et al (2015) Contrast enhanced voiding urosonography (ce-VUS) as a radiation-free technique in the diagnosis of vesicoureteric reflux: our early experience. Med J Malaysia 70:269–272

    CAS  PubMed  Google Scholar 

  88. Woźniak MM, Osemlak P, Pawelec A et al (2014) Intraoperative contrast-enhanced urosonography during endoscopic treatment of vesicoureteral reflux in children. Pediatr Radiol 44:1093–1100

    Article  PubMed  PubMed Central  Google Scholar 

  89. Colleran GC, Paltiel HJ, Barnewolt CE et al (2016) Residual intravesical iodinated contrast: a potential cause of false-negative reflux study at contrast-enhanced voiding urosonography. Pediatr Radiol 46:1614–1617

    Article  PubMed  Google Scholar 

  90. Babu R, Gopinath V, Sai V (2015) Voiding urosonography: contrast-enhanced ultrasound cystography to diagnose vesico-ureteric reflux: a pilot study. J Indian Assoc Pediatr Surg 20:40–41

    Article  PubMed  PubMed Central  Google Scholar 

  91. Colleran GC, Barnewolt CE, Chow JS et al (2016) Intrarenal reflux: diagnosis at contrast-enhanced voiding urosonography. J Ultrasound Med 35:1811–1819

    Article  PubMed  Google Scholar 

  92. Chow JS, Paltiel HJ, Padua HM et al (2019) Contrast-enhanced colosonography for the evaluation of children with an imperforate anus. J Ultrasound Med 38:2777–2783

    Article  PubMed  Google Scholar 

  93. Chow JS, Paltiel HJ, Padua HM et al (2019) Case series: comparison of contrast-enhanced genitosonography (ceGS) to fluoroscopy and cone-beam computed tomography in patients with urogenital sinus and the cloacal malformation. Clin Imaging 60:204–208

    Article  PubMed  Google Scholar 

  94. Seranio N, Darge K, Canning DA et al (2018) Contrast enhanced genitosonography (CEGS) of urogenital sinus: a case of improved conspicuity with image inversion. Radiol Case Rep 13:652–654

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cahill AM, Escobar F, Acord MR (2021) Central venous catheter fracture leading to TPN extravasation and abdominal compartment syndrome diagnosed with bedside contrast-enhanced ultrasound. Pediatr Radiol 51:307–310

    Article  PubMed  Google Scholar 

  96. Gokli A, Pinto E, Escobar FA et al (2020) Contrast-enhanced ultrasound: use in the management of lymphorrhea in generalized lymphatic anomaly. J Vasc Interv Radiol 31:1511–1513

    Article  PubMed  Google Scholar 

  97. Mejia EJ, Otero HJ, Smith CL et al (2020) Use of contrast-enhanced ultrasound to determine thoracic duct patency. J Vasc Interv Radiol 31:1670–1674

    Article  PubMed  Google Scholar 

  98. Tirrell TF, Demehri FR, McNamara ER et al (2021) Contrast enhanced colostography: new applications in preoperative evaluation of anorectal malformations. J Pediatr Surg 56:192–195

    Article  PubMed  Google Scholar 

  99. Dillman JR, Strouse PJ, Ellis JH et al (2007) Incidence and severity of acute allergic-like reactions to i.v. nonionic iodinated contrast material in children. AJR Am J Roentgenol 188:1643–1647

    Article  PubMed  Google Scholar 

  100. Dillman JR, Ellis JH, Cohan RH et al (2007) Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. AJR Am J Roentgenol 189:1533–1538

    Article  PubMed  Google Scholar 

  101. Davenport MS, Dillman JR, Cohan RH et al (2013) Effect of abrupt substitution of gadobenate dimeglumine for gadopentetate dimeglumine on rate of allergic-like reactions. Radiology 266:773–782

    Article  PubMed  PubMed Central  Google Scholar 

  102. United States Food and Drug Administration (2020) CFR - code of federal regulations title 21. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm. Accessed 17 Sep 2021

  103. World Health Organization (WHO) (2002) Safety of medicines: a guide to detecting and reporting adverse drug reactions. http://apps.who.int/iris/bitstream/handle/10665/67378/WHO_EDM_QSM_2002.2.pdf;jsessionid=1FE3E8E1B813999C2EB895BCB7E4787B?sequence=1. Accessed 17 Sep 2021

  104. Management Sciences for Health, World Health Organization (2007) Drug and therapeutics committee training course. U.S. Agency for International Development by the Rational Pharmaceutical Management Plus Program. Management Sciences for Health, Arlington

    Google Scholar 

  105. United States Food and Drug Administration (1994) E2A clinical safety data management: definitions and standards for expedited reporting. Presented at the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH)

  106. U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Division of AIDS (2017) Division of AIDS (DAIDS) table for grading the severity of adult and pediatric adverse events. Corrected version 2.1. https://rsc.niaid.nih.gov/sites/default/files/daidsgradingcorrectedv21.pdf. Accessed 17 Sep 2021

  107. Hoigne R, Jaeger MD, Wymann R et al (1990) Time pattern of allergic reactions to drugs. Agents Actions Suppl 29:39–58

    Article  CAS  PubMed  Google Scholar 

  108. United States Food and Drug Administration (2016) Determining the extent of safety data collection needed in late-stage premarket and postapproval clinical investigations; guidance for industry. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/determining-extent-safety-data-collection-needed-late-stage-premarket-and-postapproval-clinical. Accessed 17 Sep 2021

  109. Johansson SG, Hourihane JO, Bousquet J et al (2001) A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy 56:813–824

    Article  CAS  PubMed  Google Scholar 

  110. Simons FE, Ardusso LR, Bilo MB et al (2014) International consensus on (ICON) anaphylaxis. World Allergy Organ J 7:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Simons FE, Ardusso LR, Bilo MB et al (2011) World allergy organization guidelines for the assessment and management of anaphylaxis. World Allergy Organ J 4:13–37

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zerin JM, Shulkin BL (1992) Postprocedural symptoms in children who undergo imaging studies of the urinary tract: is it the contrast material or the catheter? Radiology 182:727–730

    Article  CAS  PubMed  Google Scholar 

  113. Lindner JR, Belcik T, Main ML et al (2021) Expert consensus statement from the American Society of Echocardiography on hypersensitivity reactions to ultrasound enhancing agents in patients with allergy to polyethylene glycol. J Am Soc Echocardiogr 34:707–708

    Article  PubMed  Google Scholar 

  114. Stempniak M (2021) FDA warns providers after 2 patients die from ultrasound contrast-agent reactions. Radiology Business. https://www.radiologybusiness.com/topics/policy/fda-warns-die-ultrasound-contrast-agent-reactions. Accessed 17 Sep 2021

  115. Wenande E, Garvey LH (2016) Immediate-type hypersensitivity to polyethylene glycols: a review. Clin Exp Allergy 46:907–922

    Article  CAS  PubMed  Google Scholar 

  116. Sellaturay P, Nasser S, Ewan P (2021) Polyethylene glycol-induced systemic allergic reactions (anaphylaxis). J Allergy Clin Immunol Pract 9:670–675

    Article  PubMed  Google Scholar 

  117. International Contrast Ultrasound Society (2021) International Contrast Ultrasound Society (ICUS) policy statement supporting established safety record of ultrasound contrast agents and continued use where medically appropriate. ICUS News release. http://icus-society.org/international-contrast-ultrasound-society-icus-policy-statement-supporting-established-safety-record-of-ultrasound-contrast-agents-and-continued-use-where-medically-appropriate/. Accessed 17 Sep 2021

  118. United States Food and Drug Administration (2016) Lumason prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/203684s009lbl.pdf. Accessed 17 Sep 2021

  119. United States Food and Drug Administration (2016) Optison prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020899s018s019lbl.pdf. Accessed 17 Sep 2021

  120. United States Food and Drug Administration (2011) Definity prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021064s025s029lbl.pdf. Accessed 17 Sep 2021

  121. Darge K, Back SJ, Bulas DI et al (2021) Pediatric contrast ultrasound: shedding light on the pursuit of approval in the United States. Pediatr Radiol. https://doi.org/10.1007/s00247-021-05102-y

  122. Miller DL, Averkiou MA, Brayman AA et al (2008) Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 27:611–632

    Article  PubMed  Google Scholar 

  123. Church CC (2002) Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol 28:1349–1364

    Article  PubMed  Google Scholar 

  124. Miller DL (2007) Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Prog Biophys Mol Biol 93:314–330

    Article  PubMed  Google Scholar 

  125. Nyborg W (2007) WFUMB safety symposium on echo-contrast agents: mechanisms for the interaction of ultrasound. Ultrasound Med Biol 33:224–232

    Article  PubMed  Google Scholar 

  126. Miller DL, Quddus J (2000) Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc Natl Acad Sci U S A 97:10179–10184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. van Der Wouw PA, Brauns AC, Bailey SE et al (2000) Premature ventricular contractions during triggered imaging with ultrasound contrast. J Am Soc Echocardiogr 13:288–294

    Article  Google Scholar 

  128. Li P, Armstrong WF, Miller DL (2004) Impact of myocardial contrast echocardiography on vascular permeability: comparison of three different contrast agents. Ultrasound Med Biol 30:83–91

    Article  CAS  PubMed  Google Scholar 

  129. Ay T, Havaux X, Van Camp G et al (2001) Destruction of contrast microbubbles by ultrasound: effects on myocardial function, coronary perfusion pressure, and microvascular integrity. Circulation 104:461–466

    Article  CAS  PubMed  Google Scholar 

  130. Chen S, Kroll MH, Shohet RV et al (2002) Bioeffects of myocardial contrast microbubble destruction by echocardiography. Echocardiography 19:495–500

    Article  CAS  PubMed  Google Scholar 

  131. Fowlkes JB, Bioeffects Committee of the American Institute of Ultrasound in Medicine (2008) American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: executive summary. J Ultrasound Med 27:503–515

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Maciej Piskunowicz was supported by the Kosciuszko Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aikaterini Ntoulia.

Ethics declarations

Conflicts of interest

Drs. Back and Darge have received an educational grant from Bracco Diagnostics Inc.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntoulia, A., Anupindi, S.A., Back, S.J. et al. Contrast-enhanced ultrasound: a comprehensive review of safety in children. Pediatr Radiol 51, 2161–2180 (2021). https://doi.org/10.1007/s00247-021-05223-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05223-4

Keywords

Navigation