Skip to main content

Methods for Optimizing Fuzzy Inference Systems

  • Chapter
  • First Online:
Advances in Data Science: Methodologies and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 189))

Abstract

The world is inundated with data. For any definition of data, too, the amount generated per second is incredible. With the explosion of the Internet through the World Wide Web in the 1990s and early 2000s, as well as the more recent exponential explosion of the Internet of Things, it is without a doubt that making sense of this data is a primary research question of this century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.youtube.com/watch?v=J_Q5X0nTmrA.

References

  1. Saltz, J.S.: The need for new processes, methodologies and tools to support big data teams and improve big data project effectiveness. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 2066–2071. IEEE (2015)

    Google Scholar 

  2. Bhardwaj, A., Bhattacherjee, S., Chavan, A., Deshpande, A., Elmore, A.J., Madden, S., Parameswaran, A.G.: Datahub: Collaborative Data Science & Dataset Version Management at Scale (2014). arXiv preprint arXiv:1409.0798

  3. Rollins, J.: Why we need a methodology for data science (2015). https://www.ibmbigdatahub.com/blog/why-we-need-methodology-data-science. Accessed 06 Mar 2019

  4. Papadakis Ktistakis, I.: An autonomous intelligent robotic wheelchair to assist people in need: standing-up, turning-around and sitting-down. Doctoral dissertation, Wright State University (2018)

    Google Scholar 

  5. Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Trans. Syst. Man Cybern. 20(2), 419–435 (1990)

    Google Scholar 

  6. Abraham, A.: Adaptation of fuzzy inference system using neural learning. In: Fuzzy Systems Engineering, pp. 53–83. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  7. Davis, L.: Handbook of Genetic Algorithms (1991)

    Google Scholar 

  8. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

  9. Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley (2005)

    Google Scholar 

  10. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 1, 28–44 (1973)

    Article  MathSciNet  Google Scholar 

  11. Rao, J.B., Zakaria, A.: Improvement of the switching of behaviours using a fuzzy inference system for powered wheelchair controllers. In: Engineering Applications for New Materials and Technologies, pp. 205–217. Springer, Cham (2018)

    Google Scholar 

  12. Bourbakis, N., Ktistakis, I.P., Tsoukalas, L., Alamaniotis, M.: An autonomous intelligent wheelchair for assisting people at need in smart homes: a case study. In: 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–7. IEEE (2015)

    Google Scholar 

  13. Ktistakis, I.P., Bourbakis, N.G.: Assistive intelligent robotic wheelchairs. IEEE Potentials 36(1), 10–13 (2017)

    Article  Google Scholar 

  14. Ktistakis, I.P., Bourbakis, N.: An SPN modeling of the H-IRW getting-up task. In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 766–771. IEEE (2016)

    Google Scholar 

  15. Ktistakis, I.P., Bourbakis, N.: A multimodal human-machine interaction scheme for an intelligent robotic nurse. In: 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 749–756. IEEE (2018)

    Google Scholar 

  16. Mohamed, S. R., Shohaimay, F., Ramli, N., Ismail, N., Samsudin, S.S.: Academic poster evaluation by Mamdani-type fuzzy inference system. In: Regional Conference on Science, Technology and Social Sciences (RCSTSS 2016), pp. 871–879. Springer, Singapore (2018)

    Google Scholar 

  17. Pourjavad, E., Mayorga, R.V.: A comparative study and measuring performance of manufacturing systems with Mamdani fuzzy inference system. J. Intell. Manuf. 1–13 (2017)

    Google Scholar 

  18. Jain, V., Raheja, S.: Improving the prediction rate of diabetes using fuzzy expert system. IJ Inf. Technol. Comput. Sci. 10, 84–91 (2015)

    Google Scholar 

  19. Danisman, T., Bilasco, I.M., Martinet, J.: Boosting gender recognition performance with a fuzzy inference system. Expert Syst. Appl. 42(5), 2772–2784 (2015)

    Article  Google Scholar 

  20. Thakur, S., Raw, S.N., Sharma, R.: Design of a fuzzy model for thalassemia disease diagnosis: using Mamdani type fuzzy inference system (FIS). Int. J. Pharm. Pharm. Sci. 8(4), 356–61 (2016)

    Google Scholar 

  21. Genetic Algorithm. https://en.wikipedia.org/wiki/Genetic_algorithm. Accessed 24 Mar 2019

  22. Gong, M., Yang, Y.H.: Multi-resolution stereo matching using genetic algorithm. In: Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), pp. 21–29. IEEE (2001)

    Google Scholar 

  23. Brown, C., Barnum, P., Costello, D., Ferguson, G., Hu, B., Van Wie, M.: Quake ii as a robotic and multi-agent platform. Robot. Vis. Tech. Rep. [Digital Repository] (2004). Available at HTTP. http://hdl.handle.net/1802/1042.

  24. Yasuda, G.I., Takai, H.: Sensor-based path planning and intelligent steering control of nonholonomic mobile robots. In: IECON’01 27th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 317–322 (Cat. No. 37243). IEEE (2001)

    Google Scholar 

  25. Sandstrom, K., Norstrom, C.: Managing complex temporal requirements in real-time control systems. In: Proceedings Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, pp. 103–109. IEEE (2002)

    Google Scholar 

  26. Uz, M.E., Hadi, M.N.: Optimal design of semi active control for adjacent buildings connected by MR damper based on integrated fuzzy logic and multi-objective genetic algorithm. Eng. Struct. 69, 135–148 (2014)

    Article  Google Scholar 

  27. Bobillo, F., Straccia, U.: The fuzzy ontology reasoner fuzzyDL. Knowl.-Based Syst. 95, 12–34 (2016)

    Article  Google Scholar 

  28. Di Noia, T., Mongiello, M., Nocera, F., Straccia, U.: A fuzzy ontology-based approach for tool-supported decision making in architectural design. Knowl. Inf. Syst. 1–30 (2018)

    Google Scholar 

  29. Groth, W3C.: PROV-O: The PROV Ontology. https://www.w3.org/TR/prov-o/. Accessed 6 Apr 2019

  30. Shimizu, C., Hitzler, P., Paul, C.: Ontology design patterns for Winston’s taxonomy of part-whole-relationships. Proceedings WOP (2018).

    Google Scholar 

  31. Straccia, U.: Fuzzy semantic web languages and beyond. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 3–8. Springer, Cham (2017)

    Google Scholar 

  32. Straccia, U.: An Introduction to Fuzzy & Annotated Semantic Web Languages (2018). arXiv preprint arXiv:1811.05724

  33. Straccia, U.: A minimal deductive system for general fuzzy RDF. In: International Conference on Web Reasoning and Rule Systems, pp. 166–181. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  34. Straccia, U.: Towards a fuzzy description logic for the semantic web (preliminary report). In: European Semantic Web Conference, pp. 167–181. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  35. Pan, J.Z., Stamou, G., Tzouvaras, V., Horrocks, I.: f-SWRL: a fuzzy extension of SWRL. In: International Conference on Artificial Neural Networks, pp. 829–834. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  36. Lopes, N., Polleres, A., Straccia, U., Zimmermann, A.: AnQL: SPARQLing up annotated RDFS. In: International Semantic Web Conference, pp. 518–533. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  37. Nguyen, V.T.K.: Semantic Web Foundations for Representing, Reasoning, and Traversing Contextualized Knowledge Graphs (2017)

    Google Scholar 

  38. Bonatti, P.A., Decker, S., Polleres, A., Presutti, V.: Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  39. Hould, J.N.: Craft Beers Dataset, Version 1. https://www.kaggle.com/nickhould/craft-cans. Accessed 10 Mar 2019 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Papadakis Ktistakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ktistakis, I.P., Goodman, G., Shimizu, C. (2021). Methods for Optimizing Fuzzy Inference Systems. In: Phillips-Wren, G., Esposito, A., Jain, L.C. (eds) Advances in Data Science: Methodologies and Applications. Intelligent Systems Reference Library, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-030-51870-7_5

Download citation

Publish with us

Policies and ethics