По всем вопросам звоните:

+7 495 274-22-22

УДК: 576.5 DOI:10.33920/med-03-2002-05

Экзосомы мультипотентных мезенхимальных стволовых клеток: перспективы клинического применения

Н. В. Мещерякова Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов», Институт биохимической технологии и нанотехнологии, 117198, Россия, г. Москва, ул. Миклухо-Маклая, д. 6.
В. В. Кузьменко Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов», Институт биохимической технологии и нанотехнологии, 117198, Россия, г. Москва, ул. Миклухо-Маклая, д. 6.
Я. М. Станишевский Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов», Институт биохимической технологии и нанотехнологии, 117198, Россия, г. Москва, ул. Миклухо-Маклая, д. 6.

Рассмотрены экзосомы как популяция экстрацеллюлярных везикул, мультипотентные мезенхимальные стволовые клетки как популяция стволовых клеток. Проанализированы исследования по клиническому применению экзосом мультипотентных мезенхимальных стволовых клеток. Трансплантация экзосом мультипотентных мезенхимальных стволовых клеток перспективна при лечении различных заболеваний.

Литература:

1. Behnke O. An electron microscope study of the megacaryocyte of the rat bone marrow. The development of the demarcation membrane system and the platelet surface coat. J. Ultrastruct. Res. 1968; 24: 412–433.

2. Bruno S., Camussi G. Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatr Nephrol. 2013; 28 (12): 2249–2254.

3. Harding C., Stahl P. Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem. Biophys. Res. Commun. 1983; 113: 650–658.

4. Keller S., Sanderson M. P., Stoeck A., Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006; 107: 102–108.

5. Raposo G., Nijman H. W., Stoorvogel W., Liejendekker R., Harding C. V., Melief C. J., Geuze H. J. B lymphocytes secrete antigenpresenting vesicles. Exp. Med. 1996; 183: 1161–1172.

6. Escola J. M., Klejmeer M. J., Stoorvogel W., Griffi th J. M., Yoshie O., Geuze H. J. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. Biol. Chem. 1998; 273: 20121–20127.

7. Zitvogel L., Regnault A., Lozier A., Wolfers J., Flament C., Tenza D., Ricciardi-Castagnoli P., Raposo G., Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 1998; 4: 594– 600.

8. Ratajczak J., Miekus K., Kucia M., Zhang J., Reca R., Dvorak P., Ratajczak M. Z. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006; 20: 847–856.

9. Valadi H., Ekstrom K., Bossios A., Sjöstrand M., Lee J. J., Lötvall J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007; 9: 654–659.

10. Admyre C., Grunewald J., Thyberg J., Gripenbäck S., Tornling G., Eklund A., Scheynius A., Gabrielsson S. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fl uid. Eur. Respir. 2003; 22: 578–583.

11. Pisitkun T., Shen R. F., Knepper M. A. Identifi cation and proteomic profi ling of exosomes in human urine. Proc. Nat. Acad. Sci. USA. 2004; 101: 13368–13373.

12. Caby M. P., Lankar D., Vincendeau-Scherrer C., Raposo G., Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 2005; 17: 879–887.

13. Admyre C., Johansson S. M., Qazi K. R., Filen J. J., Lahesmaa R., Norman M., Neve E. P., Scheynius A., Gabrielsson S. Exosomes with immune modulatory features are present in human breast milk. Immunol. 2007; 179: 1969–1978.

14. Simpson R. J., Jensen S. S., Lim J. W. Proteomic profi ling of exosomes: current perspectives. Proteomics. 2008; 8: 4083– 4099.

15. Mathivanan S., Simpson R. J. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009; 9: 4997–5000.

16. Exosome protein, RNA, and lipid database. 2009 [Электронный ресурс]. — Режим доступа: http://www.exocarta.org (дата обращения 01.12.2015).

17. Aliotta J. M., Sanchez-Guijo F. M., Dooner G. J., Johnson K. W., Dooner M. S., Greer K. A., Greer D., Pimentel J., Kolankiewicz L. M., Puente N., Faradyan S., Ferland P., Bearer E. L., Passero M. A., Adedi M., Colvin G. A., Quesenberry P. J. Alteration of marrow cell gene expression, protein production, and engraftment into lung by lungderived microvesicles: a novel mechanism for phenotype modulation. Stem Cells. 2007; 25: 2245–2256.

18. Aliotta J. M., Pereira M., Johnson K. W., de Paz N., Dooner M. S., Puente N., Ayala С., Brilliant K., Berz D., Lee D., Ramratnam B., McMillan P., Hixson D., Josic D., Quesenberry P. J. Microvesicle entry into marrow cells mediates tissue-specifi c changes in mRNA by direct delivery of mRNA and induction of transcription. Exp. Hematol. 2010; 38: 233–245.

19. Quesenberry P. J., Dooner M. S., Aliotta J. M. Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles. Exp. Hematol. 2010; 38: 581–592.

20. Deregibus M. C., Cantaluppi V., Calogero R., Lo Iacono M., Tetta C., Biancone L., Bruno S., Bussolati B., Camussi G. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA . Blood. 2007; 110 (7): 2440–2448.

21. Vrijsen K. R., Sluijter J. P., Schuchardt M. W., van Balkom B. W., Noort W. A., Chamuleau S. A., Doevendans P. A. Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. Cell. Mol. Med. 2010; 14 (5): 1064–1070.

22. Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., Laude H., Raposo G. Cells release prions in association with exosomes. Proc. Nat. Acad. Sci. USA. 2004; 101: 9683–9688.

23. Rajendran L., Honsho M., Zahn T. R., Keller P., Geiger K. D., Verkade P., Simons K. Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc. Nat. Acad. Sci. USA. 2006; 103 (30): 11172–11177.

24. Hao S., Ye Z., Li F., Meng Q., Qureshi M., Yang J., Xiang J. Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes. Exp. Oncol. 2006; 28 (2): 126–131.

25. Bhatnagar S., Schorey J. S. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinfl ammatory. Biol. Chem. 2007; 282 (35): 25779–25789.

26. Momen-Heravi T. N. F., Kodys K., Szabo S. G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2 -miR122-HSP90. PLoS. Pathog. 2014; 10 (10). e1004424.

27. Friedenstein A. J., Chailakhyan R. K., Latsinik N. V., Panasyuk A. F., Keiliss-Borok I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974; 17: 331–340.

28. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defi ning multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–317.

29. Lee R. H., Kim B., Choi I., Kim H., Choi H. S., Suh K., Bae Y. C., Jung J. S. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol. Biochem. 2004; 14: 311–324.

30. Young H. E., Steele T. A., Bray R. A., Hudson J., Floyd J. A., Hawkins K., Thomas K., Austin T., Edwards C., Cuzzourt J., Duenzl M., Lucas P. A., Black Jr. A. C. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat. Rec. 2001; 264: 51–62.

31. Gotherstrom C., Ringden O., Westgren M., Tammik C., Le K. Blanc. Immunomodulatory eff ects of human fetal liver-derived mesenchymal stem cells. Bone Marrow Transplant. 2003; 32: 265–272.

32. Erices A. A., Allers C. I., Conget P. A., Rojas C. V., Minguell J. J. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodefi cient mice after systemic infusion. Cell Transplant. 2003; 12: 555–561.

33. Fukuchi Y., Nakajima H., Sugiyama D., Hirose I., Kitamura T., Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004; 22: 649–658.

34. Tsai M. S., Lee J. L., Chang Y. J., Hwang S. M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fl uid using a novel two-stage culture protocol. Hum. Reprod. 2004; 19: 1450–1456.

35. Perry B. C., Zhou D., Wu X., Yang F. C., Byers M. A., Chu T. M., Hockema J. J., Woods E. J., Goebel W. S. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng. Part. C. Methods. 2008; 14: 149–156.

36. Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., Mosca J. D., Moorman M. A., Simonetti D. W., Craig S., Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143–147.

37. Sanchez-Ramos J., Song S., Cardozo-Pelaez F., Hazzi C., Stedeford T., Willing A., Freeman T. B., Saporta S., Janssen W., Patel N., Cooper D. R., Sanberg P. R. Adult bone marrow stromal cells diff erentiate into neural cells in vitro. Exp. Neurol. 2000; 164 P. 247–256.

38. Woodbury D., Schwarz E. J., Prockop D. J., Black I. B. Adult rat and human bone marrow stromal cells diff erentiate into neurons. Neurosci. Res. 2000; 61: 364–370.

39. Hass R., Kasper C., Böhm S., Jacobs R. Diff erent populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011; 14: 9–12.

40. Hsiao S. T., Asgari A., Lokmic Z., Sinclair R., Dusting G. J., Lim S. Y., Dilley R. J. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. 2012; 21 P. 2189–2203.

41. Le Blanc K., Pittenger M. F. Mesenchymal stem cells: progress toward promise. Cytotherapy. 2005; 7: 36–45.

42. Bartholomew A., Sturgeon C., Siatskas M., Ferrer K., McIntosh K., Patil S., Hardy W., Devine S., Ucker D., Deans R., Moseley A., Hoff man R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002; 30: 42–48.

43. Di Nicola M., Carlo-Stella C., Magni M., Milanesi M., Longoni P. D., Matteucci P., Grisanti S., Gianni A. M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecifi c mitogenic stimuli. Blood. 2002; 99: 3838–3843.

44. Aggarwal S., Pittenger M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105: 1815–1822.

45. Corcione A., Benvenuto F., Ferretti E., Giunti D., Cappiello V., Cazzanti F., Risso M., Gualandi F., Mancardi G. L., Pistoia V., Uccelli A. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006; 107: 367–372.

46. Bunnell B. A., Deng W., Robinson C. M., Waldron P. R., Bivalacqua T. J., Baber S. R., Hyman A. L., Kadowitz P. J. Potential application for mesenchymal stem cells in the treatment of cardiovascular diseases. Can. J. Physiol. Pharmacol. 2005; 83 (7): 529–539.

47. Lescaudron L., Boyer C., Bonnamain V., Fink K. D., Lévêque X., Rossignol J., Nerrière-Daguin V., Malouet A. C., Lelan F., Dey N. D., Michel-Monigadon D., Lu M., Neveu I., von Hörsten S., Naveilhan P., Dunbar G. L. Assessing the potential clinical utility of transplantations of neural and mesenchymal stem cells for treating neurodegenerative diseases. Methods Mol. Biol. 2012; 879: 147–164.

48. Tanna T., Sachan V. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr. Stem Cell Res. Ther. 2014; 9 (6): 513–521.

49. Wyse R. D., Dunbar G. L., Rossiqnol J. Use of genetically modifi ed mesenchymal stem cells to treat neurodegenerative diseases. Mol. Sci. 2014; 15 (2): 1719–1745.

50. Tyndall A. Mesenchymal stromal cells and rheumatic disorders. Immunol. Lett. 2015. PII: S0165–2478 (15) 00093–0.

51. Munir H., McGettrick H. M. Mesenchymal stem cell therapy for autoimmune disease: risks and rewards. Stem Cells Dev. 2015; 24 (18): 2091–2100.

52. Klinker M. W., Wei C. H. Mesenchymal stem cells in the treatment of infl ammatory and autoimmune diseases in experimental animal models. World J. Stem Cells. 2015; 7 (3): 556–567.

53. Hashemian S. J., Kouhnavard M., Nasli-Esfahani E. Mesenchymal stem cells: rising concerns over their application in treatment of type one diabetes mellitus. Diabetes Res. 2015; 2015: 675103.

54. Haynesworth S. E., Baber M. A., Caplan A. I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: eff ects of dexamethasone and IL-1 alpha. Cell Physiol. 1996; 166 (3): 585–592.

55. Noiseux N., Gnecchi M., Lopez-Ilasaca M., Zhang L., Solomon S. D., Deb A., Dzau V. J., Pratt R. E. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or diff erentiation. Mol. Ther. 2006; 14: 840–850.

56. Iso Y., Spees J. L., Serrano C., Bakondi B., Pochampally R., Song Y. H., Sobel B. E., Delafontaine P., Prockop D. J. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007; 354: 700–706.

57. Lda. Meirelles S., Fontes A. M., Covas D. T., Caplan A. I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009; 20: 419–427.

58. Phinney D. G., Prockop D. J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdiff erentiation and modes of tissue repair — current views. Stem Cells. 2007; 25: 2896–2902.

59. A. I. Caplan, J. E. Dennis. Mesenchymal stem cells as trophic mediators. Cell Biochem. 2006; 98: 1076–1084.

60. Chen L., Tredget E. E., Wu P. Y., Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS. One. 2008; 3: e1886.

61. Hung S. C., Pochampally R. R., Chen S. C., Hsu S. C., Prockop D. J. Angiogenic eff ects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells. 2007; 25: 2363–2370.

62. Lai R. C., Arslan F., Lee M. M., Sze N. S., Choo A., Chen T. S., Salto-Tellez M., Timmers L., Lee C. N., El. Oakley R. M., Pasterkamp G., de Kleijn D. P., Lim S. K. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010; 4: 214–222.

63. Camussi G., Deregibus M. C., Bruno S., Cantaluppi V., Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010; 789: 838–848.

64. Aliotta J. M., Pereira M., Li M., Amaral A., Sorokina A., Dooner M. S., Sears E. H., Brilliant K., Ramratnam B., Hixons D. C., Quesemberry P. J. Stable cell fate changes in marrow cells induced by lung-derived microvesicles. Extracell Vesicles. 2012. 1: 10.3402/jev.v1i0.18163.

65. Chen T. S., Lai R. C., Lee M. M., Choo A. B., Lee C. N., Lim S. K. Mesenchymal stem cell secretes microparticles enriched in premicroRNAs. Nucleic Acids Res. 2010; 38: 215–224.

66. Lai R. C., Tan S. S., Teh B. J., Sze S. K., Arslan F., de Kleijn D. P., Choo A., Lim S. K. Proteolytic Potential of the MSC Exosome Proteome: Implications for anExosome-Mediated Delivery of Therapeutic Proteasome. Proteomics. 2012; 2012: 971907.

67. Kim H. S., Choi D. Y., Yun S. J., Choi S. M., Kang J. W., Jung J. W., Hwang D., Kim K. P., Kim D. W. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. Proteome Res. 2012; 11: 839–849.

68. Yeo R. W., Lai R. C., Zhang B., Tan S. S., Yin Y., Teh B. J., Lim S. K. Mesenchymal stem cell: an effi cient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev. 2013; 65 (3): 336–341.

69. Chen T. S., Arslan F., Yin Y., Tan S. S., Lai R. C., Choo A. B., Padmanabhan J., Lee C. N., de Kleijn D. P., Lim S. K. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. Transl. Med. 2011; 9: 47.

70. Sze S. K., de Kleijn D. P., Lai R. C., Khia Way Tan E., Zhao H., Yeo K. S., Low T. Y., Lian Q., Lee C. N., Mitchell W., El. Oakley R. M., Lim S. K. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol. Cell Proteomics. 2007; 6: 1680–1689.

71. Bruno S., Grange C., Deregibus M. C., Calogero R. A., S Saviozzi., Collino F., Morando L., Busca A., Falda M., Bussolati B., Tetta C., Camussi G. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Am. Soc. Nephrol. 2009; 20: 1053–1067.

72. Bruno S., Grange C., Collino F., Deregibus M. C., Cantaluppi V., Biancone L., Tetta C., Camussi G. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS. One. 2012; 7: e33115.

73. Parolini I., Federici C., Raggi C., Lugini L., Palleschi S., De Milito A., Coscia C., Iessi E., Logozzi M., Molinari A., Colone M., Tatti M., Sargiacomo M., Fais S. Microenvironmental pH is a key factor for exosome traffi c in tumor cells. Biol. Chem. 2009; 4: 34211–34222.

74. van Zwieten R., Wever R., Hamers M. N., Weening R. S., Roos D. Extracellular proton release by stimulated neutrophils. Clin. Invest. 1981; 68 (1): 310–313.

75. The U. S. National Institutes of Health [Электронный ресурс]. — Режим доступа: https://clinicaltrials. gov/ct2 /show/NCT02138331? term=mesenchymal+stem+cell+exosome&rank=1 (дата обращения 01.12.2015).

76. Gnecchi M., He H., Liang O. D., Melo L. G., Morello F., Mu H., Noiseux N., Zhang L., Pratt R. E., Ingwall J. S., Dzau V. J. Paracrine action accounts for marked protection of ischemic heart by Akt-modifi ed mesenchymal stem cells. Nat. Med. 2005; 11: 367–368.

77. Gnecchi M., He H., Noiseux N., Liang O. D., Zhang L., Morello F., Mu H., Melo L. G., Pratt R. E., Ingwall J. S., Dzau V. J. Evidence supporting paracrine hypothesis for Akt-modifi ed mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006; 20 (6): 661–669.

78. Timmers L., Lim S. K., Arslan F., Armstrong J. S., Hoefer I. E., Doevendans P. A., Piek J. J., El. Oakley R. M., Choo A., Lee C. N., Pasterkamp G., de Kleijn D. P. Reduction of myocardial infarct size by human mesenchymal stem cellconditioned medium. Stem Cell Res. 2007; 1 (2): 129–137.

79. Lai R. C., Arslan F., Tan S. S., Tan B., Choo A., Lee M. M., Chen T. S., Teh B. J., Eng J. K., Sidik H., Tanavde V., Hwang W. S., Lee C. N., El. Oakley R. M., Pasterkamp G., de Kleijn D. P., Ta K. H., Lim S. K. Derivation and characterization of human fetal MSCs: an alternative cellsource for large-scale production of cardioprotective microparticles. Mol. Cell Cardiol. 2010; 48 (6): 1215– 1224.

80. Arslan F., Lai R. C., Smeets M. B., Akeroyd L., Choo A., Aguor E. N., Timmers L., van Rijen H. V., Doevendans P. A., Pasterkamp G., Lim S. K., de Kleijn D. P. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidativestress and activate PI3K/Akt pathway to enhance myocardial viability and preventadverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013; 10 (3): 301–312.

81. Bian S., Zhang L., Duan L., Wang X., Min Y., Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Mol. Med. (Berl.). 2014; 92 (4): 387–397.

82. Teng X., Chen L., Chen W., Yang J., Yang Z., Shen Z. Mesenchymal Stem Cell-Derived Exosomes Improve the Microenvironment of Infarcted Myocardium Contributing to Angiogenesis and Anti-Infl ammation. Cell. Physiol. Biochem. 2015; 37: 2415–2424.

83. Feng Y., Huang W., Wani M., Yu X., Ashraf M. Ischemic preconditioning potentiates the protective eff ect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE. 2014; 9: e88685.

84. Egashira Y., Sou S., Yukiya S., Keisuke M., Kazuhiro T., Shimazawa M., Shinichi Y., Toru I., Hideaki H. The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective eff ects against experimental stroke model. Brain Res. 2012; 1461: 87–95.

85. Cho Y. J., Song H. S., Bhang S., Lee S., Kang B. G., Lee J. C., An J., Cha C. I., Nam D. H., Kim B. S., Joo K. M. Therapeutic eff ects of human adipose stem cell-conditioned medium on stroke. Neurosci. Res. 2012; 90: 1794–1802.

86. Xin H., Li Y., Buller B., Katakowski M., Zhang Y., Wang X., Shang X., Zhang Z. G., Chopp M. Exosome-mediated transfer of miR133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012; 30: 1556–1564.

87. Lin S. S., Zhu B., Guo Z. K., Huang G. Z., Wang Z., Chen J., Wei X. J., Li Q. Bone Marrow Mesenchymal Stem Cell-Derived Microvesicles Protect Rat Pheochromocytoma PC12 Cells from GlutamateInduced Injury via a PI3K/Akt Dependent Pathway. Neurochem Res. 2014; 39 (5): 922–931.

88. Ni H., Yang S., Siaw-Debrah F., Hu J., Wu K., He Z., Yang J., Pan S., Lin X., Ye H. et al. Exosomes Derived from Bone Mesenchymal Stem Cells Ameliorate Early Infl ammatory Responses Following Traumatic Brain Injury. Front. Neurosci. 2019; 13, 14.

89. Huang J. H., Yin X. M., Xu Y., Xu C. C., Lin X., Ye F. B., Cao Y., Lin F. Y. Systemic Administration of Exosomes Released from Mesenchymal Stromal Cells Attenuates Apoptosis, Infl ammation, and Promotes Angiogenesis after Spinal Cord Injury in Rats. J. Neurotrauma. 2017; 34: 3388–3396.

90. Lankford K. L., Arroyo E. J., Nazimek K. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-typemacrophages in the injured spinal cord. PLOS ONE. 2018. DOI: doi.org/10.1371/journal.pone.0190358.

91. Ruppert K. A., Nguyen T. T., Prabhakara K. S., Toledano Furman N. E., Srivastava A. K., Harting Jr. M. T., Cox C. S., Olson S. D. Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Modify Microglial Response and Improve Clinical Outcomes in Experimental Spinal Cord Injury. Sci. Rep. 2018; 8: 480.

92. Zhang Z. G., Chopp M. Exosomes in stroke pathogenesis and therapy. J. Clin. Investig. 2016; 126: 1190–1197.

93. Zhang Y., Chopp M., Meng Y., Katakowski M., Xin H., Mahmood A., Xiong Y. Eff ect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. Neurosurg. 2015; 122 (4): 856–867.

94. Zhang Y., Chopp M., Sh. Liu X. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol. 2017 May; 54 (4): 2659–2673. DOI:10.1007/s12035-016-9851-0.

95. Parekkadan B., van Poll D., Suganuma K., Carter E. A., Berthiaume F., Tilles A. W., Yarmush M. L. Mesenchymal stem cellderived molecules reverse fulminant hepatic failure. PLoS One. 2007; 2 (9). e941.

96. Yan Y., Jiang W., Tan Y., Zou S., Zhang H., Mao F., Gong A., Qian H., Xu W. hucMSC exosome-derived gpx1 is required for the recovery of hepatic oxidant injury. Mol Ther. 2017; 25: 465–479.

97. Li T., Yan Y., Wang B., Qian H., Zhang X., Shen L., Wang M., Zhou Y., Zhu W., Li W., Xu W. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Liver Fibrosis. Stem Cells Dev. 2012; 22 (6): 845–854.

98. Reis L. A., Borges F. T., Simoes M. J., Borges A. A., Sinigaglia-Coimbra R., Schor N. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine eff ects in rats. PLoS One. 2012; 7 (9): e44092.

99. Zhou Y., Xu H., Xu W., Wang B., Wu H., Tao Y., Zhang B., Wang M., Mao F., Yan Y., Gao S., Gu H., Zhu W., Qian H. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013; 4 (2): 34.

100. Tamura R., Uemoto S., Tabata Y. Immunosuppressive eff ect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Infl amm Regen. 2016; 36: 26.

101. Tomasoni S., Longaretti L., Rota C., Morigi M., Conti S., Gotti E., Capelli C., Introna M., Remuzzi G., Benigni A. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative eff ect of mesenchymal stem cells. Stem Cells Dev. 2013; 22 (5): 772–780.

102. Bruno S., Tapparo M., Collino F., Chiabotto G., Deregibus M. C., Soares Lindoso R., Neri F., Kholia S., Giunti S., Wen S. Renal regenerative potential of diff erent extracellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Eng A. 2017; 23: 1262–1273.

103. Zhou Y., Xu H., Xu W., Wang B., Wu H., Tao Y., Zhang B., Wang M., Mao F., Ya Y. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013; 4: 34.

104. Aslam M., Baveja R., Liang O. D., Fernandez-Gonzalez A., Lee C., Mitsialis S. A., Kourembanas S. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am. J. Respir. Crit. Care Med. 2009; 180: 1122– 1130.

105. Hansmann G., Fernandez-Gonzalez A., Aslam M., Vitali S. H., Martin T., Mitsialis S. A., Kourembanas S. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm. Circ. 2012; 2: 170–181.

106. Lee C., Mitsialis S. A., Aslam M., Vitali S. H., Vergadi E., Konstantinou G., Sdrimas K., Fernandez-Gonzalez A., Kourembanas S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012; 126: 2601–2611.

107. Zhu Y.-G., Feng X.-M., Abbott J., Fang X.-H., Hao Q., Monsel A., Qu J.-M., Matthay M. A., Lee J. W. Human mesenchymal stem cell microvesicles for treatment of E.coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014; 32 (1): 116–125.

108. Monsel A., Zhu Y.-G., Gennai S., Hao Q., Hu S., J Rouby.-J., Rosenzwajg M., Matthay M. A., Lee J. W. Therapeutic eff ects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med. 2015; 192 (3): 324–336.

109. Dooner M. S., Aliotta J. M., Pimentel J., Dooner G. J., Abedi M., Colvin G., Liu Q., Weier H. U., Johnson K. W., Quesenberry P. J. Conversion potential of marrow cells into lung cells fl uctuates with cytokineinduced cell cycle. Stem Cells Dev. 2008; 17: 207–219.

110. Willis G. R., Fernandez-Gonzalez A., Anastas J., Vitali S. H., Liu X., Ericsson M., Kwong A., Mitsialis S. A., Kourembanas S. Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. Am. J. Respir. Crit. Care Med. 2018; 197: 104–116.

111. Asami T., Ishii M., Fujii H., Namkoong H., Tasaka S., Matsushita K., Ishii K., Yagi K., Fujiwara H., Funatsu Y., Haseqawa N., Betsuyaku T. Modulation of murine macrophage TLR7/8-mediated cytokine expression by mesenchymal stem cellconditioned medium. Mediators Infl amm. 2013; 2013: 264260.

112. Mokarizadeh A., Delirezh N., Morshedi A., Morshedi G., Farshid A. A., Mardani K. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol. Lett. 2012; 147: 47–54.

113. Katsuda T., Tsuchiya R., Kosaka N., Yoshioka Y., Takagaki K., Oki K., Takeshita F., Sakai Y., Kuroda M., Ochiya T. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci. Rep. 2013; 3: 1197.

114. Reza-Zaldivar E. E., Hernandez-Sapiens M. A., Gutierrez-Mercado Y. K., Sandoval-Avila S., Gomez-Pinedo U., MarquezAguirre A. L., Vazquez-Mendez E., Padilla-Camberos E., Canales-Aguirre A. A. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen. Res. 2019; 14: 1626–1634.

115. Cui G. H., Wu J., Mou F. F., Xie W. H., Wang F. B., Wang Q. L., Fang J., Xu Y. W., Dong Y. R., Liu J. R. et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating infl ammatory responses in APP/PS1 mice. FASEB J. 2018; 32: 654–668.

116. Ezquer F., Ezquer M., Contador D., Ricca M., Simon V., Conget P. The antidiabetic eff ect of mesenchymal stem cells is unrelated to their transdiff erentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells. 2012; 30 (8): 1664–1674.

117. Favaro E., Carpanetto A., Lamorte S., Fusco A., Caorsi C., Deregibus M. C., Bruno S., Amoroso A., Giovarelli M., Porta M., Perin P. C., Tetta C., Camussi G., Zanone M. M. Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia. 2014; 57 (8): 1664–1673.

118. Cho B. S., Kim J. O., Ha D. H., Yi Y. W. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res. Ther. 2018; 9: 187.

1. O. Behnke. An electron microscope study of the megacaryocyte of the rat bone marrow. The development of the demarcation membrane system and the platelet surface coat. J. Ultrastruct. Res. 1968. V. 24. PP. 412–433.

2. S. Bruno, G. Camussi. Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatr Nephrol. 2013. V. 28 (12). PP. 2249–2254.

3. C. Harding, P. Stahl. Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem. Biophys. Res. Commun. 1983. V. 113. PP. 650–658.

4. S. Keller, M. P. Sanderson, A. Stoeck, P. Altevogt. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006. V. 107. PP. 102–108.

5. G. Raposo, H. W. Nijman, W. Stoorvogel, R. Liejendekker, C. V. Harding, C. J. Melief, H. J. Geuze. B lymphocytes secrete antigenpresenting vesicles. Exp. Med. 1996. V. 183. PP. 1161–1172.

6. J. M. Escola, M. J. Klejmeer, W. Stoorvogel, J. M. Griffi th, O. Yoshie, H. J. Geuze. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. Biol. Chem. 1998. V. 273. PP. 20121–20127.

7. L. Zitvogel, A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, S. Amigorena. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 1998. V.4. PP. 594–600.

8. J. Ratajczak, K. Miekus, M. Kucia, J. Zhang, R. Reca, P. Dvorak, M. Z. Ratajczak. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006. V. 20. PP. 847–856.

9. H. Valadi, K. Ekstrom, A. Bossios, M. Sjöstrand, J. J. Lee, J. O. Lötvall. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007. V. 9. PP. 654–659.

10. C. Admyre, J. Grunewald, J. Thyberg, S. Gripenbäck, G. Tornling, A. Eklund, A. Scheynius, S. Gabrielsson. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fl uid. Eur. Respir. 2003. V.

22. PP. 578–583.

11. T. Pisitkun, R. F. Shen, M. A. Knepper. Identifi cation and proteomic profi ling of exosomes in human urine. Proc. Nat. Acad. Sci. USA. 2004. V. 101. PP. 13368–13373.

12. M. P. Caby, D. Lankar, C. Vincendeau-Scherrer, G. Raposo, C. Bonnerot. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 2005. V. 17. PP. 879–887.

13. C. Admyre, S. M. Johansson, K. R. Qazi, J. J. Filen, R. Lahesmaa, M. Norman, E. P. Neve, A. Scheynius, S. Gabrielsson. Exosomes with immune modulatory features are present in human breast milk. Immunol. 2007. V. 179. PP. 1969–1978.

14. R. J. Simpson, S. S. Jensen, J. W. Lim. Proteomic profi ling of exosomes: current perspectives. Proteomics. 2008. V. 8. PP. 4083–4099.

15. S. Mathivanan, R. J. Simpson. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009. V. 9. PP. 4997– 5000.

16. Exosome protein, RNA, and lipid database. 2009. URL: http://www.exocarta.org (accessed 01.12.2015).

17. J. M. Aliotta, F. M. Sanchez-Guijo, G. J. Dooner, K. W. Johnson, M. S. Dooner, K. A. Greer, D. Greer, J. Pimentel, L. M. Kolankiewicz, N. Puente, S. Faradyan, P. Ferland, E. L. Bearer, M. A. Passero, M. Adedi, G. A. Colvin, P. J. Quesenberry. Alteration of marrow cell gene expression, protein production, and engraftment into lung by lungderived microvesicles: a novel mechanism for phenotype modulation. Stem Cells. 2007. V. 25. PP. 2245–2256.

18. J. M. Aliotta, M. Pereira, K. W. Johnson, N. de Paz, M. S. Dooner, N. Puente, C. Ayala, K. Brilliant, D. Berz, D. Lee, B. Ramratnam, P. N. McMillan, D. C. Hixson, D. Josic, P. J. Quesenberry. Microvesicle entry into marrow cells mediates tissue-specifi c changes in mRNA by direct delivery of mRNA and induction of transcription. Exp. Hematol. 2010. V. 38. PP. 233–245.

19. P. J. Quesenberry, M. S. Dooner, J. M. Aliotta. Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles. Exp. Hematol. 2010. V. 38. PP. 581–592.

20. M. C. Deregibus, V. Cantaluppi, R. Calogero, M. Lo Iacono, C. Tetta, L. Biancone, S. Bruno, B. Bussolati, G. Camussi. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007. V. 110 (7). PP. 2440–2448.

21. K. R. Vrijsen, J. P. Sluijter, M. W. Schuchardt, B. W. van Balkom, W. A. Noort, S. A. Chamuleau, P. A. Doevendans. Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. Cell. Mol. Med. 2010. V. 14 (5). PP. 1064–1070.

22. B. Fevrier, D. Vilette, F. Archer, D. Loew, W. Faigle, M. Vidal, H. Laude, G. Raposo. Cells release prions in association with exosomes. Proc. Nat. Acad. Sci. USA. 2004. V. 101. PP. 9683–9688.

23. L. Rajendran, M. Honsho, T. R. Zahn, P. Keller, K. D. Geiger, P. Verkade, K. Simons. Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc. Nat. Acad. Sci. USA. 2006. V. 103 (30). PP. 11172–11177.

24. S. Hao, Z. Ye, F. Li, Q. Meng, M. Qureshi, J. Yang, J. Xiang. Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes. Exp. Oncol. 2006. V. 28 (2). PP. 126–131.

25. S. Bhatnagar, J. S. Schorey. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinfl ammatory. Biol. Chem. 2007. V. 282 (35). PP. 25779–25789.

26. T. N. F. Momen-Heravi, K. Kodys, S. G. Szabo. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2 -miR122-HSP90. PLoS. Pathog. 2014. V. 10 (10). e1004424.

27. A. J. Friedenstein, R. K. Chailakhyan, N. V. Latsinik, A. F. Panasyuk, I. V. Keiliss-Borok. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974. V.17. PP. 331–340.

28. M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz. Minimal criteria for defi ning multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006. V. 8 (4). PP. 315–317.

29. R. H. Lee, B. Kim, I. Choi, H. Kim, H. S. Choi, K. Suh, Y. C. Bae, J. S. Jung. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue.. Cell Physiol. Biochem. 2004. V. 14. PP. 311–324.

30. H. E. Young, T. A. Steele, R. A. Bray, J. Hudson, J. A. Floyd, K. Hawkins, K. Thomas, T. Austin, C. Edwards, J. Cuzzourt, M. Duenzl, P. A. Lucas, A. C. Jr. Black. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat. Rec. 2001. V. 264. PP. 51–62.

31. C. Gotherstrom, O. Ringden, M. Westgren, C. Tammik, K. Le Blanc. Immunomodulatory eff ects of human fetal liverderived mesenchymal stem cells. Bone Marrow Transplant. 2003. V. 32. PP. 265–272.

32. A. A. Erices, C. I. Allers, P. A. Conget, C. V. Rojas, J. J. Minguell. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodefi cient mice after systemic infusion. Cell Transplant. 2003. V. 12. PP. 555–561.

33. Y. Fukuchi, H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, K. Tsuji. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004. V. 22. PP. 649–658.

34. M. S. Tsai, J. L. Lee, Y. J. Chang, S. M. Hwang. Isolation of human multipotent mesenchymal stem cells from secondtrimester amniotic fl uid using a novel two-stage culture protocol. Hum. Reprod. 2004. V. 19. PP. 1450–1456.

35. B. C. Perry, D. Zhou, X. Wu, F. C. Yang, M. A. Byers, T. M. Chu, J. J. Hockema, E. J. Woods, W. S. Goebel. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng. Part. C. Methods. 2008. V. 14. PP. 149–156.

36. M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science. 1999. V. 284. PP. 143–147.

37. J. Sanchez-Ramos, S. Song, F. Cardozo-Pelaez, C. Hazzi, T. Stedeford, A. Willing, T. B. Freeman, S. Saporta, W. Janssen, N. Patel, D. R. Cooper, P. R. Sanberg. Adult bone marrow stromal cells diff erentiate into neural cells in vitro. Exp. Neurol. 2000. V.

164. PP. 247–256.

38. D. Woodbury, E. J. Schwarz, D. J. Prockop, I. B. Black. Adult rat and human bone marrow stromal cells diff erentiate into neurons. Neurosci. Res. 2000. V. 61. PP. 364–370.

39. R. Hass, C. Kasper, S. Böhm, R. Jacobs. Diff erent populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011. V. 14. PP. 9–12.

40. S. T. Hsiao, A. Asgari, Z. Lokmic, R. Sinclair, G. J. Dusting, S. Y. Lim, R. J. Dilley. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. 2012. V. 21 PP. 2189–2203.

41. K. Le Blanc, M. F. Pittenger. Mesenchymal stem cells: progress toward promise. Cytotherapy. 2005. V. 7. PP. 36–45.

42. A. Bartholomew, C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil, W. Hardy, S. Devine, D. Ucker, R. Deans, A. Moseley, R. Hoff man. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002. V. 30. PP. 42–48.

43. M. Di Nicola, C. Carlo-Stella, M. Magni, M. Milanesi, P. D. Longoni, P. Matteucci, S. Grisanti, A. M. Gianni. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecifi c mitogenic stimuli. Blood. 2002. V.

99. PP. 3838–3843.

44. S. Aggarwal, M. F. Pittenger. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005. V. 105. PP. 1815–1822.

45. A. Corcione, F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, M. Risso, F. Gualandi, G. L. Mancardi, V. Pistoia, A. Uccelli. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006. V. 107. PP. 367–372.

46. B. A. Bunnell, W. Deng, C. M. Robinson, P. R. Waldron, T. J. Bivalacqua, S. R. Baber, A. L. Hyman, P. J. Kadowitz. Potential application for mesenchymal stem cells in the treatment of cardiovascular diseases. Can. J. Physiol. Pharmacol. 2005. V. 83 (7). PP. 529–539.

47. L. Lescaudron, C. Boyer, V. Bonnamain, K. D. Fink, X. Lévêque, J. Rossignol, V. Nerrière-Daguin, A. C. Malouet, F. Lelan, N. D. Dey, D. Michel-Monigadon, M. Lu, I. Neveu, S.von Hörsten, P. Naveilhan, G. L. Dunbar. Assessing the potential clinical utility of transplantations of neural and mesenchymal stem cells for treating neurodegenerative diseases. Methods Mol. Biol. 2012. V. 879. PP. 147–164.

48. T. Tanna, V. Sachan. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr. Stem Cell Res. Ther. 2014. V. 9 (6). PP. 513–21.

49. R. D. Wyse, G. L. Dunbar, J. Rossiqnol. Use of genetically modifi ed mesenchymal stem cells to treat neurodegenerative diseases. Mol. Sci. 2014. V. 15 (2). PP. 1719–1745.

50. A. Tyndall. Mesenchymal stromal cells and rheumatic disorders. Immunol. Lett. 2015. pii: S0165–2478 (15) 00093–0.

51. H. Munir, H. M. McGettrick. Mesenchymal stem cell therapy for autoimmune disease: risks and rewards. Stem Cells Dev. 2015. V. 24 (18). PP. 2091–2100.

52. M. W. Klinker, C. H. Wei. Mesenchymal stem cells in the treatment of infl ammatory and autoimmune diseases in experimental animal models. World J. Stem Cells. 2015. V. 7 (3). PP. 556–567.

53. S. J. Hashemian, M. Kouhnavard, E. Nasli-Esfahani. Mesenchymal stem cells: rising concerns over their application in treatment of type one diabetes mellitus. Diabetes Res. 2015. V. 2015. P. 675103.

54. S. E. Haynesworth, M. A. Baber, A. I. Caplan. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: eff ects of dexamethasone and IL-1 alpha. Cell Physiol. 1996. V. 166 (3). PP. 585–592.

55. N. Noiseux, M. Gnecchi, M. Lopez-Ilasaca, L. Zhang, S. D. Solomon, A. Deb, V. J. Dzau, R. E. Pratt. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or diff erentiation. Mol. Ther. 2006. V. 14. PP. 840–850.

56. Y. Iso, J. L. Spees, C. Serrano, B. Bakondi, R. Pochampally, Y. H. Song, B. E. Sobel, P. Delafontaine, D. J. Prockop. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007. V. 354. PP. 700–706.

57. S. Lda. Meirelles, A. M. Fontes, D. T. Covas, A. I. Caplan. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009. V. 20 PP. 419–427.

58. D. G. Phinney, D. J. Prockop. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdiff erentiation and modes of tissue repair — current views. Stem Cells. 2007 V. 25. PP. 2896–2902.

59. A. I. Caplan, J. E. Dennis. Mesenchymal stem cells as trophic mediators. Cell Biochem. 2006. V. 98. PP. 1076–1084.

60. L. Chen, E. E. Tredget, P. Y. Wu, Y. Wu. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS. One. 2008. V.3. e1886.

61. S. C. Hung, R. R. Pochampally, S. C. Chen, S. C. Hsu, D. J. Prockop. Angiogenic eff ects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells. 2007. V. 25. PP. 2363–2370.

62. R. C. Lai, F. Arslan, M. M. Lee, N. S. Sze, A. Choo, T. S. Chen, M. Salto-Tellez, L. Timmers, C. N. Lee, R. M. El. Oakley, G. Pasterkamp, D. P. de Kleijn, S. K. Lim. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010. V. 4. PP. 214–222.

63. G. Camussi, M. C. Deregibus, S. Bruno, V. Cantaluppi, L. Biancone. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010. V. 789. PP. 838–848.

64. J. M. Aliotta, M. Pereira, M. Li, A. Amaral, A. Sorokina, M. S. Dooner, E. H. Sears, K. Brilliant, B. Ramratnam, D. C. Hixons, P. J. Quesemberry. Stable cell fate changes in marrow cells induced by lung-derived microvesicles. Extracell Vesicles. 2012. 1: 10.3402/jev.v1i0.18163.

65. T. S. Chen, R. C. Lai, M. M. Lee, A. B. Choo, C. N. Lee, S. K. Lim. Mesenchymal stem cell secretes microparticles enriched in premicroRNAs. Nucleic Acids Res. 2010. V. 38. PP. 215–224.

66. R. C. Lai, S. S. Tan, B. J. Teh, S. K. Sze, F. Arslan, D. P. de Kleijn, A. Choo, S. K. Lim. Proteolytic Potential of the MSC Exosome Proteome: Implications for anExosome-Mediated Delivery of Therapeutic Proteasome. Proteomics. 2012. V. 2012:971907.

67. H. S. Kim, D. Y. Choi, S. J. Yun, S. M. Choi, J. W. Kang, J. W. Jung, D. Hwang, K. P. Kim, D. W. Kim. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. Proteome Res. 2012. V. 11. PP. 839–849.

68. R. W. Yeo, R. C. Lai, B. Zhang, S. S. Tan, Y. Yin, B. J. Teh, S. K. Lim. Mesenchymal stem cell: an effi cient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev. 2013. V. 65 (3). PP. 336–341.

69. T. S. Chen, F. Arslan, Y. Yin, S. S. Tan, R. C. Lai, A. B. Choo, J. Padmanabhan, C. N. Lee, D. P. de Kleijn, S. K. Lim. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. Transl. Med. 2011. V. 9. P. 47

70. S. K. Sze, D. P. de Kleijn, R. C. Lai, E. Khia Way Tan, H. Zhao, K. S. Yeo, T. Y. Low, Q. Lian, C. N. Lee, W. Mitchell, R. M. El. Oakley, S. K. Lim. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol. Cell Proteomics. 2007. V. 6. PP. 1680–1689.

71. S. Bruno, C. Grange, M. C. Deregibus, R. A. Calogero, S. Saviozzi, F. Collino, L. Morando, A. Busca, M. Falda, B. Bussolati, C. Tetta, G. Camussi. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Am. Soc. Nephrol. 2009. V. 20. PP. 1053–1067.

72. S. Bruno, C. Grange, F. Collino, M. C. Deregibus, V. Cantaluppi, L. Biancone, C. Tetta, G. Camussi. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS. One. 2012. V. 7. e33115.

73. I. Parolini, C. Federici, C. Raggi, L. Lugini, S. Palleschi, A. De Milito, C. Coscia, E. Iessi, M. Logozzi, A. Molinari, M. Colone, M. Tatti, M. Sargiacomo, S. Fais. Microenvironmental pH is a key factor for exosome traffi c in tumor cells. Biol. Chem. 2009. V. 4. PP. 34211–34222.

74. R. van Zwieten, R. Wever, M. N. Hamers, R. S. Weening, D. Roos. Extracellular proton release by stimulated neutrophils. Clin. Invest. 1981. V. 68 (1). PP. 310–313.

75. The U. S. National Institutes of Health. URL: https://clinicaltrials.gov/ct2 /show/NCT02138331? term=mesenchymal+ste m+cell+exosome&rank=1 (accessed 01.12.2015).

76. M. Gnecchi, H. He, O. D. Liang, L. G. Melo, F. Morello, H. Mu, N. Noiseux, L. Zhang, R. E. Pratt, J. S. Ingwall, V. J. Dzau. Paracrine action accounts for marked protection of ischemic heart by Akt-modifi ed mesenchymal stem cells. Nat. Med. 2005. V.

11. PP. 367–368.

77. M. Gnecchi, H. He, N. Noiseux, O. D. Liang, L. Zhang, F. Morello, H. Mu, L. G. Melo, R. E. Pratt, J. S. Ingwall, V. J. Dzau. Evidence supporting paracrine hypothesis for Akt-modifi ed mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006. V. 20 (6). PP. 661–669.

78. L. Timmers, S. K. Lim, F. Arslan, J. S. Armstrong, I. E. Hoefer, P. A. Doevendans, J. J. Piek, R. M. El. Oakley, A. Choo, C. N. Lee, G. Pasterkamp, D. P. de Kleijn. Reduction of myocardial infarct size by human mesenchymal stem cellconditioned medium. Stem Cell Res. 2007. V.1 (2). PP. 129–137.

79. R. C. Lai, F. Arslan, S. S. Tan, B. Tan, A. Choo, M. M. Lee, T. S. Chen, B. J. Teh, J. K. Eng, H. Sidik, V. Tanavde, W. S. Hwang, C. N. Lee, R. M. El. Oakley, G. Pasterkamp, D. P. de Kleijn, K. H. Ta, S. K. Lim. Derivation and characterization of human fetal MSCs: an alternative cellsource for large-scale production of cardioprotective microparticles. Mol. Cell Cardiol. 2010. V. 48 (6). PP. 1215–1224.

80. F. Arslan, R. C. Lai, M. B. Smeets, L. Akeroyd, A. Choo, E. N. Aguor, L. Timmers, H. V. van Rijen, P. A. Doevendans, G. Pasterkamp, S. K. Lim, D. P. de Kleijn. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidativestress and activate PI3K/Akt pathway to enhance myocardial viability and preventadverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013. V. 10 (3). PP. 301–312.

81. S. Bian, L. Zhang, L. Duan, X. Wang, Y. Min, H. Yu. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Mol. Med. (Berl.). 2014. V. 92 (4). PP. 387–397.

82. X. Teng, L. Chen, W. Chen, J. Yang, Z. Yang, Z. Shen. Mesenchymal Stem Cell-Derived Exosomes Improve the Microenvironment of Infarcted Myocardium Contributing to Angiogenesis and Anti-Infl ammation. Cell. Physiol. Biochem. 2015, 37, 2415–2424.

83. Y. Feng, W. Huang, M. Wani, X. Yu, M. Ashraf. Ischemic preconditioning potentiates the protective eff ect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE 2014, 9, e88685.

84. Y. Egashira, S. Sou, S. Yukiya, M. Keisuke, T. Kazuhiro, M. Shimazawa, Y. Shinichi, I. Toru, H. Hideaki. The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective eff ects against experimental stroke model. Brain Res. 2012. V. 1461. PP. 87–95.

85. Y. J. Cho, H. S. Song, S. Bhang, S. Lee, B. G. Kang, J. C. Lee, J. An, C. I. Cha, D. H. Nam, B. S. Kim, K. M. Joo. Therapeutic eff ects of human adipose stem cell-conditioned medium on stroke. Neurosci. Res. 2012. V. 90. PP. 1794–1802.

86. H. Xin, Y. Li, B. Buller, M. Katakowski, Y. Zhang, X. Wang, X. Shang, Z. G. Zhang, M. Chopp. Exosome-mediated transfer of miR133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012. V. 30. PP. 1556–1564.

87. S. S. Lin, B. Zhu, Z. K. Guo, G. Z. Huang, Z. Wang, J. Chen, X. J. Wei, Q. Li. Bone Marrow Mesenchymal Stem Cell-Derived Microvesicles Protect Rat Pheochromocytoma PC12 Cells from GlutamateInduced Injury via a PI3K/Akt Dependent Pathway. Neurochem Res. 2014. V. 39 (5). PP. 922–931.

88. H. Ni, S. Yang, F. Siaw-Debrah, J. Hu, K. Wu, Z. He, J. Yang, S. Pan, X. Lin, H. Ye et al. Exosomes Derived from Bone Mesenchymal Stem Cells Ameliorate Early Infl ammatory Responses Following Traumatic Brain Injury. Front. Neurosci. 2019, 13, 14.

89. J. H. Huang, X. M. Yin, Y. Xu, C. C. Xu, X. Lin, F. B. Ye, Y. Cao, F. Y. Lin. Systemic Administration of Exosomes Released from Mesenchymal Stromal Cells Attenuates Apoptosis, Infl ammation, and Promotes Angiogenesis after Spinal Cord Injury in Rats. J. Neurotrauma 2017, 34, 3388–3396.

90. K. L. Lankford, E. J. Arroyo, K. Nazimek Intravenously delivered mesenchymal stem cell-derived exosomes target M2-typemacrophages in the injured spinal cord. PLOS ONE. 2018. doi.org/10.1371/journal.pone.0190358

91. K. A. Ruppert, T. T. Nguyen, K. S. Prabhakara, N. E. Toledano Furman, A. K. Srivastava, M. T. Harting, Jr C. S. Cox, S. D. Olson. Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Modify Microglial Response and Improve Clinical Outcomes in Experimental Spinal Cord Injury. Sci. Rep. 2018, 8, 480.

92. Z. G. Zhang, M. Chopp. Exosomes in stroke pathogenesis and therapy. J. Clin. Investig. 2016, 126, 1190–1197.

93. Y. Zhang, M. Chopp, Y. Meng, M. Katakowski, H. Xin, A. Mahmood, Y. Xiong. Eff ect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. Neurosurg. 2015. V. 122 (4). PP. 856–867.

94. Y. Zhang, M. Chopp, X. Sh. Liu. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol. 2017 May; 54 (4): 2659–2673. doi:10.1007/s12035-016-9851-0.

95. B. Parekkadan, D. van Poll, K. Suganuma, E. A. Carter, F. Berthiaume, A. W. Tilles, M. L. Yarmush. Mesenchymal stem cellderived molecules reverse fulminant hepatic failure. PLoS One. 2007. V. 2 (9). e941.

96. Y. Yan, W. Jiang, Y. Tan, S. Zou, H. Zhang, F. Mao, A. Gong, H. Qian, W. Xu. hucMSC exosome-derived gpx1 is required for the recovery of hepatic oxidant injury. Mol Ther. 2017;25:465–79.

97. T. Li, Y. Yan, B. Wang, H. Qian, X. Zhang, L. Shen, M. Wang, Y. Zhou, W. Zhu, W. Li, W. Xu. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Liver Fibrosis. Stem Cells Dev. 2012. V. 22 (6). PP. 845–854.

98. L. A. Reis, F. T. Borges, M. J. Simoes, A. A. Borges, R. Sinigaglia-Coimbra, N. Schor. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine eff ects in rats. PLoS One. 2012. V. 7 (9). e44092.

99. Y. Zhou, H. Xu, W. Xu, B. Wang, H. Wu, Y. Tao, B. Zhang, M. Wang, F. Mao, Y. Yan, S. Gao, H. Gu, W. Zhu, H. Qian. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013. V. 4 (2). P. 34.

100. R. Tamura, S. Uemoto, Y. Tabata. Immunosuppressive eff ect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Infl amm Regen. 2016;36:26.

101. S. Tomasoni, L. Longaretti, C. Rota, M. Morigi, S. Conti, E. Gotti, C. Capelli, M. Introna, G. Remuzzi, A. Benigni. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative eff ect of mesenchymal stem cells. Stem Cells Dev. 2013. V. 22 (5). PP. 772–780.

102. S. Bruno, M. Tapparo, F. Collino, G. Chiabotto, M. C. Deregibus, R. Soares Lindoso, F. Neri, S. Kholia, S. Giunti, S. Wen. Renal regenerative potential of diff erent extracellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Eng A. 2017;23:1262–73.

103. Y. Zhou, H. Xu, W. Xu, B. Wang, H. Wu, Y. Tao, B. Zhang, M. Wang, F. Mao, Y. Ya et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013, 4, 34.

104. M. Aslam, R. Baveja, O. D. Liang, A. Fernandez-Gonzalez, C. Lee, S. A. Mitsialis, S. Kourembanas. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am. J. Respir. Crit. Care Med. 2009. V. 180. PP. 1122–1130.

105. G. Hansmann, A. Fernandez-Gonzalez, M. Aslam, S. H. Vitali, T. Martin, S. A. Mitsialis, S. Kourembanas. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm. Circ. 2012. V.

2. PP. 170–181.

106. C. Lee, S. A. Mitsialis, M. Aslam, S. H. Vitali, E. Vergadi, G. Konstantinou, K. Sdrimas, A. Fernandez-Gonzalez, S. Kourembanas. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012. V. 126. PP. 2601–2611.

107. Y.-G. Zhu, X.-M. Feng, J. Abbott, X.-H. Fang, Q. Hao, A. Monsel, J.-M. Qu, M. A. Matthay, J. W. Lee. Human mesenchymal stem cell microvesicles for treatment of E.coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014. V. 32 (1). PP. 116–125.

108. A. Monsel, Y.-G. Zhu, S. Gennai, Q. Hao, S. Hu, J.-J. Rouby, M. Rosenzwajg, M. A. Matthay, J. W. Lee. Therapeutic eff ects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med. 2015. V. 192 (3). PP. 324–36.

109. M. S. Dooner, J. M. Aliotta, J. Pimentel, G. J. Dooner, M. Abedi, G. Colvin, Q. Liu, H. U. Weier, K. W. Johnson, P. J. Quesenberry. Conversion potential of marrow cells into lung cells fl uctuates with cytokine induced cell cycle. Stem Cells Dev 17: 207 219, 2008.

110. G. R. Willis, A. Fernandez-Gonzalez, J. Anastas, S. H. Vitali, X. Liu, M. Ericsson, A. Kwong, S. A. Mitsialis, S. Kourembanas. Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. Am. J. Respir. Crit. Care Med. 2018, 197, 104–116.

111. T. Asami, M. Ishii, H. Fujii, H. Namkoong, S. Tasaka, K. Matsushita, K. Ishii, K. Yagi, H. Fujiwara, Y. Funatsu, N. Haseqawa, T. Betsuyaku. Modulation of murine macrophage TLR7/8-mediated cytokine expression by mesenchymal stem cellconditioned medium. Mediators Infl amm. 2013. V. 2013: 264260.

112. A. Mokarizadeh, N. Delirezh, A. Morshedi, G. Morshedi, A. A. Farshid, K. Mardani. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol. Lett. 2012. V. 147. PP. 47–54.

113. T. Katsuda, R. Tsuchiya, N. Kosaka, Y. Yoshioka, K. Takagaki, K. Oki, F. Takeshita, Y. Sakai, M. Kuroda, T. Ochiya. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci. Rep. 2013. V. 3. P. 1197.

114. E. E. Reza-Zaldivar, M. A. Hernandez-Sapiens, Y. K. Gutierrez-Mercado, S. Sandoval-Avila, U. Gomez-Pinedo, A. L. MarquezAguirre, E. Vazquez-Mendez, E. Padilla-Camberos, A. A. Canales-Aguirre. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen. Res. 2019, 14, 1626–1634.

115. G. H. Cui, J. Wu, F. F. Mou, W. H. Xie, F. B. Wang, Q. L. Wang, J. Fang, Y. W. Xu, Y. R. Dong, J. R. Liu et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating infl ammatory responses in APP/PS1 mice. FASEB J. 2018, 32, 654–668.

116. F. Ezquer, M. Ezquer, D. Contador, M. Ricca, V. Simon, P. Conget.The antidiabetic eff ect of mesenchymal stem cells is unrelated to their transdiff erentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells. 2012. V. 30 (8). PP. 1664–1674.

117. E. Favaro, A. Carpanetto, S. Lamorte, A. Fusco, C. Caorsi, M. C. Deregibus, S. Bruno, A. Amoroso, M. Giovarelli, M. Porta, P. C. Perin, C. Tetta, G. Camussi, M. M. Zanone. Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia. 2014. V. 57 (8). PP. 1664–1673.

118. B. S. Cho, J. O. Kim, D. H. Ha, Y. W Yi. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res. Ther. 2018, 9, 187.

Внеклеточные микровезикулы — перспективные нанообъекты для применения в медицине, мельчайшие мембранные пузырьки, секретируемые клетками в межклеточное пространство и выполняющие разнообразные функции. Микровезикулы были обнаружены в 1968 г. [1]. На сегодняшний день выделяют несколько популяций экстрацеллюлярных микровезикул: эктосомы, апоптозные тельца (апотельца) и экзосомы [2], различающихся по происхождению, строению и функциям.

Экзосомы были обнаружены Harding C. в 1983 г. [3]. Они представляют собой мембранные сферические структуры диаметром 40–100 нм [4]. Долгое время исследователи не обращали внимания на экзосомы, так как они считались клеточным дебрисом. Однако в 90-е гг. XX в. было доказано, что В-лимфоциты секретируют экзосомы для стимуляции Т-клеток и инициации иммунного ответа [5, 6], а экзосомы дендритных клеток ингибируют рост опухолей [7]. Когда через несколько лет в экзосомах были обнаружены иРНК [8], а затем и микроРНК [9], стало ясно, что экзосомы являются важным звеном в межклеточной коммуникации многоклеточных организмов.

На сегодняшний день экзосомы обнаружены практически во всех биологических жидкостях, включая бронхиальные выделения [10], мочу [11] кровь [12], грудное молоко [13].

Следует отметить, что в настоящее время отсутствует четкое разграничение между понятиями «экзосомы» и «микровезикулы». Часто под микровезикулами исследователи подразумевают популяцию экзосом.

В настоящем обзоре рассматривается проблема перспективы клинического применения как экзосом, так и микровезикул, включающих популяцию экзосом. Под понятием «микровезикулы» понимаются внеклеточные мембранные структуры различного происхождения диаметром от 40 нм до 5 мкм. Под понятием «экзосомы» подразумевается популяция внеклеточных микровезикул диаметром 40– 100 нм, образованных путем слияния мультивезикулярных телец с плазмалеммой.

Экзосомы являются переносчиками протеинов и генетической информации, играющими значительную роль в важных жизненных процессах клеток и тканей, таких как регенерация, пролиферация, дифференцировка, иммунный ответ и др. В состав экзосом входят белки, липиды, иРНК, микроРНК, фрагменты ДНК. Большинство экзосом содержат консервативный набор белков, таких как тетраспанины (CD81, CD63, CD9), Alix, Tsg101, а также тканево-специфические белки, указывающие на их происхождение [14]. Например, экзосомы, выделенные из ММСК, несут на себе те же специфические поверхностные антигены, как и сами ММСК (CD44, CD73, CD90, CD105), что может быть использовано для идентификации везикул.

Для Цитирования:
Н. В. Мещерякова, В. В. Кузьменко, Я. М. Станишевский, , Экзосомы мультипотентных мезенхимальных стволовых клеток: перспективы клинического применения. ГЛАВВРАЧ. 2020;2.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: