Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Review of Phytochemical Compounds as Antiviral Agents Against Arboviruses from the Genera Flavivirus and Alphavirus

Author(s): Samira Sardari, Mahmoud Rafieian-Kopaei*, Khojasteh Malekmohammad and Robert D.E. Sewell

Volume 17, Issue 4, 2020

Page: [484 - 497] Pages: 14

DOI: 10.2174/1570163817666200122102443

Price: $65

Abstract

Arboviruses are a diverse group of viruses that are among the major causes of emerging infectious diseases. Arboviruses from the genera flavivirus and alphavirus are the most important human arboviruses from a public health perspective. During recent decades, these viruses have been responsible for millions of infections and deaths around the world. Over the past few years, several investigations have been carried out to identify antiviral agents to treat these arbovirus infections. The use of synthetic antiviral compounds is often unsatisfactory since they may raise the risk of viral mutation; they are costly and possess either side effects or toxicity. One attractive strategy is the use of plants as promising sources of novel antiviral compounds that present significant inhibitory effects on these viruses. In this review, we describe advances in the exploitation of compounds and extracts from natural sources that target the vital proteins and enzymes involved in arbovirus replication.

Keywords: Arbovirus, flavivirus, alphavirus, antiviral, natural compounds, plant products.

Graphical Abstract
[1]
Burrell CJ, Howard CR, Murphy FA. Fenner and White’s Medical Virology. 5th ed. Academic Press 2016.
[2]
Go YY, Balasuriya UB, Lee CK. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin Exp Vaccine Res 2014; 3(1): 58-77.
[http://dx.doi.org/10.7774/cevr.2014.3.1.58] [PMID: 24427764]
[3]
Alatoom A, Payne D. An overview of arboviruses and bunyaviruses. Lab Med 2009; 40: 237-40.
[http://dx.doi.org/10.1309/LMPX9OEOAOPPBCJH]
[4]
Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ. Manson’s Tropical Diseases E-Book. Elsevier Health Sciences 2013.
[5]
Pang T, Mak T, Gubler DJ. Challenges for control of arboviral infections in South Asia. Neglected Tropical Diseases-South Asia 2017; pp. 387-404.
[http://dx.doi.org/10.1007/978-3-319-68493-2_13]
[6]
Gubler DJ. Human arbovirus infections worldwide. Ann N Y Acad Sci 2001; 951: 13-24.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb02681.x] [PMID: 11797771]
[7]
Abboubakar H, Claude Kamgang J, Tieudjo D. Backward bifurcation and control in transmission dynamics of arboviral diseases. Math Biosci 2016; 278: 100-29.
[http://dx.doi.org/10.1016/j.mbs.2016.06.002] [PMID: 27321192]
[8]
Perng GC, Chen WJ. Arboviral Encephalitis. Ann N Y Acad Sci 2013; 951: 13-24.
[http://dx.doi.org/10.5772/52327]
[11]
Donalisio MR, Freitas ARR, Zuben APBV. Arboviruses emerging in Brazil: challenges for clinic and implications for public health. Rev Saude Publica 2017; 51: 30.
[http://dx.doi.org/10.1590/s1518-8787.2017051006889] [PMID: 28423140]
[12]
WHO. Dengue control https://www.who.int/denguecontrol/epidemiology/en/ [January 5, 2020]
[13]
Steel JJ. Imatinib Mesylate as an effective anti-viral treatment for alphavirus infections. Fine Focus 2017; 3: 141-53.
[http://dx.doi.org/10.33043/FF.3.2.141-152]
[14]
Alva-Urcia C, Aguilar-Luis MA, Palomares-Reyes C, et al. Emerging and reemerging arboviruses: A new threat in Eastern Peru. PLoS One 2017; 12(11)e0187897
[http://dx.doi.org/10.1371/journal.pone.0187897] [PMID: 29136650]
[15]
Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X. Emerging arboviruses: Why today? One Health 2017; 4: 1-13.
[http://dx.doi.org/10.1016/j.onehlt.2017.06.001] [PMID: 28785601]
[16]
Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov 2017; 16(8): 565-86.
[http://dx.doi.org/10.1038/nrd.2017.33] [PMID: 28473729]
[17]
You J, Hou S, Malik-Soni N, et al. Flavivirus infection impairs peroxisome biogenesis and early anti-viral signaling. J Virol 2015; 89(24): 12349-61.
[http://dx.doi.org/10.1128/JVI.01365-15] [PMID: 26423946]
[18]
Beckham JD, Tyler KL. Arbovirus Infections Continuum (Minneap Minn) 2015; 21(6 Neuroinfectious Disease): 1599-1611..
[http://dx.doi.org/10.1212/CON.0000000000000240] [PMID: 26633778]
[19]
Hladish TJ, Pearson CAB, Patricia Rojas D, et al. Forecasting the effectiveness of indoor residual spraying for reducing dengue burden. PLoS Negl Trop Dis 2018; 12(6)e0006570
[http://dx.doi.org/10.1371/journal.pntd.0006570] [PMID: 29939983]
[20]
WHO. Immunization, Vaccines and Biologicals https://www.who.int/immunization/research/development/dengue_vaccines/en/ [January 5, 2020]
[21]
Oliveira AF, Teixeira RR, Oliveira AS, Souza AP, Silva ML, Paula SO. Potential Antivirals: natural products targeting replication enzymes of dengue and chikungunya viruses. Molecules 2017; 22(3): 505.
[http://dx.doi.org/10.3390/molecules22030505] [PMID: 28327521]
[22]
Gérardin P, Barau G, Michault A, et al. Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion. PLoS Med 2008; 5(3)e60
[http://dx.doi.org/10.1371/journal.pmed.0050060] [PMID: 18351797]
[23]
Sohail MN, Rasul F, Karim A, Kanwal U, Attitalla IH. Plant as a source of natural antiviral agents. Asian J Anim Vet Adv 2011; 6: 1125-52.
[http://dx.doi.org/10.3923/ajava.2011.1125.1152]
[24]
Kulkarni SR, Sanghai NN. Screening of antiviral compounds from plants - A Review. J Pharm Res 2014; 8: 1050-8.
[25]
Vijayan P, Raghu C, Ashok G, Dhanaraj SA, Suresh B. Antiviral activity of medicinal plants of Nilgiris. Indian J Med Res 2004; 120(1): 24-9.
[PMID: 15299228]
[26]
Bhakat S, Soliman ME. Chikungunya virus (CHIKV) inhibitors from natural sources: a medicinal chemistry perspective. J Nat Med 2015; 69(4): 451-62.
[http://dx.doi.org/10.1007/s11418-015-0910-z] [PMID: 25921858]
[27]
Mayer SV, Tesh RB, Vasilakis N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop 2017; 166: 155-63.
[http://dx.doi.org/10.1016/j.actatropica.2016.11.020] [PMID: 27876643]
[28]
[29]
Daep CA, Muñoz-Jordán JL, Eugenin EA. Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus. J Neurovirol 2014; 20(6): 539-60.
[http://dx.doi.org/10.1007/s13365-014-0285-z] [PMID: 25287260]
[30]
Liang G, Gao X, Gould EA. Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg Microbes Infect 2015; 4(3)e18
[http://dx.doi.org/10.1038/emi.2015.18] [PMID: 26038768]
[31]
Salimi H, Cain MD, Klein RS. Encephalitic arboviruses: emergence, clinical presentation, and neuropathogenesis. Neurotherapeutics 2016; 13(3): 514-34.
[http://dx.doi.org/10.1007/s13311-016-0443-5] [PMID: 27220616]
[32]
Venter M. Assessing the zoonotic potential of arboviruses of African origin. Curr Opin Virol 2018; 28: 74-84.
[http://dx.doi.org/10.1016/j.coviro.2017.11.004] [PMID: 29216533]
[33]
Lwande OW, Obanda V, Bucht G, et al. Global emergence of Alphaviruses that cause arthritis in humans. Infect Ecol Epidemiol 2015; 5: 29853.
[http://dx.doi.org/10.3402/iee.v5.29853] [PMID: 26689654]
[34]
Weetman D, Kamgang B, Badolo A, et al. Aedes mosquitoes and Aedes-borne arboviruses in Africa: Current and future threats. Int J Environ Res Public Health 2018; 15(2)E220
[http://dx.doi.org/10.3390/ijerph15020220] [PMID: 29382107]
[35]
Gould EA, Solomon T. Pathogenic flaviviruses. Lancet 2008; 371(9611): 500-9.
[http://dx.doi.org/10.1016/S0140-6736(08)60238-X] [PMID: 18262042]
[36]
Pugachev KV, Guirakhoo F, Trent DW, Monath TP. Traditional and novel approaches to flavivirus vaccines. Int J Parasitol 2003; 33(5-6): 567-82.
[http://dx.doi.org/10.1016/S0020-7519(03)00063-8] [PMID: 12782056]
[37]
Martínez CA, Giulietti AM, Talou JR. Research advances in plant-made flavivirus antigens. Biotechnol Adv 2012; 30(6): 1493-505.
[http://dx.doi.org/10.1016/j.biotechadv.2012.03.004] [PMID: 22480936]
[38]
Holbrook MR. Historical perspectives on flavivirus research. Viruses 2017; 9(5): 97.
[http://dx.doi.org/10.3390/v9050097] [PMID: 28468299]
[39]
Shi PY, Ed. Molecular virology and control of flaviviruses. Caister Academic Press 2012.
[40]
Hackett BA, Cherry S. Flavivirus internalization is regulated by a size-dependent endocytic pathway. Proc Natl Acad Sci USA 2018; 115(16): 4246-51.
[http://dx.doi.org/10.1073/pnas.1720032115] [PMID: 29610346]
[41]
Smit JM, Moesker B, Rodenhuis-Zybert I, Wilschut J. Flavivirus cell entry and membrane fusion. Viruses 2011; 3(2): 160-71.
[http://dx.doi.org/10.3390/v3020160] [PMID: 22049308]
[42]
Stiasny K, Fritz R, Pangerl K, Heinz FX. Molecular mechanisms of flavivirus membrane fusion. Amino Acids 2011; 41(5): 1159-63.
[http://dx.doi.org/10.1007/s00726-009-0370-4] [PMID: 19882217]
[43]
Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: diversity, identity, and cell entry. Front Immunol 2018; 9: 2180.
[http://dx.doi.org/10.3389/fimmu.2018.02180] [PMID: 30319635]
[44]
Lopez-Denman AJ, Mackenzie JM. The IMPORTance of the nucleus during flavivirus replication. Viruses 2017; 9(1): 14.
[http://dx.doi.org/10.3390/v9010014] [PMID: 28106839]
[45]
Yu L, Nomaguchi M, Padmanabhan R, Markoff L. Specific requirements for elements of the 5′ and 3′ terminal regions in flavivirus RNA synthesis and viral replication. Virology 2008; 374(1): 170-85.
[http://dx.doi.org/10.1016/j.virol.2007.12.035] [PMID: 18234265]
[46]
Ng WC, Soto-Acosta R, Bradrick SS, Garcia-Blanco MA, Ooi EE. The 5′ and 3′ untranslated regions of the flaviviral genome. Viruses 2017; 9(6): 137.
[http://dx.doi.org/10.3390/v9060137] [PMID: 28587300]
[47]
Brinton MA, Basu M. Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus. Virus Res 2015; 206: 108-19.
[http://dx.doi.org/10.1016/j.virusres.2015.02.006] [PMID: 25683510]
[48]
Bollati M, Alvarez K, Assenberg R, et al. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 2010; 87(2): 125-48.
[http://dx.doi.org/10.1016/j.antiviral.2009.11.009] [PMID: 19945487]
[49]
Khromykh AA, Varnavski AN, Sedlak PL, Westaway EG. Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol 2001; 75(10): 4633-40.
[http://dx.doi.org/10.1128/JVI.75.10.4633-4640.2001] [PMID: 11312333]
[50]
Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 2016; 13: 131.
[http://dx.doi.org/10.1186/s12985-016-0590-7] [PMID: 27473856]
[51]
Xu T, Sampath A, Chao A, et al. Structure of the Dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A. J Virol 2005; 79(16): 10278-88.
[http://dx.doi.org/10.1128/JVI.79.16.10278-10288.2005] [PMID: 16051821]
[52]
Lescar J, Luo D, Xu T, et al. Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Res 2008; 80(2): 94-101.
[http://dx.doi.org/10.1016/j.antiviral.2008.07.001] [PMID: 18674567]
[53]
Simmons M, Putnak JR. Review of Current Non-Vaccine Based Approaches for the Prevention and Treatment of Flaviviral Diseases. Med Res Arch 2017; 5: 1-15.
[54]
Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of replication and assembly in flaviviruses. Curr Opin Virol 2014; 9: 134-42.
[http://dx.doi.org/10.1016/j.coviro.2014.09.020] [PMID: 25462445]
[55]
Bissoyi A, Pattanayak SK, Bit A, et al. Alphavirus nonstructural proteases and their inhibitorsViral Proteases and Their Inhibitors. Academic Press 2017; pp. 77-104.
[56]
Carpentier KS, Morrison TE. Innate immune control of alphavirus infection. Curr Opin Virol 2018; 28: 53-60.
[http://dx.doi.org/10.1016/j.coviro.2017.11.006] [PMID: 29175515]
[57]
Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW. Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol 2015; 96(9): 2483-500.
[http://dx.doi.org/10.1099/jgv.0.000249] [PMID: 26219641]
[58]
Byler KG, Collins JT, Ogungbe IV, Setzer WN. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput Biol Chem 2016; 64: 163-84.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.06.005] [PMID: 27387412]
[59]
Leung JY, Ng MM, Chu JJ. Replication of alphaviruses: a review on the entry process of alphaviruses into cells. Adv Virol 2011; •••2011249640
[http://dx.doi.org/10.1155/2011/249640] [PMID: 22312336]
[60]
Wahid B, Ali A, Rafique S, Idrees M. Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis 2017; 58: 69-76.
[http://dx.doi.org/10.1016/j.ijid.2017.03.006] [PMID: 28288924]
[61]
Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication. Virus Res 2017; 234: 44-57.
[http://dx.doi.org/10.1016/j.virusres.2017.01.007] [PMID: 28104453]
[62]
Lark T, Keck F, Narayanan A. Interactions of Alphavirus nsP3 protein with host proteins. Front Microbiol 2018; 8: 2652.
[http://dx.doi.org/10.3389/fmicb.2017.02652] [PMID: 29375517]
[63]
Deeba F, Malik MZ, Naqvi IH, et al. Potential entry inhibitors of the envelope protein (E2) of Chikungunya virus: in silico structural modeling, docking and molecular dynamic studies. Virusdisease 2017; 28(1): 39-49.
[http://dx.doi.org/10.1007/s13337-016-0356-2] [PMID: 28466054]
[64]
Vasilakis N, Lambert A, MacLachlan NJ, Brault AC. Genomic organization of arboviral families. Arboviruses 2016; 15: 31.
[65]
Abu Bakar F, Ng LFP. Nonstructural proteins of alphavirus - potential targets for drug development. Viruses 2018; 10(2): 71.
[http://dx.doi.org/10.3390/v10020071] [PMID: 29425115]
[66]
Byrd EA, Kielian M. An alphavirus E2 membrane-proximal domain promotes envelope protein lateral interactions and virus budding. MBio 2017; 8(6): e01564-17.
[http://dx.doi.org/10.1128/mBio.01564-17] [PMID: 29114027]
[67]
Gao Y, Goonawardane N, Ward J, Tuplin A, Harris M. Multiple roles of the non-structural protein 3 (nsP3) alphavirus unique domain (AUD) during Chikungunya virus genome replication and transcription. PLoS Pathog 2019; 15(1)e1007239
[http://dx.doi.org/10.1371/journal.ppat.1007239] [PMID: 30668592]
[68]
Fros JJ, Pijlman GP. Alphavirus infection: host cell shut-off and inhibition of antiviral responses. Viruses 2016; 8(6): 166.
[http://dx.doi.org/10.3390/v8060166] [PMID: 27294951]
[69]
Bhalla N, Sun C, Metthew Lam LK, Gardner CL, Ryman KD, Klimstra WB. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus. Virology 2016; 496: 147-65.
[http://dx.doi.org/10.1016/j.virol.2016.06.005] [PMID: 27318152]
[70]
Jain J, Kumari A, Somvanshi P, Grover A, Pai S, Sunil S. In silico analysis of natural compounds targeting structural and nonstructural proteins of chikungunya virus. F1000 Res 2017; 6: 1601.
[http://dx.doi.org/10.12688/f1000research.12301.1] [PMID: 29333236]
[71]
Kamboj A, Saluja AK, Kumar M, Atri P. Antiviral activity of plant polyphenols. J Pharm Res 2012; 5: 2402-12.
[72]
Imran I, Altaf I, Ashraf M, Javeed A, Munir N, Bashir R. In vitro evaluation of antiviral activity of leaf extracts of Azadirachta indica, Moringa oleifera, and Morus alba against the foot and mouth disease virus on BHK-21 cell line. Sci Asia 2016; 42: 392-6.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2016.42.392]
[73]
Tapas AR, Sakarkar DM, Kakde RB. Flavonoids as nutraceuticals: a review. Trop J Pharm Res 2008; 7: 1089-99.
[http://dx.doi.org/10.4314/tjpr.v7i3.14693]
[74]
Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 2004; 36(7): 838-49.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[75]
Carneiro BM, Batista MN, Braga ACS, Nogueira ML, Rahal P. The green tea molecule EGCG inhibits Zika virus entry. Virology 2016; 496: 215-8.
[http://dx.doi.org/10.1016/j.virol.2016.06.012] [PMID: 27344138]
[76]
Weber C, Sliva K, von Rhein C, Kümmerer BM, Schnierle BS. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Res 2015; 113: 1-3.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.001] [PMID: 25446334]
[77]
Wong G, He S, Siragam V, et al. Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection. Virol Sin 2017; 32(6): 545-7.
[http://dx.doi.org/10.1007/s12250-017-4057-9] [PMID: 28884445]
[78]
Lani R, Hassandarvish P, Shu MH, et al. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res 2016; 133: 50-61.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.009] [PMID: 27460167]
[79]
Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 2013; 19(2): 151-62.
[http://dx.doi.org/10.1089/ars.2012.4901] [PMID: 23121441]
[80]
Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 2011; 8: 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[81]
Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry 2003; 62(2): 121-5.
[http://dx.doi.org/10.1016/S0031-9422(02)00513-7] [PMID: 12482446]
[82]
Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 2007; 51(9): 3367-70.
[http://dx.doi.org/10.1128/AAC.00041-07] [PMID: 17576830]
[83]
Shieh DE, Liu LT, Lin CC. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 2000; 20(5A): 2861-5.
[PMID: 11062694]
[84]
Hassandarvish P, Rothan HA, Rezaei S, Yusof R, Abubakar S, Zandi K. In silico study on baicalein and baicalin as inhibitors of dengue virus replication. RSC Advances 2016; 6: 31235-47.
[http://dx.doi.org/10.1039/C6RA00817H]
[85]
Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. Novel antiviral activity of baicalein against dengue virus. BMC Complement Altern Med 2012; 12: 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[86]
Seyedi SS, Shukri M, Hassandarvish P, et al. Computational approach towards exploring potential anti-Chikungunya activity of selected flavonoids. Sci Rep 2016; 6: 24027.
[http://dx.doi.org/10.1038/srep24027] [PMID: 27071308]
[87]
Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci 2012; 13(12): 16785-95.
[http://dx.doi.org/10.3390/ijms131216785] [PMID: 23222683]
[88]
Oo A, Teoh BT, Sam SS, Bakar SA, Zandi K. Baicalein and baicalin as Zika virus inhibitors. Arch Virol 2018; 3: 1-9.
[PMID: 30392049]
[89]
Liu L, Shan S, Zhang K, Ning ZQ, Lu XP, Cheng YY. Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate transcription of adiponectin. Phytother Res 2008; 22(10): 1400-3.
[http://dx.doi.org/10.1002/ptr.2504] [PMID: 18690615]
[90]
Paredes A, Alzuru M, Mendez J, Rodríguez-Ortega M. Anti-Sindbis activity of flavanones hesperetin and naringenin. Biol Pharm Bull 2003; 26(1): 108-9.
[http://dx.doi.org/10.1248/bpb.26.108] [PMID: 12520185]
[91]
Ahmadi A, Hassandarvish P, Lani R, et al. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances 2016; 6: 69421-30.
[http://dx.doi.org/10.1039/C6RA16640G]
[92]
Castrillo M, Córdova T, Cabrera G, Rodríguez-Ortega M. Effect of naringenin, hesperetin and their glycosides forms on the replication of the 17D strain of yellow fever virus. Avances en Biomedicina 2015; 4: 69-78.
[93]
Pohjala L, Utt A, Varjak M, et al. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays. PLoS One 2011; 6(12)e28923
[http://dx.doi.org/10.1371/journal.pone.0028923] [PMID: 22205980]
[94]
Król SK, Kiełbus M, Rivero-Müller A, Stepulak A. Comprehensive review on betulin as a potent anticancer agent. BioMed Res Int 2015; •••2015584189
[http://dx.doi.org/10.1155/2015/584189] [PMID: 25866796]
[95]
Pohjala L, Alakurtti S, Ahola T, Yli-Kauhaluoma J, Tammela P. Betulin-derived compounds as inhibitors of alphavirus replication. J Nat Prod 2009; 72(11): 1917-26.
[http://dx.doi.org/10.1021/np9003245] [PMID: 19839605]
[96]
Di Pierro F, Putignano P, Villanova N, Montesi L, Moscatiello S, Marchesini G. Preliminary study about the possible glycemic clinical advantage in using a fixed combination of Berberis aristata and Silybum marianum standardized extracts versus only Berberis aristata in patients with type 2 diabetes. Clin Pharmacol 2013; 5: 167-74.
[http://dx.doi.org/10.2147/CPAA.S54308] [PMID: 24277991]
[97]
Varghese FS, Thaa B, Amrun SN, et al. The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase (MAPK) signaling. J Virol 2016; 90(21): 9743-57.
[http://dx.doi.org/10.1128/JVI.01382-16] [PMID: 27535052]
[98]
Vázquez-Calvo Á, Jiménez de Oya N, Martín-Acebes MA, Garcia-Moruno E, Saiz JC. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus. Front Microbiol 2017; 8: 1314.
[http://dx.doi.org/10.3389/fmicb.2017.01314] [PMID: 28744282]
[99]
Powers CN, Setzer WN. An in-silico investigation of phytochemicals as antiviral agents against dengue fever. Comb Chem High Throughput Screen 2016; 19(7): 516-36.
[http://dx.doi.org/10.2174/1386207319666160506123715] [PMID: 27151482]
[100]
Stanić Z. Curcumin, a compound from natural sources, a true scientific challenge–a review. Plant Foods Hum Nutr 2017; 72(1): 1-12.
[http://dx.doi.org/10.1007/s11130-016-0590-1] [PMID: 27995378]
[101]
Zhang Y, Wang Z, Chen H, Chen Z, Tian Y. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection. Int J Infect Dis 2014; 24: 30-6.
[http://dx.doi.org/10.1016/j.ijid.2014.02.011] [PMID: 24780919]
[102]
Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142: 148-57.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[103]
Iinuma M, Ohyama M, Tanaka T. Six flavonostilbenes and a flavanone in roots of Sophora alopecuroides. Phytochemistry 1995; 38: 519-25.
[http://dx.doi.org/10.1016/0031-9422(94)00720-E]
[104]
Sze A, Olagnier D, Hadj SB, et al. Sophoraflavenone G restricts Dengue and Zika virus infection via RNA polymerase interference. Viruses 2017; 9(10): 287.
[http://dx.doi.org/10.3390/v9100287] [PMID: 28972551]
[105]
Pliego Zamora A, Edmonds JH, Reynolds MJ, Khromykh AA, Ralph SJ. The in vitro and in vivo antiviral properties of combined monoterpene alcohols against West Nile virus infection. Virology 2016; 495: 18-32.
[http://dx.doi.org/10.1016/j.virol.2016.04.021] [PMID: 27152479]
[106]
Chaves SK, Feitosa CM, da Silva Santos FP, Freire JA. Pharmacological activities palmatine alkaloid compound isolated from Guatteria friesiana prospects for new drug development. Asian J Biomed Pharm 2016; p. 6.
[107]
Jia F, Zou G, Fan J, Yuan Z. Identification of palmatine as an inhibitor of West Nile virus. Arch Virol 2010; 155(8): 1325-9.
[http://dx.doi.org/10.1007/s00705-010-0702-4] [PMID: 20496087]
[108]
Noble CG, Chen YL, Dong H, et al. Strategies for development of Dengue virus inhibitors. Antiviral Res 2010; 85(3): 450-62.
[http://dx.doi.org/10.1016/j.antiviral.2009.12.011] [PMID: 20060421]
[109]
Löhr K, Knox JE, Phong WY, et al. Yellow fever virus NS3 protease: peptide-inhibition studies. J Gen Virol 2007; 88(Pt 8): 2223-7.
[http://dx.doi.org/10.1099/vir.0.82735-0] [PMID: 17622626]
[110]
Chavan BB, Gadekar AS, Mehta PP, Vawhal PK, Kolsure AK, Chabukswar AR. Synthesis and medicinal significance of chalcones-a review. Asian J Biomed Pharm 2016; p. 6.
[111]
Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Rahman NA. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg Med Chem Lett 2006; 16(12): 3337-40.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.075] [PMID: 16621533]
[112]
M Calderon-Montano J Burgos-Morón E. Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 2011; 11: 298-344.
[113]
Zhang T, Wu Z, Du J, et al. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics. PLoS One 2012; 7(1)e30259
[http://dx.doi.org/10.1371/journal.pone.0030259] [PMID: 22276167]
[114]
Lü HT, Liu J, Deng R, Song JY. Preparative isolation and purification of indigo and indirubin from Folium isatidis by high-speed counter-current chromatography. Phytochem Anal 2012; 23(6): 637-41.
[http://dx.doi.org/10.1002/pca.2366] [PMID: 22553192]
[115]
Chang SJ, Chang YC, Lu KZ, Tsou YY, Lin CW. Antiviral activity of Isatis indigotica extract and its derived indirubin against Japanese encephalitis virus. ‎. Evid Based Complement Alternat Med 2012; •••2012925830
[http://dx.doi.org/10.1155/2012/925830] [PMID: 22911608]
[116]
Lee JY, Kim CJ. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes. Arch Pharm Res 2010; 33(6): 947-57.
[http://dx.doi.org/10.1007/s12272-010-0619-1] [PMID: 20607501]
[117]
Swarup V, Ghosh J, Mishra MK, Basu A. Novel strategy for treatment of Japanese encephalitis using arctigenin, a plant lignan. J Antimicrob Chemother 2008; 61(3): 679-88.
[http://dx.doi.org/10.1093/jac/dkm503] [PMID: 18230688]
[118]
Kang GJ, Han SC, Ock JW, Kang HK, Yoo ES. Anti-inflammatory effect of quercetagetin, an active component of immature Citrus unshiu, in HaCaT human keratinocytes. Biomol Ther (Seoul) 2013; 21(2): 138-45.
[http://dx.doi.org/10.4062/biomolther.2013.001] [PMID: 24009872]
[119]
Lani R, Hassandarvish P, Chiam CW, et al. Antiviral activity of silymarin against chikungunya virus. Sci Rep 2015; 5: 11421.
[http://dx.doi.org/10.1038/srep11421] [PMID: 26078201]
[120]
Fan W, Qian S, Qian P, Li X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res 2016; 220: 112-6.
[http://dx.doi.org/10.1016/j.virusres.2016.04.021] [PMID: 27126774]
[121]
Murali KS, Sivasubramanian S, Vincent S, et al. Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon. Asian Pac J Trop Med 2015; 8(5): 352-8.
[http://dx.doi.org/10.1016/S1995-7645(14)60343-6] [PMID: 26003593]
[122]
Bourjot M, Delang L, Nguyen VH, et al. Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of Chikungunya virus replication. J Nat Prod 2012; 75(12): 2183-7.
[http://dx.doi.org/10.1021/np300637t] [PMID: 23215460]
[123]
Sánchez I, Gómez-Garibay F, Taboada J, Ruiz BH. Antiviral effect of flavonoids on the dengue virus. Phytother Res 2000; 14(2): 89-92.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<89:AID-PTR569>3.0.CO;2-C] [PMID: 10685103]
[124]
Kaur P, Thiruchelvan M, Lee RC, et al. Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob Agents Chemother 2013; 57(1): 155-67.
[http://dx.doi.org/10.1128/AAC.01467-12] [PMID: 23275491]
[125]
Sanna G, Madeddu S, Giliberti G, et al. Limonoids from Melia azedarach Fruits as Inhibitors of Flaviviruses and Mycobacterium tubercolosis. PLoS One 2015; 10(10)e0141272
[http://dx.doi.org/10.1371/journal.pone.0141272] [PMID: 26485025]
[126]
Lavie D, Jain MK, Kirson I. Terpenoids. Part VI. The complete structure of melianone. J Chem Soc 1967; 1347-51.
[127]
Sabini MC, Escobar FM, Tonn CE, Zanon SM, Contigiani MS, Sabini LI. Evaluation of antiviral activity of aqueous extracts from Achyrocline satureioides against Western equine encephalitis virus. Nat Prod Res 2012; 26(5): 405-15.
[http://dx.doi.org/10.1080/14786419.2010.490216] [PMID: 20623427]
[128]
Eng-Chong T, Yean-Kee L, Chin-Fei C, et al. Boesenbergia rotunda: from ethnomedicine to drug discovery. Evid Based Complement Alternat Med 2012. 2012473637
[http://dx.doi.org/10.1155/2012/473637] [PMID: 23243448]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy