Skip to main content

Part of the book series: Power Systems ((POWSYS))

  • 685 Accesses

Abstract

This chapter provides the introduction to dc grid. A historical perspective of the dc grid is provided, followed by major installations of the high voltage dc (HVDC) transmission systems. Comparison of ac and dc systems are given in terms of operation, cost. Various applications of dc technologies, for example HVDC transmission, microgrid, transportation sector are discussed. This is followed for introduction to the challenges in protection system design for dc grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudervall R, Charpentier J, Sharma R (2000) High voltage direct current (HVDC) transmission systems technology review paper. Energy Week 2000:2

    Google Scholar 

  2. Van Hertem D, Gomis-Bellmunt O, Liang J (2016) HVDC grids: for offshore and supergrid of the future, vol 51. Wiley, New York

    Book  Google Scholar 

  3. Hartley P (2003) HVDC transmission: part of the energy solution? http://large.stanford.edu/courses/2010/ph240/hamerly1/docs/hartley.pdf

  4. Olivares D, Mehrizi-Sani A, Etemadi A, Canizares C, Iravani R, Kazerani M, Jimenez-Estevez G (2014) Trends in microgrid control. IEEE Trans Smart Grid 5:1905–1919

    Article  Google Scholar 

  5. Tummuru N, Manandhar U, Ukil A, Gooi H, Kollimalla S, Naidu S (2019) Control strategy for ac-dc microgrid with hybrid energy storage under different operating modes. Int J Electr Power Energy Syst, Elsevier 104:807–816

    Article  Google Scholar 

  6. IEA (IEA) (2018) World energy statistics. https://www.iea.org/statistics/

  7. Kollimalla S, Mishra M, Ukil A, Gooi H (2017) Dc grid voltage regulation using new hess control strategy. IEEE Trans Sustain Energy 8:772–781

    Google Scholar 

  8. Kollimalla S, Ukil A, Gooi H, Manandhar U, Reddy N (2017) Optimization of charge/discharge rates of battery using two stage rate-limit control. IEEE Trans Sustain Energy 8:516–529

    Google Scholar 

  9. Manandhar U, Ukil A, Tan J (2015) Efficiency comparison of dc and ac microgrid. In: Proceedings of the IEEE innovative smart grid technologies conference-ISGT Asia, Bangkok, Thailand

    Google Scholar 

  10. Nilsson D, Sannino A (2004) Efficiency analysis of low-and medium-voltage dc distribution systems. In: Proceedings of the IEEE power engineering society general meeting, Denver, USA

    Google Scholar 

  11. Ryu M, Kim H, Baek J (2015) Effective test bed of 380 v dc distribution system using isolated power converters. IEEE Trans Ind Electron 62:4525–4536

    Article  Google Scholar 

  12. Sannino A, Postiglione G, Bollen M (2003) Feasibility of a dc network for commercial facilities. IEEE Trans Ind Appl 39:1499–1507

    Article  Google Scholar 

  13. Boveri A, DAgostino F, Fidigatti A, Ragaini E, Silvestro F (2016) Dynamic modeling of a supply vessel power system for DP3 protection system. IEEE Trans Transp Electrification 2(4):570–579

    Google Scholar 

  14. Sulligoi G, Vicenzutti A, Menis R (2016) All-electric ship design: from electrical propulsion to integrated electrical and electronic power systems. IEEE Trans Transport Electrification 2(4):507–521

    Article  Google Scholar 

  15. NASA (2013) A satellite view of ship pollution. https://earthobservatory.nasa.gov/images/80375/a-satellites-view-of-ship-pollution

  16. Prevention of air pollution from ships (MARPOL 73/78 Annex VI). International Maritime Organization (2004)

    Google Scholar 

  17. ABB (2014) The step forward onboard dc grid. Technical report

    Google Scholar 

  18. Satpathi K, Balijepalli VM, Ukil A (2017) Modeling and real-time scheduling of DC platform supply vessel for fuel efficient operation. IEEE Trans Transp Electrification 3(3):762–778

    Article  Google Scholar 

  19. Banaei MR, Alizadeh R (2016) Simulation-based modeling and power management of all-electric ships based on renewable energy generation using model predictive control strategy. IEEE Intell Transp Syst Mag 8(2):90–103

    Article  Google Scholar 

  20. Barsali S, Miulli C, Possenti A (2004) A control strategy to minimize fuel consumption of series hybrid electric vehicles. IEEE Trans Energy Convers 19(1):187–195

    Article  Google Scholar 

  21. Rosero JA, Ortega JA, Aldabas E, Romeral L (2007) Moving towards a more electric aircraft. IEEE Aerosp Electron Syst Mag 22(3):3–9. https://doi.org/10.1109/MAES.2007.340500

    Article  Google Scholar 

  22. Madonna V, Giangrande P, Galea M (2018) Electrical power generation in aircraft: review, challenges and opportunities. IEEE Trans Transp Electrification

    Google Scholar 

  23. Bertinov A (1964) Aircraft electrical generators

    Google Scholar 

  24. Sili E, Koliatene F, Cambronne J (2011) Pressure and temperature effects on the paschen curve. In: Proceedings of the annual report: conference on electrical insulation and dielectric phenomena, IEEE, pp 464–467

    Google Scholar 

  25. Department of defense interface standard section 300B electric power, alternating current. MIL-STD-1399 (2008)

    Google Scholar 

  26. Tariq M, Maswood AI, Gajanayake CJ, Gupta AK (2017) Aircraft batteries: current trend towards more electric aircraft. IET Electr Syst Transp 7(2):93–103

    Article  Google Scholar 

  27. Lee D, Pitari G, Grewe V, Gierens K, Penner J, Petzold A, Prather M, Schumann U, Bais A, Berntsen T et al (2010) Transport impacts on atmosphere and climate: aviation. Atmos Environ 44(37):4678–4734

    Article  Google Scholar 

  28. Roboam X, Sareni B, De Andrade A (2012) More electricity in the air: toward optimized electrical networks embedded in more-electrical aircraft. IEEE Ind Electron Mag 6(4):6–17

    Article  Google Scholar 

  29. Chen J, Wang C, Chen J (2018) Investigation on the selection of electric power system architecture for future more electric aircraft. IEEE Trans Transp Electrification

    Google Scholar 

  30. Avery C, Burrow S, Mellor P (2007) Electrical generation and distribution for the more electric aircraft. In: 42nd international universities power engineering conference. IEEE, pp 1007–1012

    Google Scholar 

  31. Chau KT, Chan CC (2007) Emerging energy-efficient technologies for hybrid electric vehicles. Proc IEEE 95(4):821–835. https://doi.org/10.1109/JPROC.2006.890114

    Article  Google Scholar 

  32. Tie SF, Tan CW (2013) A review of energy sources and energy management system in electric vehicles. Renew Sustain Energy Rev 20:82–102

    Article  Google Scholar 

  33. Capasso C, Veneri O (2015) Experimental study of a DC charging station for full electric and plug in hybrid vehicles. Appl Energy 152:131–142

    Article  Google Scholar 

  34. Kumar D, Zare F, Ghosh A (2017) DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. IEEE Access 5:12,230–12,256

    Google Scholar 

  35. Van den Broeck G, Stuyts J, Driesen J (2018) A critical review of power quality standards and definitions applied to DC microgrids. Appl Energy 229:281–288

    Article  Google Scholar 

  36. Bahrman MP, Johnson BK (2007) The ABCs of HVDC transmission technologies. IEEE Power Energy Mag 5(2):32–44

    Article  Google Scholar 

  37. Duddu P (2015) The 10 worst blackouts of the last 50 years. https://www.power-technology.com/features/featurethe-10-worst-blackouts-in-the-last-50-years-4486990/

  38. Jacobs M (2013) 13 of the largest power outages in history–and what they tell us about the 2003 northeast blackout. https://blog.ucsusa.org/mike-jacobs/2003-northeast-blackout-and-13-of-the-largest-power-outages-in-history-199

  39. Skybrary (2016) Aircraft electrical systems. https://www.skybrary.aero

  40. Staudt V, Bartelt R, Heising C (2015) Fault scenarios in DC ship grids: the advantages and disadvantages of modular multilevel converters. IEEE Electrification Mag 3(2):40–48. https://doi.org/10.1109/MELE.2015.2413436

    Article  Google Scholar 

  41. Satpathi K, Ukil A, Nag SS, Pou J, Zagrodnik MA (2018) DC marine power system: transient behaviour and fault management aspects. IEEE Trans Ind Inform

