Skip to main content

Abstract

Global energy demands towards 100 PW necessitated a rethink of approaches to generate the required demand through accelerated use of sustainable resources for both heating and generation of electricity. This is to degrade the global warming potential, lower greenhouses gases, and ultimately ensure against depletion of natural resources which may be required for habituation, agro-use or extraction for construction, catalysis, and fabrication of new materials instead of energy. Of the newer types of sustainable resources, solar energy has drawn considerable interest, due to the ability of the sun (a nuclear fusion reactor) to potentially meet all the demands with regard to heating and electrical generation. Current global production of electricity via solar only top 100 GW (less than 10% of the required load) but show promise. Current solar technologies are dominated by crystal silicon solar cells, although newer approaches using thin-films, CdTe, organic photopolymers, and composite devices have come online to meet the anticipated share for energy and heating, in diverse applications (satellite communication, heating, desalination, pumping of water, and electricity generation). While solar cells directly do not generate carbon dioxide and contribute towards global warming, the manufacturing of these devices does expend considerable energy and generates carbon dioxide, although levelized costs (dollar-per-kilowatt hour) are comparable to a coal-derived generation of energy and the roll-out and market deployment of solar cells is expected to increase. Likewise the environmental and health hazard of disposal of solar components at end-of-life is unknown due to their longevity (25–30 year life cycle), although preliminary studies have shown that semiconductor components such as titania (TiO2) are toxic to human cells, microorganism, and freshwater algae, there is considerable variation in lethality of titania, due to exposure, concertation, and type of titania (anatase or rutile, nano or bulk) and microorganism (Gram-negative or Gram-positive).

To address the question of toxicity, we undertook synthesis, characterization, photocatalyticity, and cytotoxicity of Ce-doped TiO2 (CTO-NPs). An environmental-friendly and cost-effective sol-gel approach was used to prepare different formulations of CTO-NPs. The starting materials of Ce(NO3)3 and Ti(OBu)4 were used, and a water-isopropanol mixture was used as a solvent to ensure the solubility of the above starting materials. The fabrication variables of CTO-NPs were optimized according to the photocatalytic reactivity and antibacterial activities. The powders of CTO-NPs were prepared after calculation at 200–400 °C with an increment of 50 °C for 2 h. These so-prepared CTO-NPs were characterized using X-ray powder diffraction, scanning and transmission electron microscopy, and ultraviolet and Raman spectroscopy, to evaluate their crystalline structure, morphology, and vibrational modes. It was found that the TiO2 tetragonal anatase structure (PDF 01-086-1157, 3.7852 × 9.5139 Å and 90 × 90°) was obtained. The cerium cation-substituted the lattice Ti, leading to one phase formation. These CTO-NPs were found to be effective at decomposing methylene blue under visible light. Both Gram-negative (S. marcescens, ATCC 49732) and Gram-positive (M. luteus, ATCC 13880) bacteria were also tested using CTO-NPs as disinfectants. The maximum bactericidal concentrations (MBCs) were found to be 0.6 ppm to inactivate both bacteria within 1 h.

Author Contribution

BA completed all the experimental research, and the experimental, result, and conclusion sections with the first draft of the introduction were written by LL. The data in the figures and charts in the introduction were supplied by SB and LL. The final draft was reviewed and edited by NKS and LL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IAE Outlook, W.E., International Energy Agency (2017), pp. 1–782/782 pages, https://www.iea.org/weo2017/

  2. M. Hasanuzzaman, U.S. Zubir, N.I. Ilham, H. Seng Che, Global electricity demand, generation, grid system, and renewable energy policies: a review. Wiley Interdisciplinary Rev. Energy Environ. 6(3), e222 (2017)

    Article  Google Scholar 

  3. EIA Outlook, A. E., Outlook with projections to 2050. January 5, 2017. US Energy Information Administration (2017), pp. 3–100/127 pages, https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf

  4. C. Philibert, Solar Energy Perspectives. (Organisation for Economic Co-operation and Development (OECD)/International Energy Agency (IEA)/IEA Publications/Imprimerie Centrale Printers, Luxembourg, 2011), pp. 1–228. 978-92-64-12457-8

    Google Scholar 

  5. Global, B. P., BP Energy Outlook 2017 (2017), pp. 1–103/103 pages, https://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2017/bp-energy-outlook-2017.pdf

  6. Burger, Willeke, Philipps et al., Research Projects. Fraunhofer Institute for Solar Energy Systems, ISE (2016), https://www.ise.fraunhofer.de/en/research-projects.html

  7. GTMR, US Solar Market Insight, GTM Research (2017), https://www.greentechmedia.com/research

  8. P. Mints, Insights & Experience. Next Generation Solar PV, Navigant Consulting (2017), https://www.navigantresearch.com/reports/next-generation-solar-pv

  9. R. Pravalie, G. Bandoc, Nuclear energy: between global electricity demand, worldwide decarbonization imperativeness, and planetary environmental implications. J. Environ. Manag. 209, 81–92 (2018)

    Article  Google Scholar 

  10. C. Breyer, D. Bogdanov, A. Aghahosseini, A. Gulagi, M. Child, A.S. Oyewo, P. Vainikka, Solar photovoltaics demand for the global energy transition in the power sector, in Progress in Photovoltaics: Research and Applications (2017), pp. 505–523/693 pages

    Google Scholar 

  11. X. Lu, M.B. McElroy, J. Kiviluoma, Global potential for wind-generated electricity, in Proceedings of the National Academy of Sciences, 106(27), 10933–10938 (National Academy of Sciences, Washington DC, USA)

    Google Scholar 

  12. A. Méjean, C. Guivarch, J. Lefèvre, M. Hamdi-Cherif, The transition in energy demand sectors to limit global warming to 1.5 °C. Energy Effic., 12(2), 441–462, Springer Nature (Switzerland, AG) (2019)

    Google Scholar 

  13. M.J. Lynch, Peak oil, Chapter 2.17, in Companion to Environmental Studies. Routledge in association with GSE Research, Vol. 228, No. 231, ed. by N. Castree, M. Hulme, J. D. Proctor. (Taylor and Francis Group, Oxon, 2018), pp. 228–231/848. ISBN: 978-1-138-19220-1

    Google Scholar 

  14. M.Z. Jacobson, M.A. Delucchi, Z.A. Bauer, S.C. Goodman, W.E. Chapman, M.A. Cameron, J.R. Erwin, 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1(1), 108–121 (2017)

    Article  Google Scholar 

  15. C.J. Rhodes, Biofuel from algae: salvation from peak oil?, in Seaweeds and Their Role in Globally Changing Environments (Springer, Dordrecht, 2010), pp. 229–248/480 pages

    Google Scholar 

  16. A. Pérez-Tomás, E. Chikoidze, M. R. Jennings, S. A. Russell, F. H. Teherani, P. Bove, … & D. J. Rogers, Wide and ultra-wide bandgap oxides: where paradigm-shift photovoltaics meets transparent power electronics, in Oxide-based Materials and Devices IX, vol 10533, (International Society for Optics and Photonics, 2018), p. 105331Q

    Google Scholar 

  17. G. Gaither, U.S. Patent Application No. 10/017,053, 2018

    Google Scholar 

  18. B.P. Jelle, C. Breivik, H.D. Røkenes, Building integrated photovoltaic products: a state-of-the-art review and future research opportunities. Sol. Energy Mater. Sol. Cells 100, 69–96 (2012)

    Article  Google Scholar 

  19. ASTM, G173-03 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (ASTM International, West Conshohocken, 2012), pp. 1–3/20 pages, https://www.astm.org/Standards/G173.htm

  20. B. Leckner, The spectral distribution of solar radiation at the earth’s surface – elements of a model. Sol. Energy 20(2), 143–150 (1978)

    Article  Google Scholar 

  21. L.M. Perliski, S. Solomon, On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy. J. Geophys. Res. Atmos. 98(D6), 10363–10374 (1993)

    Article  Google Scholar 

  22. L.C. Marquard, T. Wagner, U. Platt, Improved air mass factor concepts for scattered radiation differential optical absorption spectroscopy of atmospheric species. J. Geophys. Res. Atmos. 105(D1), 1315–1327 (2000)

    Article  Google Scholar 

  23. C.A. Gueymard, Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71(5), 325–346 (2001)

    Article  CAS  Google Scholar 

  24. K.R. Lang, Astrophysical data: Planets and stars. (Springer, New York, 2012), pp. 3–78/937. 978-1-4684-0642-9

    Google Scholar 

  25. R. Russell, The Multispectral Sun. (Windows to the Universe.Org., 2017), https://www.windows2universe.org/sun/spectrum/multispectral_sun_overview.html

  26. COMET, Solar Radiation (2018), http://www.comet.ucar.edu/

  27. N. Li, M. Karin, Ionizing radiation and short wavelength UV activate NF-kB through two distinct mechanisms. Proc. Natl. Acad. Sci. 95(22), 13012–13017 (1998)

    Article  CAS  Google Scholar 

  28. N.S. Kapany, U.S. Patent No. 3,985,116. U.S. Patent and Trademark Office, Washington, DC, 1976

    Google Scholar 

  29. J. Zimmer, M. DiLabio, U.S. Patent Application No. 29/066,097, 1998

    Google Scholar 

  30. V.E. Cenusa, G. Darie, D. Tutica, M. Norisor, F.N. Alexe, C.M. Musat, Energetic and exergetic analysis of Rankine cycles for solar power plants with a parabolic trough and thermal storage. Renew. Energy Environ. Sustain. 1, 10 (2016)

    Article  Google Scholar 

  31. EIA, Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2018 (US Energy Information Administration, 2018), pp. 1–20/20 pages, https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf

  32. T. Tsoutsos, N. Frantzeskaki, V. Gekas, Environmental impacts of solar energy technologies. Energy Policy 33(3), 289–296 (2005)

    Article  Google Scholar 

  33. J. Peng, L. Lu, H. Yang, Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew. Sust. Energ. Rev. 19, 255–274 (2013)

    Article  Google Scholar 

  34. D. Nugent, B.K. Sovacool, Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: a critical meta-survey. Energy Policy 65, 229–244 (2014)

    Article  CAS  Google Scholar 

  35. A. Goetzberger, C. Hebling, H.W. Schock, Photovoltaic materials, history, status, and outlook. Mater. Sci. Eng. R. Rep. 40(1), 1–46 (2003)

    Article  Google Scholar 

  36. H.W. Schock, Thin film photovoltaics. Appl. Surf. Sci. 92, 606–616 (1996)

    Article  CAS  Google Scholar 

  37. R.W. Miles, K.M. Hynes, I. Forbes, Photovoltaic solar cells: an overview of state-of-the-art cell development and environmental issues. Prog. Cryst. Growth Charact. Mater. 51(1–3), 1–42 (2005)

    Article  CAS  Google Scholar 

  38. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds.), Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (Wiley, 2001), pp. 1–24, 31–44,49–65, 67–91, 93–143 and 146–186/216 pages

    Google Scholar 

  39. ElProCus, Basic Structure of a Silicon Solar Cell (ElProCus, 2018), https://elprocus.wordpress.com/2013/08/02/basic-structure-of-a-silicon-solar-cell/

  40. M.A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, Englewood Cliffs, 1982), pp. 1–9, 2–37, 4–59, 85–101 and 103–119/274 pages

    Google Scholar 

  41. L. El Chaar, N. El Zein, Review of photovoltaic technologies. Renew. Sust. Energ. Rev. 15(5), 2165–2175 (2011)

    Article  Google Scholar 

  42. C. Liu, J. Fan, H. Li, C. Zhang, Y. Mai, Highly efficient perovskite solar cells with substantial reduction of lead content. Sci. Rep. 6, 35705 (2016)

    Article  CAS  Google Scholar 

  43. M. Cardona, Y.Y. Peter, Fundamentals of Semiconductors (Springer, Berlin/Heidelberg, 2005), pp. 1–15, 17–105, 159–202 and 203–241/639 pages

    Google Scholar 

  44. A.G. Aberle, Thin-film solar cells. Thin Solid Films 517(17), 4706–4710 (2009)

    Article  CAS  Google Scholar 

  45. T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, Solar photovoltaic electricity: current status and future prospects. Sol. Energy 85(8), 1580–1608 (2011)

    Article  CAS  Google Scholar 

  46. N.G. Dhere, Present status and future prospects of CIGSS thin film solar cells. Sol. Energy Mater. Sol. Cells 90(15), 2181–2190 (2006)

    Article  CAS  Google Scholar 

  47. H. Spanggaard, F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 83(2–3), 125–146 (2004)

    Article  CAS  Google Scholar 

  48. T.L. Benanti, D. Venkataraman, Organic solar cells: an overview focusing on active layer morphology. Photosynth. Res. 87(1), 73–81 (2006)

    Article  CAS  Google Scholar 

  49. V.V. Tyagi, N.A. Rahim, N.A. Rahim, A. Jeyraj, L. Selvaraj, Progress in solar PV technology: research and achievement. Renew. Sust. Energ. Rev. 20, 443–461 (2013)

    Article  CAS  Google Scholar 

  50. Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, Y. Chen, Organic photovoltaic cells based on an acceptor of soluble graphene. Appl. Phys. Lett. 92(22), 195 (2008)

    Article  Google Scholar 

  51. B. O’regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737 (1991)

    Article  Google Scholar 

  52. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702), 583 (1998)

    Article  CAS  Google Scholar 

  53. N.G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18(2), 65–72 (2015)

    Article  CAS  Google Scholar 

  54. T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, A high efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126(39), 12218–12219 (2004)

    Article  CAS  Google Scholar 

  55. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 47). Prog. Photovolt. Res. Appl. 24(1), 3–11 (2015)

    Article  Google Scholar 

  56. C.I. Ferreira, D.S. Kim, Techno-economic review of solar cooling technologies based on location-specific data. Int. J. Refrig. 39, 23–37 (2014)

    Article  Google Scholar 

  57. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  CAS  Google Scholar 

  58. T. Tiedje, E. Yablonovitch, G.D. Cody, B.G. Brooks, Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31(5), 711–716 (1984)

    Article  Google Scholar 

  59. C. Downs, T.E. Vandervelde, Progress in infrared photodetectors since 2000. Sensors 13(4), 5054–5098 (2013)

    Article  CAS  Google Scholar 

  60. J.C. Shin, M. D’Souza, J. Kirch, L.J. Mawst, D. Botez, I. Vurgaftman, J.R. Meyer, Low temperature sensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers, in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference, CLEO/QELS 2009. Conference on, IEEE, June 2009, pp. 1–2

    Google Scholar 

  61. A. Martí, A. Datas, J.R. González, C. Baur, Limiting efficiencies of novel solar cell concepts in space, in E3S Web of Conferences, vol. 16 (EDP Sciences, 2017), p. 03004

    Google Scholar 

  62. J. Wilson, Thermal issues in GaAs analog RF devices. Electron. Cooling 8, 14–21 (2002)

    Google Scholar 

  63. M. Wagner, Simulation of thermoelectric devices. (Matr. Nr. 9925860) Eingereicht An Der (Technischen Universität Wien) (Fakultät Für Elektrotechnik Und Informationstechnikvon, Bad Mitterndorf, 2007), http://www.iue.tuwien.ac.at/phd/mwagner/diss.html

  64. Ioffe, Silicon Electronic Properties (Ioffe, 2018), http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html

  65. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, in Materials for Sustainable Energy (2011), V. Dusastre (Ed.), ISBN: 978-981-4317-66-5. World Scientific Publishing Co Pte Ltd (London, UK), pp. 101–110/360

    Google Scholar 

  66. Z.M. Gibbs, H.S. Kim, H. Wang, G.J. Snyder, Bandgap estimation from temperature dependent Seebeck measurement-deviations from the 2e|S| maxTmax relation. Appl. Phys. Lett. 106(2), 022112 (2015)

    Article  Google Scholar 

  67. Y.H. Kuo, Germanium-Silicon electroabsorption modulators, Doctoral dissertation, Stanford University, 2006, p. 20/107 pages, http://snowweb.stanford.edu/thesis/Kuo.pdf

  68. Solar Cell Central, Solar Efficiency Limits (2018), http://solarcellcentral.com/limits_page.html

  69. G.J. Snyder, T.S. Ursell, Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91(14), 148301 (2003)

    Article  Google Scholar 

  70. U.M. Gosele, Fast diffusion in semiconductors. Annu. Rev. Mater. Sci. 18(1), 257–282 (1988)

    Article  CAS  Google Scholar 

  71. PV Education, Open-Circuit Voltage (PV Education, 2018), https://www.pveducation.org/pvcdrom/open-circuit-voltage

  72. V.K. Khanna, Extreme-Temperature and Harsh-Environment Electronics; Physics, technology and applications (2017), pp. 77–109/488. ISBN: 978-0-7503-1156-4. IOP Publishing, (Bristol, UK) IOP

    Google Scholar 

  73. P.N. Cheremisinoff, W.C. Dickinson (eds.), Solar Energy Technology Handbook, Part A (Marcel Dekker/Taylor and Francis Group, New York, 1980), pp. 483–499 and 500–515/882. ISBN: 0824768728

    Google Scholar 

  74. S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39(4), 285–319 (2013)

    Article  Google Scholar 

  75. J. Dostál, J. Pšencík, D. Zigmantas, In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chem. 8(7), 705 (2016)

    Article  Google Scholar 

  76. E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 9(4), 3223–3245 (2017)

    Article  CAS  Google Scholar 

  77. H. Kim, H.S. Kim, J. Ha, N.G. Park, S. Yoo, Empowering semi-transparent solar cells with thermal-mirror functionality. Adv. Energy Mater. 6(14), 1502466 (2016)

    Article  Google Scholar 

  78. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  79. X. Jiang, Z. Yu, Y. Zhang, J. Lai, J. Li, G.G. Gurzadyan, L. Sun, High-performance regular perovskite solar cells employing low-cost poly (ethylenedioxythiophene) as a hole-transporting material. Sci. Rep. 7, 42564 (2017)

    Article  CAS  Google Scholar 

  80. M. Chirumamilla, A.S. Roberts, F. Ding, D. Wang, P.K. Kristensen, S.I. Bozhevolnyi, K. Pedersen, Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt. Mater. Express 6(8), 2704–2714 (2016)

    Article  CAS  Google Scholar 

  81. M. Khalili, M. Abedi, H.S. Amoli, S.A. Mozaffari, Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye-sensitized solar cells. Carbohydr. Polym. 175, 1–6 (2017)

    Article  CAS  Google Scholar 

  82. M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, A. Hagfeldt, Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 11(6), 372 (2017)

    Article  CAS  Google Scholar 

  83. C. Winneker, Global Market Outlook for Photovoltaics 2013–2017 (Construction21 International, 2013), http://www.construction21.org/articles/h/report–global-market-outlook-for-photovoltaics-2013-2017.html

  84. X. Pan, I. Medina-Ramirez, R. Mernaugh, J. Liu, Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Colloids Surf. B: Biointerfaces 77(1), 82–89 (2010)

    Article  CAS  Google Scholar 

  85. Mindat, Rutile Mineral Data (Mindat, 2018), https://www.mindat.org/min-3486.html

  86. W.S. Cho, B.C. Kang, J.K. Lee, J. Jeong, J.H. Che, S.H. Seok, Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part. Fibre Toxicol. 10(1), 9 (2013)

    Article  CAS  Google Scholar 

  87. Mindat, Anatase Mineral Data (Mindat, 2018), https://www.mindat.org/min-213.html

  88. Mindat, Brookite Mineral Data (Mindat, 2018), https://www.mindat.org/min-787.html

  89. R. Kägi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, M. Boller, Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 156(2), 233–239 (2008)

    Article  Google Scholar 

  90. S. Dalai, S. Pakrashi, M.J. Nirmala, A. Chaudhri, N. Chandrasekaran, A.B.. Mandal, A. Mukherjee, Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquat. Toxicol. 138, 1–11 (2013)

    Google Scholar 

  91. S. Pakrashi, S. Dalai, T.C. Prathna, S. Trivedi, R. Myneni, A.M. Raichur, A. Mukherjee, Cytotoxicity of aluminum oxide nanoparticles towards freshwater algal isolates at low exposure concentrations. Aquat. Toxicol. 132, 34–45 (2013)

    Article  Google Scholar 

  92. B.J. Cardinale, R. Bier, C. Kwan, Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. J. Nanopart. Res. 14(8), 913 (2012)

    Article  Google Scholar 

  93. J. Ji, Z. Long, D. Lin, Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem. Eng. J. 170(2–3), 525–530 (2011)

    Article  CAS  Google Scholar 

  94. V.P. Utgikar, N. Chaudhary, A. Koeniger, H.H. Tabak, J.R. Haines, R. Govind, Toxicity of metals and metal mixtures: analysis of concentration and time dependence for zinc and copper. Water Res. 38(17), 3651–3658 (2004)

    Article  CAS  Google Scholar 

  95. X. Zou, J. Shi, H. Zhang, Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? Aquat. Toxicol. 154, 168–175 (2014)

    Article  CAS  Google Scholar 

  96. V. Iswarya, M. Bhuvaneshwari, S.A. Alex, S. Iyer, G. Chaudhuri, P.T. Chandrasekaran, A. Mukherjee, Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquat. Toxicol. 161, 154–169 (2015)

    Article  CAS  Google Scholar 

  97. A. Hassen, N. Saidi, M. Cherif, A. Boudabous, The resistance of environmental bacteria to heavy metals. Bioresour. Technol. 64(1), 7–15 (1998)

    Article  CAS  Google Scholar 

  98. S. Ramamoorthy, D.J. Kushner, Binding of mercuric and other heavy metal ions by microbial growth media. Microb. Ecol. 2(2), 162–176 (1975)

    Article  CAS  Google Scholar 

  99. A. Yamamoto, R. Honma, M. Sumita, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J. Biomed. Mater. Res. 39(2), 331–340 (1998)

    Article  CAS  Google Scholar 

  100. F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer, A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J. Mater. Sci. Mater. Med. 16(10), 883–888 (2005)

    Article  CAS  Google Scholar 

  101. A. Panas, C. Marquardt, O. Nalcaci, H. Bockhorn, W. Baumann, H.R. Paur, C. Weiss, Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology 7(3), 259–273 (2012)

    Article  Google Scholar 

  102. W. Lin, Y.W. Huang, X.D. Zhou, Y. Ma, In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 217(3), 252–259 (2006)

    Article  CAS  Google Scholar 

  103. J.L. Kang, C. Moon, H.S. Lee, H.W. Lee, E.M. Park, H.S. Kim, V. Castranova, Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J. Toxic. Environ. Health A 71(8), 478–485 (2008)

    Article  CAS  Google Scholar 

  104. H.L. Karlsson, P. Cronholm, J. Gustafsson, L. Moller, Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 21(9), 1726–1732 (2008)

    Article  CAS  Google Scholar 

  105. C.M. Sayes, R. Wahi, P.A. Kurian, Y. Liu, J.L. West, K.D. Ausman, V.L. Colvin, Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 92(1), 174–185 (2006)

    Article  CAS  Google Scholar 

  106. A. Simon-Deckers, B. Gouget, M. Mayne-L’Hermite, N. Herlin-Boime, C. Reynaud, M. Carriere, In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253(1–3), 137–146 (2008)

    Article  CAS  Google Scholar 

  107. S. Mayor, R.E. Pagano, Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8(8), 603 (2007)

    Article  CAS  Google Scholar 

  108. J. Kasper, M.I. Hermanns, C. Bantz, M. Maskos, R. Stauber, C. Pohl, J.C. Kirkpatrick, Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures. Part. Fibre Toxicol. 8(1), 6 (2011)

    Article  CAS  Google Scholar 

  109. K.M. Waters, L.M. Masiello, R.C. Zangar, B.J. Tarasevich, N.J. Karin, R.D. Quesenberry, B.D. Thrall, Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol. Sci. 107(2), 553–569 (2008)

    Article  Google Scholar 

  110. T. Morishige, Y. Yoshioka, H. Inakura, A. Tanabe, X. Yao, S. Narimatsu, Y. Mukai, The effect of surface modification of amorphous silica particles on NLRP3 inflammasome-mediated IL-1ß production, ROS production, and endosomal rupture. Biomaterials 31(26), 6833–6842 (2010)

    Article  CAS  Google Scholar 

  111. M. Winter, H.D. Beer, V. Hornung, U. Krämer, R.P. Schins, I. Förster, Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology 5(3), 326–340 (2011)

    Article  CAS  Google Scholar 

  112. G.A. Orr, W.B. Chrisler, K.J. Cassens, R. Tan, B.J. Tarasevich, L.M. Markillie, B.D. Thrall, Cellular recognition and trafficking of amorphous silica nanoparticles by macrophage scavenger receptor A. Nanotoxicology 5(3), 296–311 (2011)

    Article  CAS  Google Scholar 

  113. H. Ruh, B. Kühl, G. Brenner-Weiss, C. Hopf, S. Diabaté, C. Weiss, Identification of serum proteins bound to industrial nanomaterials. Toxicol. Lett. 208(1), 41–50 (2012)

    Article  CAS  Google Scholar 

  114. C.M. Sayes, J.D. Fortner, W. Guo, D. Lyon, A.M. Boyd, K.D. Ausman, J.L. West, The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4(10), 1881–1887 (2004)

    Article  CAS  Google Scholar 

  115. A. Selloni, A. Vittadini, M. Grätzel, The adsorption of small molecules on the TiO2 anatase (101) surface by first-principles molecular dynamics. Surf. Sci. 402, 219–222 (1998)

    Article  Google Scholar 

  116. A. Vittadini, A. Selloni, F.P. Rotzinger, M. Grätzel, Structure and energetics of water adsorbed at TiO2 anatase\(101\) and\(001\) surfaces. Phys. Rev. Lett. 81(14), 2954 (1998)

    Article  CAS  Google Scholar 

  117. C.M. Sayes, A.M. Gobin, K.D. Ausman, J. Mendez, J.L. West, V.L. Colvin, Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36), 7587–7759 (2005)

    Article  CAS  Google Scholar 

  118. C. Ouverney, V.E. Zavala, Microbiology Laboratory # 9. Images of Common Microorganism, Grown on Nutrient Agar. (San Jose State University, San Jose, 2018).

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Science Foundation (CBET-0930079 and 0821370), Graduate Scholarship from the Department of Chemistry, Texas A&M University-Kingsville (TAMUK), the College of Arts and Sciences (CoA&S, Dr. Bashir, 160336-00002), ACS-PRF (53827-UR10, Liu), SFFP (Bashir) and Welch Departmental Grant (AC-0006, Dr. Hahn), NSF-MRI acquisition (Liu), URA (160315-00015, Liu) and RDF grants (160345-00005, Liu), at Texas A&M University-Kingsville (TAMUK) for funding.

Drs. E. Massa and J. Escudero (Department of Biological and Health Sciences, Texas A&M University-Kingsville, TAMUK) are acknowledged for providing bacteria. Dr. H. Kim and Ms. Y. Chen (Dr. H.-C. Zhou’s group), Texas A&M University, College Station, are also duly acknowledged for image collection and analyses. The technical support from the TAMUK and the use of TAMU Center of Microscopy Imaging and Materials Characterization Facility are also duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Louise Liu .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to Professor Peter J. Derrick who passed away in March 2017 during the writing of this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ancha, B., Bashir, S., KingSanders, N., Liu, J.L. (2019). Solar Energy: Potential and Toxicology. In: Atesin, T.A., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59594-7_1

Download citation

Publish with us

Policies and ethics