    Google Scholar 

  42. IEEE recommended practice for 1 kV to 35 kV medium-voltage DC power systems on ships. IEEE Std 1709-2010 (2010) https://doi.org/10.1109/IEEESTD.2010.5623440

  43. Pfeiffer MD, Bucher M, Franck CM (2013) The effect of grid topology on transient fault currents in multi-terminal VSC-HVDC offshore networks. In: Proceedings of the international conference on power systems transients (IPST), Vancouver, Canada

    Google Scholar 

  44. Bucher MK, Wiget R, Andersson G, Franck CM (2014) Multiterminal HVDC networksWhat is the preferred topology? IEEE Trans Power Deliv 29(1):406–413

    Article  Google Scholar 

  45. Wang P, Zhang XP, Coventry PF, Zhang R, Li Z (2017) Control and protection sequence for recovery and reconfiguration of an offshore integrated MMC multi-terminal HVDC system under DC faults. Int J Electr Power Energy Syst 86:81–92

    Google Scholar 

  46. Kulkarni S, Santoso S (2012) Interrupting short-circuit direct current using an AC circuit breaker in series with a reactor. Adv Power Electron 2012

    Google Scholar 

  47. Satpathi K, Ukil A, Pou J (2018) Short-circuit fault management in DC electric ship propulsion system: protection requirements, review of existing technologies and future research trends. IEEE Trans Transp Electrification 4(1):272–291

    Google Scholar 

  48. Cuzner RM, Singh V (2017) Future shipboard MVDC system protection requirements and solid-state protective device topological tradeoffs. IEEE Trans Emerg Sel Topics Power Electron 5(1):244–259

    Article  Google Scholar 

  49. Qi LL, Antoniazzi A, Raciti L, Leoni D (2017) Design of solid-state circuit breaker-based protection for DC shipboard power systems. IEEE Trans Emerg Sel Topics Power Electron 5(1):260–268

    Article  Google Scholar 

  50. Callavik M, Blomberg A, Häfner J, Jacobson B (2012) The hybrid HVDC breaker. ABB Grid Systems Technical Paper 361, pp 143–152

    Google Scholar 

  51. Satpathi K, Yeap YM, Ukil A, Geddada N (2018) Short-time fourier transform based transient analysis of VSC interfaced point-to-point DC system. IEEE Trans Ind Electron 65(5):4080–4091

    Google Scholar 

  52. Francis D, Zhengting Q, Satpathi K, Thukral N, Ukil A (2016) Suitability of Rogowski coil for DC shipboard protection. In: Proceedings of IEEE TENCON conference, pp 818–822

    Google Scholar 

  53. Papadopoulos PM, Hadjidemetriou L, Kyriakides E, Polycarpou MM (2017) Robust fault detection, isolation, and accommodation of current sensors in grid side converters. IEEE Trans Ind Appl 53(3):2852–2861

    Article  Google Scholar 

  54. Tzelepis D, Dysko A, Fusiek G, Nelson J, Niewczas P, Vozikis D, Orr P, Gordon N, Booth CD (2017) Single-ended differential protection in MTDC networks using optical sensors. IEEE Trans Power Del 32(3):1605–1615

    Article  Google Scholar 

  55. Jenau F, Testin G (2009) Modern instrument transformer technologies for UHV AC and HVDC networks. In: Proceedings of the Cigré India symposium

    Google Scholar 

  56. Peelo D, Rahmatian F, Nagpal M, Sydor D (2012) Real-time monitoring and capture of power system transients. In: Proceedings of the Cigré Paris

    Google Scholar 

  57. Ha H, Subramanian S (2015) Implementing the protection and control of future DC grids. Technical report

    Google Scholar 

  58. Brahma S (2016) Advancements in centralized protection and control within a substation. IEEE Trans Power Del 31(4):1945–1952

    Article  Google Scholar 

  59. Wang M, Abedrabbo M, Leterme W, Hertem DV, Spallarossa C, Oukaili S, Grammatikos I, Kuroda K (2017) A review on AC and DC protection equipment and technologies: towards multivendor solution. In: Proceedings of the Cigré Winnipeg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhisek Ukil .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ukil, A., Yeap, Y.M., Satpathi, K. (2020). Introduction to DC Grid. In: Fault Analysis and Protection System Design for DC Grids. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2977-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2977-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2976-4

  • Online ISBN: 978-981-15-2977-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics