Skip to main content

Exposure to Substances via Food Consumption

  • Chapter
  • First Online:
The Practice of Consumer Exposure Assessment

Abstract

Many substances enter the human body via the consumption of food, and this can account for a large amount of the consumer exposures to particular substances. According to the views of Lioy and co-authors (2013) and as pointed out in Sect. 3.2.5, food is not always the primary source of substances for consumers, because the origin is in the general environment. From this view, in the EU guidance documents for exposure assessment, food presents a pathway of exposure for the environmental exposure of humans. In standard food exposure evaluations, however, and from practical reasons, food is deemed as the (primary) source. The impact of the food chain for consumer exposure is pointed out in this Sect. 4.12. In addition, substances called process contaminants that may be formed from constituents in the food during the process of preparation of meals are having an increasing impact on food risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.efsa.europa.eu/en/search/site/contam%20panel?f[0]=sm_hierarchy_type%3Aopinion

  2. 2.

    Flavouring substances are regulated according to Regulation (EC) No 1334/2008 (EU 2008d) and food enzymes according to Regulation (EC) No 1332/2008 (EU 2008b); Regulation (EC) No 1331/2008 (EU 2008a) established a common authorisation procedure for food additives, food enzymes and food flavourings. While processing aids are defined in Article 3 of Regulation (EC) No 1333/2008 (EU 2008c), their use does, apart from extraction solvents, not require an approval in the European Union. For extraction solvents used in the production of foodstuffs and food ingredients, the Directive 2009/32/EC (EU 2009) of the European Parliament and of the Council is applicable.

  3. 3.

    http://www.fao.org/fao-who-codexalimentarius/committees/committee-detail/en/?committee=CCFA

  4. 4.

    http://www.fao.org/fao-who-codexalimentarius/en/

  5. 5.

    http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/gsfa/en/

  6. 6.

    http://www.fao.org/fao-who-codexalimentarius/scientific-basis/jecfa/en/ http://www.who.int/foodsafety/areas_work/chemical-risks/jecfa/en/

  7. 7.

    Regulation (EC) No 1333/2008, all Commission Regulations amending its annexes as well as the current consolidated version of this regulation are available at http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008R1333

  8. 8.

    An updated FAIM version is available at https://www.efsa.europa.eu/en/applications/foodingredients/tools

  9. 9.

    Food additives were evaluated by the ANS Panel until June 2018. Since then, they are evaluated by the FAF Panel.

  10. 10.

    http://www.mintel.com/global-new-products-database

  11. 11.

    http://www.efsa.europa.eu/en/topics/topic/food-additives

  12. 12.

    According to Article 3 of Regulation (EC) No 1333/2008, ‘quantum satis’ shall mean that no maximum numerical level is specified and substances shall be used in accordance with good manufacturing practice, at a level not higher than is necessary to achieve the intended purpose and provided the consumer is not misled.

  13. 13.

    This term refers to plants, including algae, fungi and lichens, and parts of plants as a whole or cut.

  14. 14.

    This term refers to preparations obtained by all kind of processing, e.g. pressing, extraction, fractionation, concentration, drying and/or fermentation.

  15. 15.

    This guidance was replaced in 2012 by the “Guidance for submission for food additive evaluations by the EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS)” (EFSA 2012d).

  16. 16.

    In the EU, nanotechnology applications in the food and feed sector need to undergo an approval procedure before being placed on the market. This is achieved by incorporating nano-specific provisions in existing legislation. For instance, food consisting of engineered nanomaterials (including vitamins, minerals, or other substances that contain or consist of engineered nanomaterials) are considered novel food and are regulated according to the relevant provisions (Regulation EU 2015/2283). Authorisation is based on a scientific evaluation by the European Food Safety Authority (EFSA), which requires the adoption of state-of-the-art approaches - both in terms of testing methods and measurement methodologies - to demonstrate safety. The same applies to, e.g. nano-sized food additives, additives used in food contact materials, feed additives, and nanopesticides. The existing guidance of the EFSA Scientific Committee on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain (EFSA 2011k) is being updated and the new guidance is expected to become available in 2018.

References

  • Abraham K, Wöhrlin F, Lindtner O, Heinemeyer G (2010) Toxicology and risk assessment of coumarin: focus on human data. Mol Nutr Food Res, Special Issue: Special: Novel approaches for risk assessment of phytochemicals in food 54(2):170–306. https://doi.org/10.1002/mnfr.200900281

    Article  CAS  Google Scholar 

  • Abraham K, Gürtler R, Berg K, Heinemeyer G, Lampen A, Appel KE (2011a) Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Mol Nutr Food Res 55:667–678. https://doi.org/10.1002/mnfr.201000564

    Article  CAS  PubMed  Google Scholar 

  • Abraham K, Andres S, Palavinskas R, Berg K, Appel KE, Lampen A (2011b) Toxicology and risk assessment of acrolein in food. Mol Nutr Food Res 55:1277–1290. https://doi.org/10.1002/mnfr.201100481

    Article  CAS  PubMed  Google Scholar 

  • Adolf T, Schneider R, Eberhardt W, Hartmann S, Herweg A, Heseker H, Hünchen K, Kübler W, Matlaske B, Moch KJ, Rosenbauer J (1995) Ergebnisse der Nationalen Verzehrsstudie (1985–1988) über die Lebensmittel- und Nährstoffaufnahme in der Bundesrepublik Deutschland. VERA-Schriftenreihe (Hgg: Kübler W, Anders HJ, Heeschen W), Wiss Fachverlag Dr Fleck 1995 XI

    Google Scholar 

  • Agogo GO (2016) A zero-augmented generalized gamma regression calibration to adjust for covariate measurement error: a case of an episodically consumed dietary intake. Biom J 59:94–109. https://www.ncbi.nlm.nih.gov/pubmed/27704599

    PubMed  PubMed Central  Google Scholar 

  • Arab L, Wittler M, Schettler G (1987) European food composition tables in translation. Springer, Berlin, p 155

    Google Scholar 

  • Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010) Eight self-administered 24-hour dietary recalls using the Internet are feasible in African Americans and Whites: the energetics study. J Am Diet Assoc 110(6):857–864

    PubMed  PubMed Central  Google Scholar 

  • Arcella D, Soggiu ME, Leclercq C (2003) Probabilistic modelling of human exposure to intense sweeteners in Italian teenagers: validation and sensitivity analysis of a probabilistic model including indicators of market share and brand loyalty. Food Addit Contam 20(Suppl 1):S73–S86

    CAS  PubMed  Google Scholar 

  • Arcella D, Le Donne C, Piccinelli R, Leclercq C (2004) Dietary estimated intake of intense sweeteners by Italian teenagers. Present levels and projections derived from the INRAN-RM-2001 food survey. Food Chem Toxicol 42(4):677–685

    CAS  PubMed  Google Scholar 

  • Aureli F, D’Amato M, De Berardis B, Raggi A, Turco AC, Cubadda F (2012) Investigating agglomeration and dissolution of silica nanoparticles in aqueous suspensions by dynamic reaction cell inductively coupled plasma-mass spectroscopy in time resolved mode. J Anal At Spectrom 27:1540–1548

    CAS  Google Scholar 

  • Aureli F, D’Amato M, Raggi A, Cubadda F (2015) Quantitative characterization of silica nanoparticles by asymmetric flow field flow fractionation coupled with online multiangle light scattering and ICP-MS/MS detection. J Anal At Spectrom 30:1266–1273

    CAS  Google Scholar 

  • Bachler G, von Goetz N, Hungerbuhler K (2015) Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology 9:373–380

    CAS  PubMed  Google Scholar 

  • Banasiak U, Heseker H, Sieke C, Sommerfeld C, Vohmann C (2005) Abschätzung der Aufnahme von Pflanzenschutzmittel-Rückständen in der Nahrung mti neuen Verzehrsmengen für Kinder. Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 48:84–98

    CAS  Google Scholar 

  • Barahona F, Ojea-Jimenez I, Geiss O, Gilliland D, Barrero-Moreno J (2016) Multimethod approach for the detection and characterisation of food-grade synthetic amorphous silica nanoparticles. J Chromatogr A 1432:92–100

    CAS  PubMed  Google Scholar 

  • Bast A, Chandler RF, Choy PC, Delmulle LM, Gruenwald J, Halkes SB, Keller K, Koeman JH, Peters P, Przyrembel H, de Ree EM, Renwick AG, Vermeer ITM (2002) Botanical health products, positioning and requirements for effective and safe use. Environ Toxicol Pharmacol 12:195–211

    CAS  PubMed  Google Scholar 

  • Bemrah N, Leblanc JC, Volatier JL (2008) Assessment of dietary exposure in the French population to 13 selected food colours, preservatives, antioxidants, stabilizers, emulsifiers and sweeteners. Food Addit Contam Part B Surveill 1(1):2–14

    CAS  PubMed  Google Scholar 

  • Bernard A, Broeckaert F, De Poorter G, De Cock A, Hermans C, Saegerman C, Houins G (2002) The Belgian PCB/dioxin incident: analysis of the food chain contamination and health risk evaluation. Environ Res 88:1–18

    CAS  PubMed  Google Scholar 

  • BfR (2004) BfR recommends provisional daily upper intake level and a guidance value for morphine in poppy seeds. BfR health assessment no. 012/2006, 27 December 2005. http://www.bfr.bund.de/cm/349/bfr_recommends_provisional_daily_upper_intake_level_and_a_guidance_value_for_morphine_in_poppy_seeds.pdf. Accessed 8 Mar 2018

  • BfR (2006) BfR entwickelt neues Verzehrsmodell für Kinder. Information Nr. 016/2005 des BfR vom 2, Mai 2005. http://www.bfr.bund.de/cm/343/bfr_entwickelt_neues_verzehrsmodell_fuer_kinder.pdf. Accessed 8 Mar 2018

  • BfR (2007) Salad mix contaminated with groundsel containing pyrrolizidine alkaloids. BfR opinion no. 028/2007, 10 January 2007. http://www.bfr.bund.de/cm/349/salad_mix_contaminated_with_groundsel_containing_pyrrolizidine_alkaloids.pdf. Accessed 8 Mar 2018

  • BfR (2010) Variability factors for the acute dietary risk assessment of pesticides. BfR information no. 014/2010. http://www.bfr.bund.de/cm/349/variability_factors_for_the_acute_dietary_risk_assessment_of_pesticides.pdf. Accessed 27 Oct 2019

  • BfR (2011a) Chemical analysis and toxicity of pyrrolizidine alkaloids and assessment of the health risks posed by their occurrence in honey. BfR opinion no. 038/2011, 11 August 2011. http://www.bfr.bund.de/cm/349/chemical-analysis-and-toxicity-of-pyrrolizidine-alkaloids-and-assessment-of-the-health-risks-posed-by-their-occurence-in-honey.pdf. Accessed 27 Oct 2019

  • BfR (2011b) Too Hot Isn’t Healthy – Foods with very high capsaicin concentrations can damage health. BfR opinion no. 053/2011 of 18 October 2011. http://www.bfr.bund.de/cm/349/too-hot-isnt-healthy-foods-with-very-high-capsaicin-concentrations-can-damage-health.pdf. Accessed 27 Oct 2019

  • BfR (2012a) Gesundheitliche Bewertung von synephrin- und koffeinhaltigen Sportlerprodukten und Schlankheitsmitteln. Stellungnahme Nr. 004/2013 des BfR vom 16, November 2012. http://www.bfr.bund.de/cm/343/gesundheitliche-bewertung-von-synephrin-und-koffeinhaltigen-sportlerprodukten-und-schlankheitsmitteln.pdf. Accessed 27 Oct 2019

  • BfR (2012b) New insights into coumarin contained in cinnamon. BfR opinion no. 036/2012, 27 September 2012. http://www.bfr.bund.de/cm/349/new-insights-into-coumarin-contained-in-cinnamon.pdf. Accessed 27 Oct 2019

  • BfR (2013) Pyrrolizidine alkaloids in herbal teas and teas. BfR opinion no. 018/2013 of 5 July 2013. http://www.bfr.bund.de/cm/349/pyrrolizidine-alkaloids-in-herbal-teas-and-teas.pdf. Accessed 27 Oct 2019

  • BfR (2016a) Pyrrolizidine alkaloids: levels in foods should continue to be kept as low as possible. BfR opinion no. 030/2016, 28 September 2016. http://www.bfr.bund.de/cm/349/pyrrolizidine-alkaloids-levels-in-foods-should-continue-to-be-kept-as-low-as-possible.pdf. Accessed 27 Oct 2019

  • BfR (2016b) Report including a decision tree: for combining data from TDS and Food Monitoring programs in risk assessment, TDS Exposure, deliverable D.7.5, To be requested at: http://www.tds-exposure.eu/project-objectives-0/contact-us/. Accessed 27 Oct 2019

  • BfR (2017) Risikobewertung des Alkaloidvorkommens in Lupinensamen. Stellungnahme 003/2017 des BfR, 27 March 2017. http://www.bfr.bund.de/cm/343/risikobewertung-des-alkaloidvorkommens-in-lupinensamen.pdf. Accessed 27 Oct 2019

  • BgVV (German Federal Institute for Consumer Health Protection and Veterinary Medicine) (1997) Einsatz von Hanf in Lebensmitteln kann gesundheitlich problematisch sein. BgVV Pressedienst (Press Release) 026/97, 22.10.1997. http://www.bfr.bund.de/de/presseinformation/1997/26/einsatz_von_hanf_in_lebensmitteln_kann_gesundheitlich_problematisch_sein-829.html. Accessed 27 Oct 2019

  • BgVV (German Federal Institute for Consumer Health Protection and Veterinary Medicine) (2000) BgVV empfiehlt Richtwerte für THC (tetrahydrocannabinol) in hanfhaltigen Lebensmitteln. BgVV Pressedienst (Press Release) 07/2000, 16.03.2000. http://www.bfr.bund.de/de/presseinformation/2000/07/bgvv_empfiehlt_richtwerte_fuer_thc__tetrahydrocannabinol__in_hanfhaltigen_lebensmitteln-884.html. Accessed 27 Oct 2019

  • Bingham SA (2002) Biomarkers in nutritional epidemiology. Public Health Nutr 5:821–827

    PubMed  Google Scholar 

  • Biro G, Hulshof KF, Ovesen L, Amorim Cruz JA (2002) Selection of methodology to assess food intake. Eur J Clin Nutr 56(Suppl 2):S25–S32

    PubMed  Google Scholar 

  • Blume K, Lindtner O, Heinemeyer G, Schneider K, Schwarz M (2010) Aufnahme von Umweltkontaminanten über Lebensmittel – Ergebnisse des Forschungsprojektes LExUKon. Informationsbroschüre des Bundesinstitutes für Risikobewertung. ISBN 3-938163-70-4, ISSN 1614-5089 (Online) http://www.bfr.bund.de/cm/350/aufnahme_von_umweltkontaminanten_ueber_lebensmittel.pdf

  • Boobis A, Cerniglia C, Chicoine A, Fattori V, Lipp M, Reuss R, Verger P, Tritscher A (2017) Characterizing chronic and acute health risks of residues of veterinary drugs in food: latest methodological developments by the joint FAO/WHO expert committee on food additives. Crit Rev Toxicol 47(10):885–899. https://doi.org/10.1080/10408444.2017.1340259

    Article  CAS  PubMed  Google Scholar 

  • Boon PE, Svensson K, Moussavian S, van der Voet H, Petersen A, Ruprich J, Debegnach F, de Boer WJ, van Donkersgoed G, Brera C, van Klaveren JD, Busk L (2009) Probabilistic acute dietary exposure assessments to captan and tolylfluanid using several European food consumption and pesticide concentration databases. Food Chem Toxicol 47:2890–2898. https://doi.org/10.1016/j.fct.2009.01.040

    Article  CAS  PubMed  Google Scholar 

  • Boon PE, van Donkersgoed G, Christodoulou D, Crépet A, D’Addezio L, Desvignes V, Ericsson B-G, Galimberti F, Ioannou-Kakouri E, Jensen BH, Rehurkova I, Rety J, Ruprich J, Sand S, Stephenson C, Strömberg A, Turrini A, van der Voet H, Ziegler P, Hamey P, van Klaveren JD (2015) Cumulative dietary exposure to a selected group of pesticides of the triazole group in different European countries according to the EFSA guidance on probabilistic modelling. Food Chem Toxicol 79:13–31. https://doi.org/10.1016/j.fct.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  • Boon PE, te Biesebeek JD, van Donkersgoed G (2017) Dietary exposure to lead in the Netherlands. RIVM Letter report 2016-0206. National Institute for Public Health and the Environment (RIVM), Bilthoven. www.rivm.nl

  • Boushey CJ, Kerr DA, Wright J, Lutes KD, Ebert DS, Delp EJ (2009) Use of technology in childrens dietary assessment. Eur J Clin Nutr 63(Suppl 1):S50–S57

    PubMed  PubMed Central  Google Scholar 

  • Boushey CJ, Spoden M, Zhu FM, Delp EJ, Kerr DA (2016) New mobile methods for dietary assessment: review of image-assisted and image-based dietary assessment methods. Proc Nutr Soc:1–12

    Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Methodol 26(2):211–252

    Google Scholar 

  • Breysse N, Vial G, Pattingre L, Ossendorp BC, Mahieu K, Reich H, Rietveld A, Sieke C, van der Velde-Koerts T, Sarda X (2018) Impact of a proposed revision of the IESTI equation on the acute risk assessment conducted when setting maximum residue levels (MRLs) in the European Union (EU): a case study. J Environ Sci Health B 53(6):352–365. https://doi.org/10.1080/03601234.2018.1439809

  • Burke BS (1947) The dietary history as a tool in research. J Am Diet Assoc 23:1041–1046

    Google Scholar 

  • BVL (2018) Berichte zur Lebensmittelsicherheit (bis) 2017 – Monitoring. Gemeinsamer Bericht des Bundes und der Länder. Reihe: BVL-Reporte. Berlin, DE: Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL). Verfügbar unter https://www.bvl.bund.de/DE/01_Lebensmittel/01_Aufgaben/02_AmtlicheLebensmittelueberwachung/04_Monitoring/lm_monitoring_node.html

  • Codex Alimentarius Commission (CAC) (2018) Procedural manual, 26th edition, Secretariat of the Joint FAO/WHO Food Standards Programme, FAO, Rome. http://www.fao.org/3/i8608en/I8608EN.pdf. Accessed 27 Oct 2019

  • Caldas ED, Tressou J, Boon PE (2006) Dietary exposure of Brazilian consumers to dithiocarbamate pesticides – a probabilistic approach. Food Chem Toxicol 44:1562–1571. https://doi.org/10.1016/j.fct.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  • Carroll RJ, Midthune D, Subar AF, Shumakovich M, Freedman LS, Thompson FE, Kipnis V (2012) Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am J Epidemiol 175(4):340–347

    PubMed  PubMed Central  Google Scholar 

  • CDC (2016a) National Health and Nutrition Examination Survey (NHANES). http://www.cdc.gov/nchs/nhanes.htm. Accessed 22 Nov 2019

  • CDC (2016b) National Health and Nutrition Examination Survey (NHANES). Dietary Web Tutorial – Module, 18. http://www.cdc.gov/nchs/tutorials/Dietary/Advanced/ModelUsualIntake/index.htm. Accessed 22 Nov 2019

  • CDC (Centers for Disease Control and Prevention) (2017) 2003–2004 National Health and Nutrition Examination Survey (NHANES). Post-examination questionnaires. Food frequency (formerly called Food Propensity): mailed to respondent, Atlanta. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/questionnaires.aspx?BeginYear=2003. Accessed 28 April 2017

  • Chaisson CF, Petersen B (1996) Harmonization of strategies for utilizing available data on a pan-European basis. Food Addit Contam 13(4):461–465

    CAS  PubMed  Google Scholar 

  • Chen XX, Cheng B, Yang YX, Cao A, Liu JH, Du LJ, Liu Y, Zhao Y, Wang H (2013) Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 9:1765–1774

    CAS  PubMed  Google Scholar 

  • Chinnock A (2007) Validation of a diet history questionnaire for use with Costa Rican adults. Public Health Nutr 11(1):65–75

    PubMed  Google Scholar 

  • CODEX STAN 171 (1989a) Codex standard for certain pilses. www.codexalimentarius.net/download/standards/56/CXS_171e.pdf www.codexalimentarius.net/download/standards/51/CXS_153e.pdf. Accessed 22 Nov 2019

  • CODEX STAN 172 (1989b) Codex standard for sorghum grains. www.codexalimentarius.net/download/standards/57/CXS_172e.pdf www.codexalimentarius.net/download/standards/51/CXS_153e.pdf. Accessed 22 Nov 2019

  • CODEX STAN 199 (1995a) Codex standard for wheat and durum wheat. www.codexalimentarius.net/download/standards/62/CXS_199e.pdf www.codexalimentarius.net/download/standards/51/CXS_153e.pdf. Accessed 22 Nov 2019

  • CODEX STAN 201 (1995b) Codex standard for oats. www.codexalimentarius.net/download/standards/64/CXS_201e.pdf www.codexalimentarius.net/download/standards/51/CXS_153e.pdf. Accessed 22 Nov 2019

  • CODEX STAN 153 (1985) Codex standard for maize (CORN). www.codexalimentarius.net/download/standards/51/CXS_153e.pdf. Accessed 22 Nov 2019

  • Connolly A, Hearty A, Nugent A, McKevitt A, Boylan E, Flynn A, Gibney MJ (2010) Pattern of intake of food additives associated with hyperactivity in Irish children and teenagers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27(4):447–456

    CAS  PubMed  Google Scholar 

  • Contado C, Mejia J, Lozano Garcia O, Piret JP, Dumortier E, Toussaint O, Lucas S (2016) Physicochemical and toxicological evaluation of silica nanoparticles suitable for food and consumer products collected by following the EC recommendation. Anal Bioanal Chem 408:271–286

    CAS  PubMed  Google Scholar 

  • Conway JM, Ingwersen LA, Vinyard BT, Moshfegh AJ (2003) Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am J Clin Nutr 77(5):1171–1178

    CAS  PubMed  Google Scholar 

  • COT (Committee on Toxicity of Chemicals in Food, Consumer, Products and the Environment) (2008) Statement on pyrrolizidine alkaloids in food. https://cot.food.gov.uk/sites/default/files/cot/cotstatementpa200806.pdf. Accesed 22 Nov 2019

  • Craft BD, Chiodini A, Garst J, Granvogl M (2013) Fatty acid esters of monochloropropanediol (MCPD) and glycidol in refined edible oils. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(1):46–51

    CAS  PubMed  Google Scholar 

  • Crews C, Castle L (2007) A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci Technol 18:365–372

    CAS  Google Scholar 

  • Crispim SP, Geelen A, Siebelink E, Huybrechts I, Lillegaard ITL, Margaritis I, Rehurkova I, Slimani N, Ocke MC, de Boer E, van’t Veer P, de Vries JHM, Consortium E (2012) Design aspects of 24 h recall assessments may affect the estimates of protein and potassium intake in dietary surveys. Public Health Nutr 15(7):1196–1200

    PubMed  Google Scholar 

  • Crispim SP, Nicolas G, Casagrande C, Knaze V, Illner AK, Huybrechts I, Slimani N (2014) Quality assurance of the international computerised 24 h dietary recall method (EPIC-Soft). Br J Nutr 111(3):506–515

    CAS  PubMed  Google Scholar 

  • Currie LA (1997) Detection: international update, and some emerging dilemmas involving calibration, the blank, and multiple detection decisions. Chemom Intell Lab Syst 37(1):151–181

    CAS  Google Scholar 

  • de Boer WJ, van der Voet H, Bokkers BGH, Bakker MI, Boon PE (2009) Comparison of two models for the estimation of usual intake addressing zero consumptions and non-normality. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26:1433–1449. https://doi.org/10.1080/02652030903161606

    Article  CAS  PubMed  Google Scholar 

  • de Henauw S, Brants HA, Becker W, Kaic-Rak A, Ruprich J, Sekula W, Mensink GB, Koenig JS (2002) Operationalization of food consumption surveys in Europe: recommendations from the European Food Consumption Survey Methods (EFCOSUM) project. Eur J Clin Nutr 56(Suppl 2):S75–S88

    PubMed  Google Scholar 

  • De Temmerman PJ, Van Doren E, Verleysen E, Van der Stede Y, Francisco MA, Mast J (2012) Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy. J Nanobiotechnol 10:24

    Google Scholar 

  • Dehne LI, Klemm C, Henseler G, Hermann-Kunz E (1999) The German food code and nutrient data base (BLSII.2). Eur J Epidemiol 15:355–359

    CAS  PubMed  Google Scholar 

  • Dekkers ALM, Slob W (2012) Gaussian Quadrature is an efficient method for the back-transformation in estimating the usual intake distribution when assessing dietary exposure. Food Chem Toxicol 50(10):3853–3861

    CAS  PubMed  Google Scholar 

  • Dekkers S, Krystek P, Peters RJB, Lankveld DPK, Bokkers BGH, Van Hoeven-Arentzen PH, Bouwmeester H, Oomen AG (2011) Presence and risks of nanosilica in food products. Nanotoxicology 5:393–405

    CAS  PubMed  Google Scholar 

  • Dekkers ALM, Verkaik-Kloosterman J, van Rossum CTM, Ocké MC (2014) SPADE, a new statistical program to estimate habitual dietary intake from multiple food sources and dietary supplements. J Nutr 144(12):2083–2091

    CAS  PubMed  Google Scholar 

  • Diogo JS, Silva LS, Pena A, Lino CM (2013) Risk assessment of additives through soft drinks and nectars consumption on Portuguese population: a 2010 survey. Food Chem Toxicol 62:548–553

    CAS  PubMed  Google Scholar 

  • Diouf F, Berg K, Ptok S, Lindtner O, Heinemeyer G, Heseker H (2014) German database on the occurrence of food additives: application for intake estimation of five food colours for toddlers and children. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(2):197–206

    CAS  PubMed  Google Scholar 

  • Dixit S, Purshottam SK, Khanna SK, Das M (2011) Usage pattern of synthetic food colours in different states of India and exposure assessment through commodities preferentially consumed by children. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(8):996–1005

    CAS  PubMed  Google Scholar 

  • Dodd KW, Guenther PM, Freedman LS, Subar AF, Kipnis V, Midthune D, Tooze JA, Krebs-Smith SM (2006) Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J Am Diet Assoc 106(10):1640–1650

    PubMed  Google Scholar 

  • Doell DL, Folmer DE, Lee HS, Butts KM, Carberry SE (2016) Exposure estimate for FD&C colour additives for the US population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33(5):782–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domke A, Großklaus R, Niemann B, Przyrembel H, Richter K, Schmidt E, Weißenborn A, Wörner B, Ziegenhagen R (2004) Use of vitamins in food. Toxicological and nutritional aspects. Part I. BfR-Science 04/2005, Berlin

    Google Scholar 

  • Domke A, Großklaus R, Niemann B, Przyrembel H, Richter K, Schmidt E, Weißenborn A, Wörner B, Ziegenhagen R (2006) Use of minerals in food. Toxicological and nutritional aspects. Part II. BfR-Science 01/2006, Berlin

    Google Scholar 

  • Douglass JS, Barraj LM, Tennant DR, Long WR, Chaisson CF (1997) Evaluation of the budget method for screening food additive intakes. Food Addit Contam 14:791–802. https://doi.org/10.1080/02652039709374590

    Article  CAS  PubMed  Google Scholar 

  • Dudkiewicz A, Tiede K, Loeschner K, Soegaard Jensen LH, Jensen E, Wierzbicki R, Boxall A (2011) Characterization of nanomaterials in food by electron microscopy. Trends Anal Chem 30:28–43

    CAS  Google Scholar 

  • Dufour A, Wetzler S, Touvier M, Lioret S, Gioda J, Lafay L, Dubuisson C, Calamassi-Tran G, Kalonji E, Margaritis I, Volatier JL (2010) Comparison of different maximum safe levels in fortified foods and supplements using a probabilistic risk assessment approach. Br J Nutr 104:1848–1857

    CAS  PubMed  Google Scholar 

  • Dusemund B, Soffers AEMF, Rietjens IMCM (2012) Plant-derived contaminants in food. In: D Schrenk (ed), Chemical contaminants and residues in food. Woodhead Publishing series in food science, technology and nutrition: No. 235, Woodhead Publishing Limited, Oxford, pp 394–417

    Google Scholar 

  • Dutch National Institute for Public Health and the Environment (RIVM) (2015) MCRA 8.1 reference manual. https://mcra.rivm.nl. Retrieved 8 Feb 2018

  • Dwyer J, Picciano MF, Raiten DJ, Basiotis PP, Bender MM, Bindewald BK, Carriquiry AL, Courtney AK, Crane NT, Dodd KW, Egan K, Ellwood KC, Gebhardt SE, Guthrie JF, Harnly JM, Holden JM, Johnson C, Krebs-Smith SM, Kuznesof PM, Lang CE, McDowell M, Moshfegh A, Pehrsson PR, Radimer K, Subar AF, Swanson CA, Wolf WR (2003) Collection of food and dietary supplement intake data: what we eat in America-NHANES. J Nutr 133(2):590S–600S

    PubMed  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall, New York. https://www.crcpress.com/An-Introduction-to-the-Bootstrap/Efron-Tibshirani/p/book/9780412042317. Accessed 8 Mar 2018

  • EFSA (2004) Discussion paper on “Botanicals and Botanical Preparations widely used as food supplements and related products: coherent and comprehensive risk assessment and consumer information approaches, Brussels, 25 June 2004. EFSA/SC/26 Final. https://www.efsa.europa.eu/sites/default/files/assets/af040930-ax2.pdf. Accessed 27 Oct 2019

  • EFSA (2005a) Opinion of the scientific committee on a request from EFSA related to exposure assessments. EFSA J 249:1–26. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2005.249/pdf. Accessed 27 Oct 2019

  • EFSA (2005b) Opinion of the scientific committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J 282:1–31 http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2005.282/abstract. Accessed 27 Oct 2019

  • EFSA (2005c) Opinion of the PPR panel related to the appropriate variability factor(s) to be used for acute dietary exposure assessment of pesticide residues in fruit and vegetables. EFSA J 3,3: 177. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2005.177/abstract. Accessed 27 Oct 2019

  • EFSA (2006a) Tolerable upper intake levels for vitamins and minerals. Scientific committee on food scientific panel on dietetic products, nutrition and allergies. European Food Safety Authority 2006 ISBN: 92-9199-014-0. http://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf. Accessed 27 Oct 2019

  • EFSA (2006b) Opinion of the scientific committee related to uncertainties in dietary exposure assessment. EFSA J 438:1–54. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2007.438/abstract. Accessed 27 Oct 2019

    Google Scholar 

  • EFSA (2007) EFSA calculation model pesticide residues intake model PRIMo revision 2. www.efsa.europa.eu/applications/pesticides/tools. Accessed 27 Oct 2019

  • EFSA (2008a) Opinion of the scientific panel on plant protection products and their residues to evaluate the suitability of existing methodologies and, if appropriate, the identification of new approaches to assess cumulative and synergistic risks from pesticides to human health with a view to set MRLs for those pesticides in the frame of Regulation (EC) 396/2005). EFSA J 6(5):705. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2008.705/abstract. Accessed 27 Oct 2019

  • EFSA (2008b) Opinion of the scientific panel on contaminants in the food chain on a request from the European Commission on marine biotoxins in shellfish – okadaic acid and analogues. EFSA J 589:1–62. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2008.589/full. Accessed 27 Oct 2019

  • EFSA (2008c) Guidance document for the use of the Concise European Food Consumption database in exposure assessment. http://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/datexfooddbguidance.pdf. Accessed 27 Oct 2019

  • EFSA (2008d) Statement of EFSA on the risks for public health due to the presence of dioxins in pork from Ireland. EFSA J 911:1–15. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2008.911/full. Accessed 27 Oct 2019

  • EFSA (2009a) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on cadmium in food. EFSA J 980:1–139. http://www.efsa.europa.eu/en/efsajournal/pub/980. Accessed 27 Oct 2019

  • EFSA (2009b) Uranium in foodstuffs, in particular mineral water. EFSA J 1018:1–59. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2009.1018/full. Accessed 27 Oct 2019

  • EFSA (2009c) Safety assessment of botanicals and botanical preparations intended for use as ingredients in food supplements. EFSA J 1249:1–19. http://www.efsa.europa.eu/en/efsajournal/pub/1249.htm. Accessed 27 Oct 2019

  • EFSA (2009d) Guidance of the scientific committee on a request from EFSA on the use of the benchmark dose approach in risk assessment. EFSA J 1150:1–72. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2009.1150/full. Accessed 27 Oct 2019

  • EFSA (2009e) General principles for the collection of national food consumption data in the view of a pan-European dietary survey. Document 1435. EFSA J 7(12):1–51. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2009.1435/abstract. Accessed 27 Oct 2019

  • EFSA (2009f) Advice on the EFSA guidance document for the safety assessment of botanicals and botanical preparations intended for use as food supplements, based on real case studies. EFSA J 7(9):280. http://www.efsa.europa.eu/en/supporting/doc/280r.pdf Accessed 27 Oct 2019

  • EFSA (2010a) Scientific opinion on the reevaluation of lutein (E 161b) as a food additive on request of the European Commission. EFSA J 8(7):1678. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1678/full. Accessed 27 Oct 2019

  • EFSA (2010b) Scientific opinion on lead in food. EFSA J 8:1570, 1147 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1570/full. Accessed 27 Oct 2019

  • EFSA (2010c) Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J 8(3):1557, 96 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1557/full. Accessed 27 Oct 2019

  • EFSA (2010d) Standard sample description for food and feed. EFSA J 8(1):1457, 54 pp. https://www.efsa.europa.eu/de/efsajournal/pub/1457. Accessed 27 Oct 2019

  • EFSA (2010e) Guidance on the data required for the risk assessment of flavourings to be used in or on foods. EFSA J 8(6):1623. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1623/epdf. Accessed 27 Oct 2019

  • EFSA (2010f). Guidance on human health risk-benefit assessment of food. EFSA J 8:1673. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1673/abstract. Accessed 8 Mar 2018

  • EFSA (2011a) Use of the EFSA comprehensive european food consumption database in exposure assessment. EFSA J 9(3):2097. http://www.efsa.europa.eu/en/food-consumption/comprehensive-database. Accessed 27 Oct 2019

  • EFSA (2011b) Scientific opinion on the re-evaluation of lutein preparations other than lutein with high concentrations of total saponified carotenoids at levels of at least 80%. EFSA J 9(5):2144. http://www.efsa.europa.eu/de/efsajournal/doc/2144.pdf. Accessed 27 Oct 2019

  • EFSA (2011c) Scientific opinion on the risks for public health related to the presence of opium alkaloids in poppy seeds. EFSA J 9(11):2405. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2405/pdf. Accessed 27 Oct 2019

  • EFSA (2011d) Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA J 9(11):2406. http://www.efsa.europa.eu/de/efsajournal/doc/2406.pdf. Accessed 27 Oct 2019

  • EFSA (2011e) Update on furan levels in food from monitoring years 2004–2010 and exposure assessment. EFSA J 9(9):2347. https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2347

  • EFSA (2011f) Report on the development of a Food Classification and Description System for exposure assessment and guidance on its implementation and use. EFSA J 9(12): 2489. 84 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2489/abstract. Accessed 27 Oct 2019

  • EFSA (2011g) Overview of the procedures currently used at EFSA for the assessment of dietary exposure to different chemical substances. EFSA J 9(12):2490. https://www.efsa.europa.eu/de/efsajournal/pub/2490. Accessed 27 Oct 2019

  • EFSA (2011h) Technical report – The food classification and description system FoodEx 2 (draft-revision 1). Supporting Publications 2011: 215 [438pp.]. http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2011.EN-215/abstract. Accessed 27 Oct 2019

  • EFSA (2011i) Evaluation of the FoodEx 2 the food classification system applied to the development of the EFSA comprehensive European food consumption database. EFSA J 9(3):1970. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.1970/full. Accessed 27 Oct 2019

  • EFSA (2011j) Guidance for risk assessment of food and feed from genetically modified plants. EFSA J 9(5):2150. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2150/abstract. Accessed 27 Oct 2019

  • EFSA (2011k) Scientific opinion of the scientific committee on Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9(5):2140. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2140/full. Accessed 27 Oct 2019

  • EFSA (2011l) Scientific opinion on the risk to public health related to the presence of high levels of dioxins and dioxin-like PCBs in liver from sheep and deer. EFSA panel on contaminants in the food chain (CONTAM panel). EFSA J 9(7):2297. doi: https://doi.org/10.2903/j.efsa.2011.2297. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2297/full. Accessed 27 Oct 2019

  • EFSA (2012a) Cadmium dietary exposure in the European population. EFSA J 10(1):2551, 37 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2012.2551/full. Accessed 27 Oct 2019

  • EFSA (2012b) Scientific opinion on ergot alkaloids in food and feed. EFSA J 10(7):2798. http://www.efsa.europa.eu/en/efsajournal/doc/2798.pdf. Accessed 27 Oct 2019

  • EFSA (2012c) Guidance on the use of probabilistic methodology for modelling dietary exposure to pesticide residues. EFSA J 10(10):2839, 95 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2012.2839/full. Accessed 27 Oct 2019

  • EFSA (2012d) Guidance for submission for food additive evaluations. EFSA J 10(7):2760. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2012.2760/epdf. Accessed 27 Oct 2019

  • EFSA (2012e) Food additives intake model (FAIM) Template – Version 1.0 – December 2012. http://www.efsa.europa.eu/sites/default/files/assets/faimtemplateinstructions.pdf. Accessed 27 Oct 2019

  • EFSA (2012f) Compendium of botanicals reported to contain naturally occurring substances of possible concern for human health when used in food and food supplements. EFSA J 10(5):2663. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2012.2663/full. Accessed 27 Oct 2019

  • EFSA (2012g) EFSA’s approach to identifying emerging risks in food and feed: taking stock and looking forward. EFSA J 10:s1015. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2012.s1015/abstract. Accessed 27 Oct 2019

  • EFSA (2013a) Scientific opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA J 11(7): n/a–n/a. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2013.3293/full. Accessed 27 Oct 2019

  • EFSA (2013b) Guidance on methodological principles and scientific methods to be taken into account when establishing Reference Points for Action (RPAs) for non-allowed pharmacologically active substances present in food of animal origin. EFSA J 11(4):3195 [24 pp.]. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2013.3195/abstract. Accessed 27 Oct 2019

  • EFSA (2013c) Scientific opinion on safety evaluation of Ephedra species in food. EFSA J 11(11):3467. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2013.3467/epdf. Accessed 27 Oct 2019

  • EFSA (2013d) Scientific opinion on the evaluation of the safety in use of Yohimbe (Pausinystalia yohimbe (K. Schum.) Pierre ex Beille). EFSA J 11(7):3302. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2013.3302/epdf. Accessed 27 Oct 2019

  • EFSA (2013e) Guidance of EFSA – standard sample description ver.2.0. EFSA J 11(10):3424. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2013.3424/full. Accessed 27 Oct 2019

  • EFSA (2013f) Food Additives Intake Model (FAIM). http://www.efsa.europa.eu/en/applications/foodingredients/tools. Accessed 8 Mar 2018

  • EFSA (2013g) Scientific opinion on tropane alkaloids in food and feed. EFSA J 11(10):3386. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2013.3386/epdf. Accessed 27 Oct 2019

  • EFSA (2013h) European Food Safety Authority. Refined exposure assessment of ethyl lauroyl arginate based on revised proposed uses as a food additive. EFSA J 11(6):3294, 15 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2013.3294/full. Accessed 27 Oct 2019

  • EFSA (2013i) European Food Safety Authority. Refined exposure assessment for amaranth (E 123). EFSA J 11(10):3442. 18 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2013.3442/full. Accessed 27 Oct 2019

  • EFSA (2014a) Statement on a conceptual framework for the risk assessment of certain food additives re-evaluated under Commission Regulation (EU) No 257/2010. EFSA J 12(6):3697. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2014.3697/abstract. Accessed 27 Oct 2019

  • EFSA (2014b) Re-evaluation of Indigo Carmine (E 132) as a food additive. EFSA J 12(7):3768, 51 pp. https://www.efsa.europa.eu/de/efsajournal/pub/3768. Accessed 27 Oct 2019

  • EFSA (2014c) Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products. EFSA J 12(10):3874–n/a. https://www.efsa.europa.eu/de/efsajournal/pub/3874. Accessed 27 Oct 2019

  • EFSA (2014d) Dietary exposure to inorganic arsenic in the European population. EFSA J 12(3):3597–3665. Fab/pop. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2014.3597/full. Accessed 27 Oct 2019

  • EFSA (2014e) Scientific Opinion on the risks to public health related to the presence of perchlorate in food, in particular fruits and vegetables. EFSA J 12(10):3869. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2014.3869/full. Accessed 27 Oct 2019

  • EFSA (2014f) Scientific opinion on the revised exposure assessment of steviol glycosides (E 960) for the proposed uses as a food additive. EFSA J 12(5):3639, 23 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2014.3639/full. Accessed 27 Oct 2019

  • EFSA (2014g) Refined exposure assessment for curcumin (E 100). EFSA J 12(10):3876, 43 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2014.3876/full. Accessed 8 Mar 2018

  • EFSA (2015a) Use of EFSA comprehensive European food consumption database for estimating dietary exposure to genetically modified foods. EFSA J 13(2):4034, 11 pp. https://www.efsa.europa.eu/de/efsajournal/pub/4034. Accessed 27 Oct 2019

  • EFSA (2015b) The 2013 European Union report on pesticide residues in food. EFSA J 13(3):4038, 169 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.4038/full. Accessed 27 Oct 2019

  • EFSA (2015c) Shaping the future of food safety, together: proceedings of the 2nd EFSA scientific conference. Milan, Italy, 14–16 October 2015. EFSA J 13(10):s1310, 137 pp. https://www.efsa.europa.eu/de/events/event/151014. Accessed 27 Oct 2019

  • EFSA (2015d) Scientific opinion on acrylamide in food. EFSA J 13(6):4104, 321 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.4104/abstract. Accessed 27 Oct 2019

  • EFSA (2015e) Scientific opinion on the re-evaluation of octyl gallate (E 311) as a food additive. EFSA J 13(10):4248, 39 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.4248/references. Accessed 27 Oct 2019

  • EFSA (2015f) The food classification and description system FoodEx2 (revision 2): EFSA supporting publication 12(5):EN-804, 90 pp. http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2015.EN-804/abstract. Accessed 27 Oct 2019

  • EFSA (2015g) Scientific opinion on the risks for human health related to the presence of tetrahydrocannabinol (THC) in milk and other food of animal origin. EFSA J 13(6):4141. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.4141/epdf. Accessed 27 Oct 2019

  • EFSA (2015h) Refined exposure assessment for Quinoline Yellow (E 104). EFSA J 13(3):4070, 33 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.4070/abstract. Accessed 27 Oct 2019

  • EFSA (2015i) EFSA scientific workshop, co-sponsored by FAO and WHO, Revisiting the International Estimate of Short-Term Intake (IESTI-equations) used to estimate the acute exposure to pesticide residues via food, 8/9 September 2015, Geneva, Switzerland. https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/sp.efsa.2015.EN-907. Accessed 27 Oct 2019

  • EFSA (2015j) Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J 13(1):3982 [36 pp.]. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.3982/full. Accessed 27 Oct 2019

  • EFSA (2015k) European food safety authority. Refined exposure assessment for Azorubine/Carmoisine (E 122). EFSA J 13(3):4072, 35 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.4072/full. Accessed 27 Oct 2019

  • EFSA (2015l) European food safety authority. Refined exposure assessment for Ponceau 4R (E 124). EFSA J 13(4):4073, 34 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.4073/full. Accessed 27 Oct 2019

  • EFSA (2016a) Scientific opinion on the risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD) and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J 14(5):4426, 159 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4426/full. Accessed 27 Oct 2019

  • EFSA (2016b) The 2014 European Union report on pesticide residues in food. EFSA J 14(10):4611, 139 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4611/full. Accessed 27 Oct 2019

  • EFSA (2016c) Acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels. EFSA J 14(4):4424, 47 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4424/full. Accessed 27 Oct 2019

  • EFSA (2016d) Re-evaluation of titanium dioxide (E 171) as a food additive. EFSA J 14(9):4545, 83 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4545/references. Accessed 27 Oct 2019

  • EFSA (2016e) Review of the threshold of toxicological concern (TTC) approach and development of new TTC decision tree. EFSA J 13(3):1006E. http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2016.EN-1006/abstract. Accessed 27 Oct 2019

  • EFSA (2016f) Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA J 14(11):4594, 24 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4594/full. Accessed 27 Oct 2019

  • EFSA (2016g) Dietary exposure assessment to pyrrolizidine alkaloids in the European population. EFSA J 14(8):4572. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4572/full

  • EFSA (2016h) Statement on the refined exposure assessment of tertiary-butyl hydroquinone (E 319). EFSA J 14(1):4363, 26 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4363/full. Accessed 27 Oct 2019

  • EFSA (2016i) Update: the use of the benchmark dose approach in risk assessment. EFSA J 15(1):4658, 41 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4658/full. Accessed 27 Oct 2019

  • EFSA (2017a) Re-evaluation of fatty acids (E 570) as a food additive. EFSA J 15(5):4785, 48 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4785/abstract. Accessed 27 Oct 2019

  • EFSA (2017b) Re-evaluation of glycerol (E 422) as a food additive. EFSA J 15(3):4720, 64 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4720/full

  • EFSA (2017c) Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age. EFSA J 15(5):4849, 58 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4849/full. Accessed 27 Oct 2019

  • EFSA (2017d) Re-evaluation of sorbitan monostearate (E 491), sorbitan tristearate (E 492), sorbitan monolaurate (E 493), sorbitan monooleate (E 494) and sorbitan monopalmitate (E 495) when used as food additives. EFSA J 15(5):4788, 56 pp. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2017.4788/full. Accessed 27 Oct 2019

  • EFSA (2018a) Database of processing techniques and processing factors compatible with the EFSA food classification and description system FoodEx 2 Objective 3: European database of processing factors for pesticides in food”, 26.11.2018, https://doi.org/10.2903/sp.efsa.2018.EN-1510. https://www.efsa.europa.eu/en/supporting/pub/en-1510

  • EFSA (2018b) Update of the risk assessment on 3-monochloropropane diol and its fatty acid esters. EFSA J 16(1):5083. https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2018.5083

  • EFSA/FAO/WHO (2011) Towards a harmonised Total Diet Study approach: a guidance document. EFSA J 9(11):2450. http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2450/full Accessed 27 Oct 2019

  • Eisinger-Watzl M, Strassburg A, Ramunke J, Krems C, Heuer T, Hoffmann I (2015) Comparison of two dietary assessment methods by food consumption: results of the German National Nutrition Survey II. Eur J Nutr 54(3):343–354

    PubMed  Google Scholar 

  • Elegbede C, Papadopoulos A, Kolbaum AE, Turrini A, Mistura L, Lindtner O, Sirot V (2017) TDS exposure project: how and when to consider seasonalityin a total diet study? Food Chem Toxicol 105:119–126. https://doi.org/10.1016/j.fct.2017.03.045

    Article  CAS  Google Scholar 

  • El-Shaarawi AH, Esterby SR (1992) Replacement of censored observations by a constant: an evaluation. Water Resour Res 26:835–844

    CAS  Google Scholar 

  • Estrada-Montoya MC, González-Córdova AF, Torrescano G, Camou JP, Vallejo-Cordoba B (2008) Screening and confirmatory determination of clenbuterol residues in bovine meat marketed in the northwest of Mexico. Ciencia y Tecnología Alimentaria 6:130

    CAS  Google Scholar 

  • ETHZ (lead), NIPH/SZU, EVIRA, MATIS, INSA, RIVM, C.R.A NUT, UGR, URV, MSSSI/AECOSAN, NUID UCD, UGENT, EuroFIR AISBL, ANSES (2015) TDS exposure deliverable report D6.3-on usability testing of FoodCASE-Risk. To be requested at: http://www.tds-exposure.eu/project-objectives-0/contact-us/. Accessed 27 Oct 2019

  • EU (1998) Report on methodologies for the monitoring of food additive intake across the European Union (Final report submitted by the Task Co-ordinator 16 January 1998), Reports of a working Group on Scientific Co-operation on questions relating to food. Task 4.2. SCOOP/INT/REPORT/2. European Commission Directorate General III Industry, Brussels. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52001DC0542&from=EN. Accessed 27 Oct 2019

  • EU (2000a) White paper on food safety Brussels, 12 January 2000 COM (1999) 719 final. Accessible https://europa.eu/rapid/press-release_IP-00-20_en.htm. Accessed 27 Oct 2019

  • EU (2000b) Directive 2000/13/EC of the European Parliament and of the council of 20 March 2000 on the approximation of the laws of the Member States relating to the labelling, presentation and advertising of foodstuffs. Off J Europ Union (EC) 2000 No. L 109/29. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32000L0013&from=EN. Accessed 27 Oct 2019

  • EU (2001) Report from the commission on dietary food additive Intake in the European Union. COM (2001) 542 final, Brussels, 01.10.2001. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52001DC0542&from=mt

  • EU (2002a) Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food supplements. Off J Europ Union (EC) 2002 No. L 183/51. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:183:0051:0057:EN:PDF. Accessed 27 Oct 2019

  • EU (2002b) Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off J Europ Union (EC) 2002 No. L 31/1. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:031:0001:0024:en:PDF. Accessed 27 Oct 2019

  • EU (2004) Regulation (EC) No 882/2004 of the Euroepan Parliament and of the Council of 29 April 2004on official controls performed to ensure the verification of compliance with feed and food law,animal health and animal welfare rules. https://www.fsai.ie/uploadedFiles/Legislation/Food_Legisation_Links/Official_Control_Of_Foodstuffs/15-Consol_Reg882_2004_01Jan07.pdf. Accessed 27 Oct 2019

  • EU (2005a) REGULATION (EC) NO 396/2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Off J Europ Union L 70. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R0396&from=EN. Accessed 27 Oct 2019

  • EU (2005b) Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EECText with EEA relevance. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32005R0396. Accessed 27 Oct 2019

  • EU (2006a) Regulation (EC) No 1924/2006. Corrigendum to Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off J Europ Union (EC) L 12/3. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R1924R(01)&from=EN. Accessed 27 Oct 2019

  • EU (2006b) Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods. Off J Europ Union (EC) L 404/26. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R1925&from=EN. Accessed 27 Oct 2019

  • EU (2006c) Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs 20.12.2006. Off J Europ Union (EC) 2006 No. L 364/5. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN

  • EU (2008a) Regulation (EC) No 1331/2008 of the European Parliament and of the Council of 16 December 2008 establishing a common authorisation procedure for food additives, food enzymes and food flavourings. Off J Europ Union (EC) 2008 No. L 354/1. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:354:0001:0006:EN:PDF. Accessed 27 Oct 2019

  • EU (2008b) Regulation (EC) No 1332/2008 of the European Parliament and of the Council of 16 December 2008 on food enzymes and amending Council Directive 83/417/EEC, Council Regulation (EC) No 1493/1999, Directive 2000/13/EC, Council Directive 2001/112/EC and Regulation (EC) No 258/97. Off J Europ Union (EC) 2008 No. L 354/7. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:354:0007:0015:en:PDF. Accessed 8 Mar 2018

  • EU (2008c) Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off J Europ Union (EC) 2008 No. L 354. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32008R1333. Accessed 8 Mar 2018

  • EU (2008d) Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. Off J Europ Union (EC) 2008 No. L 354/34. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:354:0034:0050:en:PDF. Accessed 27 Oct 2019

  • EU (2009) Directive 2009/32/EC of the European Parliament and of the Council of 23 April 2009 on the approximation of the laws of the Member States on extraction solvents used in the production of foodstuffs and food ingredients (Recast). http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0032. Accessed 27 Oct 2019

  • EU (2010) Commission Regulation (EU) No 257/2010 of 25 March 2010 setting up a programme for the re-evaluation of approved food additives in accordance with Regulation (EC) No 1333/2008 of the European Parliament and of the Council on food additives. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32010R0257&from=EN. Accessed 27 Oct 2019

  • EU (2011a) Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32011R1129&from=EN. Accessed 27 Oct 2019

  • EU (2011b) Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32011R1169&from=en. Accessed 27 Oct 2019

  • EU (2011c) Commission Regulation (EU) No 234/2011 of 10 March 2011 implementing Regulation (EC) No 1331/2008 of the European Parliament and of the Council establishing a common authorisation procedure for food additives, food enzymes and food flavourings. Off J Europ Union (EC) 2011 No. L 64/15. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0234&from=EN. Accessed 27 Oct 2019

  • EU (2012) Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012R0528&from=DE

  • EU (2015a) Summary report of the standing committee on plants, animals, food and feed held in Brussels on 11 FEBRUARY 2015 (Section Toxicological Safety of the Food Chain). https://ec.europa.eu/food/sites/food/files/safety/docs/reg-com_toxic_20150211_sum.pdf. Accessed 27 Oct 2019

  • EU (2015b) Ad hoc study in preparation of the development of a common methodology for gathering of information by the Member States on the consumption and use of food additives and flavourings in the European Union Framework Contract for evaluation and evaluation related services – Lot 3: Food Chain. Final Report Submitted by: Food Chain Evaluation Consortium (FCEC), Civic Consulting – Agra CEAS Consulting – Van Dijk Management Consultants – Arcadia International, Project Leader: Arcadia International. http://www.arcadia-international.net/news.php. Accessed 27 Oct 2019

  • EU (2016) EU pesticides database http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database. Accessed 27 Oct 2019

  • EU (2017) RASFF 2016 Preliminary annual report-Food and Feed Safety. https://ec.europa.eu/food/sites/food/files/safety/docs/rasff_annual_report_2016.pdf. Accessed 27 Oct 2019

  • Expo Net (2015) 375 million vegetarians worldwide. All the reasons for a green lifestyle. http://www.expo2015.org/magazine/en/lifestyle/375-million-vegetarians-worldwide.html. Accessed 27 Oct 2019

  • FAO (1999) Progress on acute dietary intake estimation – International Estimate of Short Term Intake (IESTI). FAO Plant Protection and Protection Paper 153 (Pesticide residues in food 1999. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues, Rome, Italy). http://apps.who.int/iris/handle/10665/42314. Accessed on 8 Mar 2018

  • FAO (2001) Food and Agriculture Organization of the United Nations. Guidelines for the preparation of working papers on intake of food additives for the Joint FAO/WHO Expert Committee on Food Additives. Geneva, January 2001. http://www.who.int/foodsafety/chem/jecfa/en/intake_guidelines.pdf?ua=1

  • FAO (2003a) Trade reforms and food security: conceptualizing the linkages Rome (I), 2003. http://www.fao.org/3/a-y4671e.pdf. Accessed 27 Oct 2019

  • FAO (2003b) Pesticide residues in food – report of the 2003 joint FAO/WHO meeting. Rome, FAO

    Google Scholar 

  • FAO (2011) Discussion paper on pyrrolizidine alkaloids. Joint FAO/WHO food standards programme, CODEX Committee on Contaminants in Foods, 5th Session, The Hague, The Netherlands, 21–25 March 2011. http://www.fao.org/tempref/codex/Meetings/CCCF/CCCF5/cf05_INF.pdf. Accessed 27 Oct 2019

  • FAO (2014) Guidelines for simple evaluation of dietary exposure to food additives. CAC/GL 3-1989. Adopted 1989. Revision 2014. http://www.fao.org/fao-who-codexalimentarius/standards/list-of-standards/en/. Accessed 27 Oct 2019

  • FAO (2016) Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed. Third edition. FAO plant production and protection paper 225. Food and Agricultural Organization of the United Nations, Rome. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Manual/FAO_manual_3rd_edition_Final.pdf. Accessed 27 Oct 2019

  • FAO & OIE (2009) Guide to good farming practices. Rome (I), 2009. ISBN 978-92-5-006145-0. http://www.oie.int/fileadmin/Home/eng/Current_Scientific_Issues/docs/pdf/eng_guide.pdf. Accessed 27 Oct 2019

  • FAO/WHO (2001) Guidelines for the preparation of working papers on intake of food additives for the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Geneva. Available online www.who.int/foodsafety/chem/jecfa/en/intake_guidelines.pdf

  • FAO/WHO (2016) JECFA/83/SC Joint FAO/WHO expert committee on food additives eighty-third meeting, Rome, 8–17 November 2016 summary and conclusions. 23. November 2016. http://www.fao.org/3/a-bq821e.pdf. Accessed 27 Oct 2019

  • Finkelstein MM, Verma DK (2001) Exposure estimation in the presence of nondetectable values: another look. Am Ind Hyg Assoc J 62:195–198

    CAS  Google Scholar 

  • Flynn A, Moreiras O, Stehle P, Fletcher RJ, Müller DJG, Rolland V (2003) Vitamins and minerals: a model for safe addition to foods. Eur J Nutr 42:118–130

    CAS  PubMed  Google Scholar 

  • Fontcuberta M, Calderon J, Villalbí JR, Centrich F, Portaña S, Espelt A, Duran J, Nebot M (2011) Total and inorganic arsenic in marketed food and associated health risks for the Catalan (Spain) population. J Agric Food Chem 59(18):10013–10022

    CAS  PubMed  Google Scholar 

  • Freedman LS, Schatzkin A, Midthune D, Kipnis V (2011) Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst 103(14):1086–1092

    PubMed  PubMed Central  Google Scholar 

  • Freese J, Feller S, Harttig U, Kleiser C, Linseisen J, Fischer B, Leitzmann MF, Six-Merker J, Michels KB, Nimptsch K, Steinbrecher A, Pischon T, Heuer T, Hoffmann I, Jacobs G, Boeing H, Nöthlings U (2014) Development and evaluation of a short 24-h food list as part of a blended dietary assessment strategy in large-scale cohort studies. Eur J Clin Nutr 68(3):324–329

    CAS  PubMed  Google Scholar 

  • Frenzel F, Buhrke T, Wenzel I, Andrack J, Hielscher J, Lampen A (2017) Use of in silico models for prioritization of heat-induced food contaminants in mutagenicity and carcinogenicity testing. Arch Toxicol. Jan 16. https://doi.org/10.1007/s00204-016-1924-3. [Epub ahead of print]. https://www.ncbi.nlm.nih.gov/pubmed/28091709

  • Gajda-Wyrębek J, Kuźma K, Świtka A, Jarecka J, Beresińska M, Postupolski J (2017) Exposure of Polish children to Southampton food colours. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34(1):1–9

    PubMed  Google Scholar 

  • Garcia-Segovia P, González-Carrascosa R, Martinez-Monzó J, Ngo J, Serra-Majem L (2011) New technologies applied to food frequency questionnaires, a current prospective. Nutr Hosp 26:803–806

    CAS  PubMed  Google Scholar 

  • German Hunters Association (2017). https://de.wikipedia.org/wiki/Deutscher_Jagdverband. Accessed 9 Mar 2018

  • Gersovitz M, Madden JP, Smiciklas-Wright H (1978) Validity of the 24-hr. dietary recall and seven-day record for group comparisons. J Am Diet Assoc 73(1):48–55

    CAS  PubMed  Google Scholar 

  • Gibney MJ (1999) Dietary intake methods for estimating food additive intake. Regul Toxicol Pharmacol 30:S31–S33

    CAS  PubMed  Google Scholar 

  • Gibney MJ, Lambe J (1996) Estimation of food additive intake: methodology overview. Food Addit Contam 13(4):405–410

    CAS  PubMed  Google Scholar 

  • Gilsenan MB, Lambe J, Gibney MJ (2002) Irish National Food Ingredient Database: application for assessing patterns of additive usage in foods. Food Addit Contam 19(12):1105–1115

    CAS  PubMed  Google Scholar 

  • Gilsenan MB, Thompson RL, Lambe J, Gibney MJ (2003a) Validation analysis of probabilistic models of dietary exposure to food additives. Food Addit Contam 20(Suppl 1):S61–S72

    CAS  PubMed  Google Scholar 

  • Gilsenan MB, Lambe J, Gibney MJ (2003b) Assessment of food intake input distributions for use in probabilistic exposure assessments of food additives. Food Addit Contam 20(11):1023–1033

    CAS  PubMed  Google Scholar 

  • Glass DC, Gray CN (2001) Estimating mean exposures from censored data: exposure to benzene in the Australian petroleum industry. Ann Occup Hyg 45:275–282

    CAS  PubMed  Google Scholar 

  • Goedhart PW, van der Voet H, Knüppel S, Dekkers ALM, Dodd KW, Boeing H, van Klaveren JD (2012) A comparison by simulation of different methods to estimate the usual intake distribution for episodically consumed foods. Supporting Publications 2012:EN-299. [65 pp.]. https://doi.org/10.2903/sp.efsa.2012.EN-299

  • Gottschald M, Knüppel S, Boeing H, Buijsse B (2016) The influence of adjustment for energy misreporting on relations of cake and cookie intake with cardiometabolic disease risk factors. Eur J Clin Nutr 70(11):1318–1324

    CAS  PubMed  Google Scholar 

  • Gürtler R (2010) Safety of food additives from a German and European point of view. Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 53(6):554–560

    Google Scholar 

  • Gürtler R (2014) Risk assessment of food additives. In: Reichl FX, Schwenk M (eds) Regulatory toxicology. Springer, Heidelberg, pp 803–812

    Google Scholar 

  • Ha MS, Ha SD, Choi SH, Bae DH (2013a) Assessment of Korean consumer exposure to sodium saccharin, aspartame and stevioside. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(7):1238–1247

    CAS  PubMed  Google Scholar 

  • Ha MS, Ha SD, Choi SH, Bae DH (2013b) Exposure assessment of synthetic colours approved in Korea. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(4):643–653

    CAS  PubMed  Google Scholar 

  • Haddad EH, Tanzman JS (2003) What do vegetariansin the United States eat? Am J Clin Nutr 78(3):626S–632S

    CAS  PubMed  Google Scholar 

  • Haftenberger M, Heuer T, Heidemann C, Kube F, Krems C, Mensink GBM (2010) Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr J 9:36. https://doi.org/10.1186/1475-2891-9-36

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton D, Ambrus A, Dieterle R, Felsot A, Harris C, Petersen B, Racke K, Wong SS, Gonzalez R, Tanaka K, Earl M, Roberts G, Bhula R (2004) Pesticide residues in food—acute dietary exposure. Pest Manag Sci 60(4):311–339

    CAS  PubMed  Google Scholar 

  • Hansen SC (1966) Acceptable daily intake of food additives and ceiling on levels of use. Food Cosmet Toxicol 4(4):427–432

    CAS  PubMed  Google Scholar 

  • Hansen SC (1979) Conditions for use of food additives based on a budget for an acceptable daily intake. J Food Prot 42(5):429–432

    PubMed  Google Scholar 

  • Hansen SC (1990) Toxicological evaluation of food additives. Toxicological evaluation over estimation of potential high intake to permitted levels of use of food additives and vice versa. Regul Toxicol Pharmacol 11(1):3–7

    CAS  PubMed  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24

    CAS  Google Scholar 

  • Hartmann BM, Bell S, Vasquez-Caicedo AL, Goetz A, Brombach C (2006) The German nutrient database – present developments, potentials and prospects. Ernaehrungs-Umschau 53:124–129

    Google Scholar 

  • Harttig U, Haubrock J, Knüppel S, Boeing H (2011) The MSM program: web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur J Clin Nutr 65(Suppl 1):S87–S91

    PubMed  Google Scholar 

  • Haubrock J, Nöthlings U, Volatier JL, Dekkers A, Ocké M, Harttig U, Illner AK, Knüppel S, Andersen LF, Boeing H, on behalf of the European Food Consumption Validation Consortium (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J Nutr 141(5):914–920

    CAS  PubMed  Google Scholar 

  • Health Canada (2011) Synephrine, Octopamine and Caffeine Health Risk Assessment (HRA) Report, Robin Marles, File Number: 172091. Date review approved 2011-05-16. http://www.novelingredient.com/wp-content/uploads/2017/03/Health-Canada-May11.pdf. Accessed 8 Mar 2018

  • Heinemeyer G, Heiland A, Sommerfeld C, Springer A, Hausdörfer S, Treutz M, Lindtner O, Rüdiger T (2012) Phthalat-Belastung der Bevölkerung in Deutschland: Expositionsrelevante Quellen, Aufnahmepfade und Toxikokinetik am Beispiel von DEHP und DINP. Band I: Exposition durch Verzehr von Lebensmitteln und Anwendung von Verbraucherprodukten. http://www.uba.de/uba-info-medien/4326.html. Accessed 5 Jul 2018

  • Heinemeyer G, Sommerfeld C, Springer A, Heiland A, Lindtner O, Greiner M, Heuer T, Krems C, Conrad A (2013) Estimation of dietary intake of bis(2-ethylhexyl) phthalate (DEHP) by consumption of food in the German population. Int J Hyg Environ Health 216:472–480

    CAS  PubMed  Google Scholar 

  • Helsel DR (1990) Less than obvious-statistical treatment of data below the detection limit. Environ Sci Technol 24:1766–1774

    CAS  Google Scholar 

  • Helsel DR (2004) Nondetects and data analysis. Wiley, New York, NY, p 268

    Google Scholar 

  • Heringa MB, Geraets L, van Eijkeren JC, Vandebriel RJ, de Jong WH, Oomen AG (2016) Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology 10:1515–1525

    CAS  PubMed  Google Scholar 

  • Heuer T, Krems C, Moon K, Brombach C, Hoffmann I (2015) Food consumption of adults in Germany: results of the German National Nutrition Survey II based on diet history interviews. Br J Nutr 113(10):1603–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hewett P, Ganser GH (2007) A comparison of several methods for analyzing censored data. Ann Occup Hyg 51:611–632

    PubMed  Google Scholar 

  • Hirvonen T, Sinkko H, Valsta L, Hannila ML, Pietinen P (2007) Development of a model for optimal food fortification: vitamin D among adults in Finland. Eur J Nutr 46(5):264–270

    CAS  PubMed  Google Scholar 

  • Hoffmann K, Boeing H, Dufour A, Volatier JL, Telman J, Virtanen M, Becker W, De Henauw S (2002) Estimating the distribution of usual dietary intake by short-term measurements. Eur J Clin Nutr 56:S53–S62

    PubMed  Google Scholar 

  • Hornung RW, Reed L (1990) Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 5:46–51

    CAS  Google Scholar 

  • Howlett J (1996) ILSI Europe workshop on food additive intake: scientific assessment of the regulatory requirements in Europe 29–30 March 1995, Brussels summary report. Food Addit Contam 13(4):385–395

    CAS  PubMed  Google Scholar 

  • Husain A, Sawaya W, Al-Omair A, Al-Zenki S, Al-Amiri H, Ahmed N, Al-Sinan M (2006) Estimates of dietary exposure of children to artificial food colours in Kuwait. Food Addit Contam 23(3):245–251

    CAS  PubMed  Google Scholar 

  • ILSI (2009) Micronutrient landscape of Europe: comparison of intakes and methodologies with particular regard to higher consumption – summary report of a workshop held in April 2008 in Gubbio, Italy. ILSI report series. http://ilsi.org/mexico/wp-content/uploads/sites/29/2016/09/Micronutrient-Landscape-of-Europe.pdf. Accessed 8 Mar 2018

  • Infozentrum Schokolade (2016). https://schokoinfo.de/kakaowirtschaft-rohkakao-weltmarkt-kakao-schokoinfo.htmlAccessed 8 April 2017

  • IOM (1998) Dietary reference intakes: a risk assessment model for establishing upper intake levels for nutrients. National Academy Press, Washington, DC. https://www.nap.edu/catalog/6432/dietary-reference-intakes-a-risk-assessment-model-for-establishing-upper. Accessed 27 Oct 2019

  • IOM (1999) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D and fluoride. National Academy Press, Washington, DC. https://www.ncbi.nlm.nih.gov/books/NBK109825/. Accessed 27 Oct 2019

  • IOM (2000a) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. National Academy Press, Washington, DC. https://www.ncbi.nlm.nih.gov/books/NBK114310/. Accessed 27 Oct 2019

  • IOM (2000b) Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. National Academy Press, Washington, DC. https://www.nap.edu/catalog/9810/dietary-reference-intakes-for-vitamin-c-vitamin-e-selenium-and-carotenoids. Accessed 27 Oct 2019

  • IOM (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. National Academy Press, Washington, DC. https://www.ncbi.nlm.nih.gov/books/NBK222310/. Accessed 27 Oct 2019

  • Ireland JD, Møller A (2010) Review of international food classification and description. J Food Compos Anal 13:529–538

    Google Scholar 

  • Jahn SD, Bullock WH, Ignacio JS (2015) A strategy for assessing and managing occupational exposures, 4th edn. American Industrial Hygiene Association, Fairview, VA, p 569

    Google Scholar 

  • JECFA (2004) Evaluation of certain food additives and contaminants. Sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series 922. Geneva. http://apps.who.int/iris/bitstream/10665/42849/1/WHO_TRS_922.pdf. Accessed 27 Oct 2019

  • JECFA (2006) Combined compendium of food additive specifications – all specifications monographs from the 1st to the 65th meeting. FAO JECFA Monographs Series, No. 1 Volume 1–3, 2006. http://www.fao.org/3/a-a0691e.pdf. Accessed 27 Oct 2019

  • JECFA (2016) Safety evaluation of certain food additives and contaminants. Supplement 1: Non-dioxin-like polychlorinated biphenyls. Prepared by the eighteenth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) WHO Food Additives Series: 71-S1. World Health organisation (WHO), Geneva. www.who.int/foodsafety/publications/jecfa-reports/en/

  • JECFA (2017) Evaluation of certain contaminants (eighty-third report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report no. 1002: World Health organisation (WHO) and Food and Agriculture Organization of the United Nations (FAO), Geneva, Rome. http://apps.who.int/iris/bitstream/10665/254893/1/9789241210027-eng.pdf. Accessed 27 Oct 2019

  • Juan WY, Yamini S, Britten P (2015) 38th National nutrient databank conference. Food intake patterns of self-identified vegetarians among the U.S. population, 2007–2010. Procedia Food Science 4:86–93

    Google Scholar 

  • Kaplan EL, Meier P (1958) Non parametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Google Scholar 

  • Keith LH, Crummett W, Deegan J, Libby RA, Taylor JK, Wentler G (1983) Principles of environmental analysis. Anal Chem 55(14):2210–2218

    CAS  Google Scholar 

  • Kennedy MC, Glass CR, Bokkers BGH, Hart ADM, Hamey P, Kruisselbrink JW, de Boer WJ, van der Voet H, Garthwaite D, van Klaveren JD (2015a) A European modeland case studies for aggregate exposure assessment of pesticides. Food Chem Toxicol 79:32–44. https://doi.org/10.1016/j.fct.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  • Kennedy MC, van der Voet H, Roelofs VJ, Roelofs W, Glass CR, de Boer WJ, Kruisselbrink JW, Hart ADM (2015b) New approaches to uncertainty analysis for use in aggregate and cumulative risk assessment of pesticides. Food Chem Toxicol 79:54–64. https://doi.org/10.1016/j.fct.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  • Keogh RH, White IR (2011) Allowing for never and episodic consumers when correcting for error in food record measurements of dietary intake. Biostatistics 12(4):624–636

    PubMed  PubMed Central  Google Scholar 

  • Kienzler A, Bopp S, van der Linden S, Berggren E, Worth A (2016) Regulatory assessment of chemical mixtures: requirements, current approaches and future perspectives. Regul Toxicol Pharmacol 80:321–334

    CAS  PubMed  Google Scholar 

  • Kipnis V, Subar AF, Midthune D, Freedman LS, Ballard-Barbash R, Troiano RP, Bingham S, Schoeller DA, Schatzkin A, Carroll RJ (2003) Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol 158(1):14–21

    PubMed  Google Scholar 

  • Kipnis V, Midthune D, Buckman DW, Dodd KW, Guenther PM, Krebs-Smith SM, Subar AF, Tooze JA, Carroll RJ, Freedman LS (2009) Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 65(4):1003–1010

    PubMed  PubMed Central  Google Scholar 

  • Klesges RC, Klesges LM, Brown G, Frank GC (1987) Validation of the 24-hour dietary recall in preschool children. J Am Diet Assoc 87(10):1383–1385

    CAS  PubMed  Google Scholar 

  • Kloosterman J, Fransen HP, de Stoppelaar J, Verhagen H, Rompelberg C (2007) Safe addition of vitamins and minerals to foods: setting maximum levels for fortification in the Netherlands. Eur J Nutr 46:220–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knüppel S, Clemens M, Conrad J, Gastell S, Michels KB, Leitzmann M, Krist L, Pischon T, Krause G, Ahrens W, Ebert N, Jöckel KH, Kluttig A, Obi N, Kaaks R, Lieb W, Schipf S, Brenner H, Heuer T, Harttig U, Linseisen J, Nöthlings U, Boeing H (2019) Design and characterization of dietary assessment in the German National Cohort. Eur J Clin Nutr 73:1480–1491. https://doi.org/10.1038/s41430-018-0383-8

    Article  PubMed  Google Scholar 

  • Koleva II, van Beek TA, Soffers AE, Dusemund B, Rietjens IM (2012) Alkaloids in the human food chain – natural occurrence and possible adverse effects. Mol Nutr Food Res 56:30–52

    CAS  PubMed  Google Scholar 

  • Krems C, Bauch A, Götz A, Heuer T, Hild A, Möseneder J, Brombach C (2006) Methoden der Nationalen Verzehrsstudie II. Ernährungs-Umschau 53(6):44–50

    Google Scholar 

  • Kroes R, Müller D, Lambe J, Löwik MRH, van Klaveren J, Kleiner J, Massey R, Mayer S, Urieta I, Verger P, Visconti A (2002) Assessment of intake from the diet. Food Chem Toxicol 40:327385. https://doi.org/10.1016/S0278-6915(01)00113-2

    Article  Google Scholar 

  • Kroke A, Klipstein-Grobusch K, Voss S, Moseneder J, Thielecke F, Noack R, Boeing H (1999) Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am J Clin Nutr 70(4):439–447

    CAS  PubMed  Google Scholar 

  • Langlais R (1996) Additive usage levels. Food Addit Contam 13(4):443–452

    CAS  PubMed  Google Scholar 

  • Laureano G, Torman V, Crispim S, Dekkers A, Camey S (2016) Comparison of the ISU, NCI, MSM, and SPADE methods for estimating usual intake: a simulation study of nutrients consumed daily. Nutrients 8(3):166

    PubMed  PubMed Central  Google Scholar 

  • Lawrie CA, Rees NM (1996) The approach adopted in the UK for the estimation of the intake of food additives. Food Addit Contam 13(4):411–416

    CAS  PubMed  Google Scholar 

  • Leclercq C, Berardi D, Sorbillo MR, Lambe J (1999) Intake of saccharin, aspartame, acesulfame K and cyclamate in Italian teenagers: present levels and projections. Food Addit Contam 16(3):99–109

    CAS  PubMed  Google Scholar 

  • Leclercq C, Arcella D, Turrini A (2000) Estimates of the theoretical maximum daily intake of erythorbic acid, gallates, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in Italy: a stepwise approach. Food Chem Toxicol 38(12):1075–1084

    CAS  PubMed  Google Scholar 

  • Leclercq C, Arcella D, Le Donne C, Piccinelli R, Sette S, Soggiu ME (2003) Stochastic modelling of human exposure to food chemicals and nutrients within the Montecarlo project: an exploration of the influence of brand loyalty and market share on intake estimates of intense sweeteners from sugar-free soft drinks. Toxicol Lett 140–141:443–457

    PubMed  Google Scholar 

  • Lee BQ, Khor SM (2015) 3-Chloropropane-1,2-diol (3-MCPD) in Soy Sauce: a review on the formation, reduction, and detection of this potential carcinogen. Compr Rev Food Sci Food Saf 14:48–66

    CAS  Google Scholar 

  • LGL Bayern (Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit) (2016) Mutterkorn und Mutterkornalaloide in Getreide und Mehl. www.lgl.bayern.de/lebenmittel/chemie/schimmelpilze/mutterkornalkaloide/

  • Lim JH, Sisco P, Mudalige TK, Sanchez-Pomales G, Howard PC, Linder SW (2015) Detection and characterization of SiO2 and TiO2 nanostructures in dietary supplements. J Agric Food Chem 63:3144–3152

    CAS  PubMed  Google Scholar 

  • Lindtner O, Ehlscheid N, Berg K, Blume K, Dusemund B, Ehlers A, Niemann B, Rüdiger T, Heinemeyer G, Greiner M, Hallerbach B, Thömmes O, Thier S (2008) Event-related survey of high consumers of energy drinks. Federal Institute for Risk Assessment, ISSN 1614–3795 (Print) 1614–3841 (Online)

    Google Scholar 

  • Lindtner O, Berg K, Blume K, Fiddicke U, Heinemeyer G (2013) The German approach to estimating dietary exposure using food monitoring data. In: Moy GG, Vannoort RW (eds) Total diet studies, Chapter 53. Springer, New York, NY, pp 521–530. https://doi.org/10.1007/978-1-4419-7689-5_53

    Chapter  Google Scholar 

  • Lineback DR, Coughlin JR, Stadler RH (2012) Acrylamide in foods: a review of the science and future considerations. Annu Rev Food Sci Technol 3:15–35

    CAS  PubMed  Google Scholar 

  • Linsinger TPJ, Chaudhry Q, Dehalu V, Delahaut P, Dudkiewicz A, Grombe R, von der Kammer F, Larsen EH, Legros S, Loeschner K, Peters R, Ramsch R, Roebben G, Tiede K, Weigel S (2013) Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chem 138:1959–1966

    CAS  PubMed  Google Scholar 

  • Lioy PJ, Smith KR (2013) Discussion of exposure science in the 21st century: a vision and a strategy. Environ Health Perspect 121:405–409

    PubMed  PubMed Central  Google Scholar 

  • Liu B, Young H, Crowe FL, Benson VS, Spencer EA, Key TJ, Appleby PN, Beral V (2011) Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr 14(11):1998–2005

    PubMed  Google Scholar 

  • Livingstone MB, Robson PJ (2000) Measurement of dietary intake in children. Proc Nutr Soc 59(2):279–293

    CAS  PubMed  Google Scholar 

  • Livingstone MB, Robson PJ, Wallace JM (2004) Issues in dietary intake assessment of children and adolescents. Br J Nutr 92(Suppl 2):S213–S222

    CAS  PubMed  Google Scholar 

  • Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, von der Kammer F, Larsen EH (2013) Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem 405:8185–8195

    CAS  PubMed  Google Scholar 

  • Loizzo A, Gatti GL, Macri A, Moretti G, Ortolani E, Palazzesi S (1984) Italian baby food containing diethylstilboestrol: three years later. Lancet 1(8384):1014–1015

    CAS  PubMed  Google Scholar 

  • Löwik MR (1996) Possible use of food consumption surveys to estimate exposure to additives. Food Addit Contam 13(4):427–441

    PubMed  Google Scholar 

  • Mancini FR, Paul D, Gauvreau J, Volatier JL, Vin K, Hulin M (2015) Dietary exposure to benzoates (E210-E213), parabens (E214-E219), nitrites (E249-E250), nitrates (E251-E252), BHA (E320), BHT (E321) and aspartame (E951) in children less than 3 years old in France. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32(3):293–306

    CAS  PubMed  Google Scholar 

  • Martyn DM, Nugent AP, McNulty BA, O’Reilly E, Tlustos C, Walton J, Flynn A, Gibney MJ (2016) Dietary intake of four artificial sweeteners by Irish pre-school children. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33(4):592–602

    CAS  PubMed  Google Scholar 

  • Mensink GBM, Thamm M, Haas K (1999) Die Ernährung in Deutschland 1998. Gesundheitswesen 61(Sonderheft 2):S200–S206

    PubMed  Google Scholar 

  • Mensink GBM, Haftenberger M, Thamm M (2001) Validity of DISHES 98, a computerised dietary history interview: energy and macronutrient intake. Eur J Clin Nutr 55(6):409–417

    CAS  PubMed  Google Scholar 

  • Mensink GBM, Bauch A, Vohmann C, Stahl A, Six J, Kohler S, Fischer J, Heseker H (2007) EsKiMo – Das Ernährungsmodul im Kinder- und Jugendgesundheitssurvey (KiGGS). Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 50:902–908

    CAS  Google Scholar 

  • Merten C, Ferrari P, Bakker M, Boss A, Hearty A, Leclercq C, Lindtner O, Tlustos C, Verger P, Volatier JL, Arcella D (2011) Methodological characteristics of the national dietary surveys carried out in the European Union as included in the European Food Safety Authority (EFSA). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(8):975–995

    CAS  PubMed  Google Scholar 

  • Mischek D, Krapfenbauer-Cermak C (2012) Exposure assessment of food preservatives (sulphites, benzoic and sorbic acid) in Austria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29(3):371–382

    CAS  PubMed  Google Scholar 

  • Møller A, Unwin ID, Ireland J, Roe MA, Becker W, Colombani P (2008) The EuroFIR Thesauri 2008. EuroFIR Technical Report D1.8.22, Danish Food Information, Denmark

    Google Scholar 

  • Moro S, Chipman JK, Wegener JW, Hamberger C, Dekant W, Mally A (2012) Furan in heat-treated foods: formation, exposure, toxicity, and aspects of risk assessment. Mol Nutr Food Res 56(8):1197–1211

    CAS  PubMed  Google Scholar 

  • Moy GG, Vannoort RW (2013) Total diet studies. Springer Science+Business Media, New York. https://doi.org/10.1007/978-1-4419-7689-5

    Book  Google Scholar 

  • MRI (2008) Nationale Verzehrs Studie II, Ergebnisbericht, Teil 2. Die bundesweite Befragung zur Ernährung von Jugendlichen und Erwachsenen. MRI, Karlsruhe

    Google Scholar 

  • MRI (2010) Bundeslebensmittelschlüssel (BLS): Version 3.01 (German Nutrient Database: Version 3.01) MRI, Karlsruhe. http://www.blsdb.de (11.08.2011)

  • MRI (2012) NEMONIT MRI, Karlsruhe. https://www.mri.bund.de/de/institute/ernaehrungsverhalten/forschungsprojekte/nemonit. Accessed 8 Mar 2018

  • MRI (2015) Nationale Verzehrsstudie II. Ergänzungsband zum Ergebnisbericht, Teil 1. Ausgewählte Ergebnisse nach Schichtindex. MRI, Karlsruhe. http://www.was-esse-ich.de/uploads/media/NVS_II_Abschlussbericht_Teil_1_mit_Ergaenzungsbericht.pdf. Accessed 27 Oct 2019

  • Mulder PPJ, Sánchez PL, These A, Preiss-Weigert A, Castellari M (2015) Occurrence of Pyrrolizidine alkaloids in food. EFSA Supporting publications EN-859:1–114

    Google Scholar 

  • Mulder PPJ, de Nijs M, Castellari M et al. (2016) Occurrence of tropane alkaloids in food. EFSA Supporting publications 13:EN-1140

    Google Scholar 

  • Mulhausen J, Damiano J (1998) A strategy for assessing and managing occupational exposures, 2nd edn. American Industrial Hygiene Association, Fairview, VA, p 349

    Google Scholar 

  • NCI (2017) Paper-based DHQ II & C-DHQ II Forms. DHQ II: Past year, without portion size, Bethesda. https://epi.grants.cancer.gov/dhq2/forms/. Accessed 28 April 2017

  • NIPH/SZU (lead), EVIRA, BfR, MATIS, INSA (2015) TDS Exposure deliverable D9.5 – Report on the key elements of realised national To be requested at http://www.tds-exposure.eu/project-objectives-0/contact-us/. Accessed 8 Mar 2018

  • Noethlings U, Hoffmann K, Bergmann MM, Boeing H (2003) Portion size adds limited information on variance in food intake of participants in the EPIC-Potsdam study. J Nutr 133(2):510–515

    CAS  PubMed  Google Scholar 

  • Nordqvist C (2013) Energy drinks health hazards for adolescents. http://www.medicalnewstoday.com/articles/255925.php

  • NTP/NIEHS (2004) Bitter orange (Citrus aurantium var. amara) extracts and constituents (±)-p-synephrine [CAS No. 94-07-5] and (±)-p-octopamine [CAS No. 104-14-3]. Review of toxicological literature. National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina 2004, VIII + 73 p. https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/bitterorange_508.pdf. Accessed 8 Mar 2018

  • Nusser SM, Carriquiry AL, Dodd KW, Fuller WA (1996) A semiparametric transformation approach to estimating usual daily intake distributions. J Am Stat Assoc 91:1440–1449

    Google Scholar 

  • Nusser SM, Fuller WA, Guenther PM (1997) Estimating usual dietary intake distributions: adjusting for measurement error and nonnormality in 24-hour food intake data. In: Lyberg L, Biemer P, Collins M, DeLeeuw E, Dippo C, Schwartz N, Trewin D (eds) Survey measurement and process quality. Wiley, New York, pp 689–709

    Google Scholar 

  • Nutriscan (1992) An evaluation of the methodologies for the estimation of intake of food additives and contaminants in the European Community. Nutriscan, Dublin

    Google Scholar 

  • O’Sullivan AJ, Pigat S, O’Mahony C, Gibney MJ, McKevitt AI (2016) Probabilistic modelling to assess exposure to three artificial sweeteners of young Irish patients aged 1-3 years with PKU and CMPA. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33(11):1660–1671

    PubMed  Google Scholar 

  • OECD (2007a) Test No. 501: Metabolism in crops. OECD publishing. http://www.oecd-ilibrary.org/environment/test-no-501-metabolism-in-crops_9789264061835-en. Accessed 8 Mar 2018

  • OECD (2007b) Test No. 502: Metabolism in rotational crops. OECD publishing. http://www.oecd-ilibrary.org/content/book/9789264061859-en. Accessed 8 Mar 2018

  • OECD (2007c) Test No. 503: Metabolism in livestock. OECD publishing. http://www.oecd-ilibrary.org/content/book/9789264061873-en. Accessed 8 Mar 2018

  • OECD (2007d) Test No. 504: Residues in rotational crops (limited field studies). OECD publishing. http://www.oecd-ilibrary.org/content/book/9789264013384-en. Accessed 8 Mar 2018

  • OECD (2007e) Test No. 505: Residues in livestock. OECD publishing. http://www.oecd-ilibrary.org/content/book/9789264061903-en. Accessed 8 Mar 2018

  • OECD (2007f) Test No. 507: Nature of the pesticide residues in processed commodities - high temperature hydrolysis. OECD publishing. http://www.oecd-ilibrary.org/content/book/9789264067431-en. Accessed 8 Mar 2018

  • OECD (2007g) Test No. 508: Magnitude of the pesticide residues in processed commodities. OECD publishing. http://www.oecd-ilibrary.org/content/book/9789264067622-en. Accessed 8 Mar 2018

  • OECD (2007h) Test No. 509: Crop field trial. OECD publishing. http://www.oecd-ilibrary.org/content/book/9789264076457-en. Accessed 8 Mar 2018

  • OECD (2011) OECD MRL Calculator user guide: 69. http://www.oecd.org/env/mrl-calculator-users-guide-and-white-paper-9789264221567-en.htm. Accessed 8 Mar 2018

  • OIE (2017) Bovine spongiform encephalopathy (BSE). http://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/Disease_cards/BSE-EN.pdf. Accessed 8 Feb 2018

  • Oldring PKT, O’Mahony C, Dixon J, Vints M, Mehegan J, Dequatre C, Castle L (2014) Development of a new modelling tool (FACET) to assess exposure to chemical migrants from food packaging. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:444–465. https://doi.org/10.1080/19440049.2013.862348

    Article  CAS  PubMed  Google Scholar 

  • Orlich MJ, Jaceldo-Siegl K, Sabaté J, Fan J, Singh PN, Fraser GE (2014) Patterns of food consumption among vegetarians and non-vegetarians. Br J Nutr 112(10):1644–1653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzesi S, Brambilla G, Macrì A, Loizzo A (1995) Relay activity of 17-beta oestradiol and diethylstilbestrol in a mouse-rat system. Food Addit Contam 12(6):751–757

    CAS  PubMed  Google Scholar 

  • Parr MK, Blokland MH, Liebetrau F, Schmidt AH, Meijer T, Stanic M, Kwiatkowska D, Waraksa E, Sterk SS (2017) Distinction of clenbuterol intake from drug or contaminated food of animal origin in a controlled administration trial – the potential of enantiomeric separation for doping control analysis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34:525–535

    CAS  PubMed  Google Scholar 

  • Penttilä PL (1996) Estimation of food additive intake. Nordic approach. Food Addit Contam 13(4):421–426

    PubMed  Google Scholar 

  • Peters R, Kramer E, Oomen AG, Rivera ZE, Oegema G, Tromp PC, Fokkink R, Rietveld A, Marvin HJ, Weigel S, Peijnenburg AA, Bouwmeester H (2012) Presence of nanosized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 6:2441–2451

    CAS  PubMed  Google Scholar 

  • Peters RJ, van Bemmel G, Herrera-Rivera Z, Helsper HP, Marvin HJ, Weigel S, Tromp PC, Oomen AG, Rietveld AG, Bouwmeester H (2014) Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem 62:6285–6293

    CAS  PubMed  Google Scholar 

  • Petersen B, Petersen J, Barraj LM, Muenz LR, Harrison SL (1994) An alternative approach to dietary exposure assessment. Risk Anal 14(6):913–916. https://doi.org/10.1111/j.1539-6924.1994.tb00060.x

    Article  CAS  PubMed  Google Scholar 

  • PHE, FSA (2014) Results of the National Diet and Nutrition Survey (NDNS) rolling programme for 2008 and 2009 to 2011 and 2012. National Diet and Nutrition Survey. Food and drink diary. https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-results-from-years-1-to-4-combined-of-the-rolling-programme-for-2008-and-2009-to-2011-and-2012. Accessed 8 Mar 2018

  • Pietraforte D, Brambilla G, Camerini S, Scorza G, Peri L, Loizzo A, Crescenzi M, Minetti M (2008) Formation of an adduct by clenbuterol, a beta-adrenoceptor agonist drug, and serum albumin in human saliva at the acidic pH of the stomach: evidence for an aryl radical-based process. Free Radic Biol Med 45:124–135

    CAS  PubMed  Google Scholar 

  • Plathe KL, von der Kammer F, Hassellov M, Moore JN, Murayama M, Hofmann T, Hochella MF Jr (2013) The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation. Geochim Cosmochim Acta 102:213–226

    CAS  Google Scholar 

  • Pöting A, Schauzu M, Niemann B and Schumann A (2014) Risk assessment of novel food and genetically modified food and feed. Regul Toxicol 827–848

    Google Scholar 

  • Powell JJ, Ainley CC, Harvey RS, Mason IM, Kendall MD, Sankey EA, Dhillon AP, Thompson RP (1996) Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue. Gut 38:390–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–J233

    CAS  PubMed  Google Scholar 

  • Powell JJ, Thomas-McKay E, Thoree V, Robertson J, Hewitt RE, Skepper JN, Brown A, Hernandez-Garrido JC, Midgley PA, Gomez-Morilla I, Grime GW, Kirkby KJ, Mabbott NA, Donaldson DS, Williams IR, Rios D, Girardin SE, Haas CT, Bruggraber SF, Laman JD, Tanriver Y, Lombardi G, Lechler R, Thompson RP, Pele LC (2015) An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells. Nat Nanotechnol 10:361–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Public Health England (2016) National Diet and Nutrition Survey: results from years 1–4 (combined) of the rolling programme (2008)/2009–2011/12) executive summary. https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-results-from-years-1-to-4-combined-of-the-rolling-programme-for-2008-and-2009-to-2011-and-2012. Accessed 8 Mar 2018

  • Rasmussen SE, Andersen NL, Dragsted LO, Larsen JC (2006) A safe strategy for addition of vitamins and minerals to foods. Eur J Nutr 45:123–135

    CAS  PubMed  Google Scholar 

  • Rasmussen K, Mech A, Mast J, De Temmerman P-J, Waegeneers N, Van Steen F, Pizzolon JC, De Temmerman L, Van Doren E, Jensen KA, Birkedal R, Levin M, Nielsen SH, Koponen IK, Clausen PA, Kembouche Y, Thieriet N, Spalla O, Giuot C, Rousset D, Witschger O, Bau S, Bianchi B, Shivachev B, Gilliland D, Pianella F, Ceccone G, Cotogno G, Rauscher H, Gibson N, Stamm H (2013) Synthetic amorphous silicon dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): characterisation and physico-chemical properties. In: JRC repository: NM-series of representative manufactured nanomaterials: European Union, pp 200

    Google Scholar 

  • Richardson DP (2007) Risk management of vitamins and minerals: a risk categorisation model for the setting of maximum levels in food supplements and fortified foods. Food Sci Technol Bull Funct Foods 4:51–66

    Google Scholar 

  • Richter A, Sieke C, Reich H, Ossendorp BC, Breysse N, Lutze J, Mahieu K, Margerison S, Rietveld A, Sarda X, Vial G, van der Velde-Koerts T (2018) Setting the stage for the review 5 exposure to substances by use of consumer products of the international estimate of short-term intake (IESTI) equation. J Environ Sci Health B 53(6):343–351. https://doi.org/10.1080/03601234.2018.1439807

    Article  CAS  PubMed  Google Scholar 

  • Roe M, Finglas PM Lindroos AK, Castanheira I, Giertlová A, Westenbrink S, and Beernaert H (2013) Final list of certified FCDB compiler organizations and future plans for continuation of the certification scheme. EuroFIR Technical Report 1.7

    Google Scholar 

  • Rompelberg C, Heringa MB, van Donkersgoed G, Drijvers J, Roos A, Westenbrink S, Peters R, van Bemmel G, Brand W, Oomen AG (2016) Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 10:1404–1414

    CAS  PubMed  Google Scholar 

  • Rossi M, Cubadda F, Dini L, Terranova ML, Aureli F, Sorbo A, Passeri D (2014) Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci Technol 40:127–148

    CAS  Google Scholar 

  • Rothausen BW, Matthiessen J, Hoppe C, Brockhoff PB, Andersen LF, Tetens I (2012) Differences in Danish childrens diet quality on weekdays v. weekend days. Public Health Nutr 15(9):1653–1660

    PubMed  Google Scholar 

  • Ruprich J, Rehurkova I, Boon PE, Svensson K, Moussavian S, Van der Voet H, Bosgra S, van Klaveren JD, Busk L (2009) Probabilistic modelling of exposure doses and implications for health risk characterization: glycoalkaloids from potatoes. Food Chem Toxicol 47:2899–2905. https://doi.org/10.1016/j.fct.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  • Saveyn, H., & Eder, P (2014) End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): technical proposals. European Commission, Joint Research Centre – Institute for Prospective Technological Studies of Seville (E), EUR Number: 26425 EN

    Google Scholar 

  • SCENIHR (2010) Scientific basis for the definition of the term “nanomaterial. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_032.pdf. Accessed 27 Oct 2019

  • SCF (1998) Opinion of the Scientific Committee of Food on the applicability of the ADI (acceptable daily intake) for food additives to infants. 17 Sept 1998. https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out13_en.pdf. Accessed 27 Oct 2019

  • SCF (2001) Guidance on submissions for food additive evaluations by the Scientific Committee on Food. 12 July 2001. https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out98_en.pdf. Accessed 27 Oct 2019

  • Schmoyer RL, Beauchamp JJ, Brandt CC, Hoffman FO (1996) Difficulties with the Log-normal model in mean estimation and testing. Environ Ecol Stat 3:81–97

    Google Scholar 

  • Schneider K, Schwarz MA, Lindtner O, Blume K, Heinemeyer G (2014) Lead exposure from food: the German LExUKon project. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(6):1052–1063

    CAS  PubMed  Google Scholar 

  • Scholz R, Herrmann M, Michalski BJ (2017) Compilation of processing factors and evaluation of quality controlled data of food processing studies. J Verbr Lebensm 12(1):3–14

    Google Scholar 

  • Schroeter A, Sommerfeld G, Klein H, Hübner D (1999) Warenkorb für das Lebensmittelmonitoring in der Bundesrepublik Deutschland. Bundesgesundheitsbl Gesundheitsforsch – Gesundheitsschutz 42:77–84

    Google Scholar 

  • Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127(3–5):204–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz MA, Lindtner O, Blume K, Heinemeyer G, Schneider K (2014) Cadmium exposure from food: the German LExUKon project. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(6):1038–1051. https://doi.org/10.1080/19440049.2014.905711

    Article  CAS  PubMed  Google Scholar 

  • Scotter MJ (2011) Methods for the determination of European Union-permitted added natural colours in foods: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(5):527–596

    CAS  PubMed  Google Scholar 

  • Sexton K, Olden K, Johnson BL (1993) Environmental justice: the central role of research in establishing a credible scientific basis for informed decision making. Toxicol Ind Health 9:685–727

    CAS  PubMed  Google Scholar 

  • She N (1997) Analyzing censored water quality data using a non-parametric approach. J Am Water Resour Assoc 33:615–624

    CAS  Google Scholar 

  • Sieke C, Lindtner O, Banasiak U (2008) Nationales Monitoring – Abschätzung der Verbraucherexposition Teil 1. Deutsche Lebensmittel-Rundschau, 104. Jahrgang, Heft 6: 271–279

    Google Scholar 

  • Silano V, Coppens P, Larranaga-Guetaria A, Minghetti P, Roth-Ehrang R (2011) Regulations applicable to plant food supplements and related products in the European Union. Food Funct 2:710

    CAS  PubMed  Google Scholar 

  • Six BL, Schap TE, Zhu FM, Mariappan A, Bosch M, Delp EJ, Ebert DS, Kerr DA, Boushey CJ (2010) Evidence-based development of a mobile telephone food record. J Am Diet Assoc 110(1):74–79

    PubMed  PubMed Central  Google Scholar 

  • Sjöberg A, Hulthen L (2004) Assessment of habitual meal pattern and intake of foods, energy and nutrients in Swedish adolescent girls: comparison of diet historywith 7-day record. Eur J Clin Nutr 58(8):1181–1189

    PubMed  Google Scholar 

  • Slimani N, Deharveng G, Charrondiere RU, van Kappel AL, Ocke MC, Lagiou A, van Liere M, Agudo A, Pala V, Brandstetter B, Andren C, Stripp C, van Staveren WA, Riboli E (1999) Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. Comput Methods Prog Biomed 58(3):251–266

    CAS  Google Scholar 

  • Slimani N, Ferrari P, Ocke M, Welch A, Boeing H, Liere M, Pala V, Amiano P, Lagiou A, Mattisson I, Stripp C, Engeset D, Charrondiere R, Buzzard M, Staveren W, Riboli E (2000) Standardization of the 24-hour diet recall calibration method used in the european prospective investigation into cancer and nutrition (EPIC): general concepts and preliminary results. Eur J Clin Nutr 54(12):900–917

    CAS  PubMed  Google Scholar 

  • Slimani N, Freisling H, Illner A-K, Huybrechts I (2015) Methods to determine dietary intake. In: Lovegrove JA, Hodson L, Sharma S, Lanham-New SA (eds) Nutrition research methodologies. Wiley, Sussex, pp 48–70

    Google Scholar 

  • Sobo EJ, Rock CL, Neuhouser ML, Maciel TL, Neumark-Sztainer D (2000) Caretaker-child interaction during childrens 24-hour dietary recalls: who contributes what to the recall record? J Am Diet Assoc 100(4):428–433

    CAS  PubMed  Google Scholar 

  • Solecki R, Davies L, Dellarco V, Dewhurst I, van Raaij M, Tritscher A (2005) Guidance on setting of acute reference dose (ARfD) for pesticides. Food Chem Toxicol 43(11):1569–1593

    CAS  PubMed  Google Scholar 

  • Soubra L, Sarkis D, Hilan C, Verger P (2007) Dietary exposure of children and teenagers to benzoates, sulphites, butylhydroxyanisol (BHA) and butylhydroxytoluen (BHT) in Beirut (Lebanon). Regul Toxicol Pharmacol 47(1):68–77

    CAS  PubMed  Google Scholar 

  • Souverein OW, Dekkers ALM, Geelen A, Haubrock J, de Vries JH, Ocké MC, Harttig U, Boeing H, van’t Veer P (2011) Comparing four methods to estimate usual intake distributions. Eur J Clin Nutr 65:S92–S101

    PubMed  Google Scholar 

  • Speijers G, Bottex B, Dusemund D, Lugasi A, Toth J, Amberg-Müller J, Galli C, Silano V, Rietjens IMCM (2010) Safety assessment of botanicals and botanical preparations used as food supplements; emerging issues when testing a proposed tiered approach. Mol Nutr Food Res 54:175–185

    CAS  PubMed  Google Scholar 

  • Sprong C, Bakker M, Niekerk M, Vennemann F (2015) Exposure assessment of the food additive titanium dioxide (E 171) with use levels provided by the industry. R IVM Letter report 2015-0195. National Instititute for Public Health and the Environment (RIVM), Bilthoven. www.rivm.nl. Accessed 8 Mar 2018

  • Statistisches Bundesamt (2012) Geburten in Deutschland, Ausgabe 2012

    Google Scholar 

  • Stein B, Michalski B, Martin S, Pfeil R, Ritz V, Solecki R (2014) Human health risk assessment from combined exposure in the framework of plant protection products and biocidal products. J Verbr Lebensm 9(4):367–376

    CAS  Google Scholar 

  • Straßburg A (2010) Ernährungserhebungen Methoden und Instrumente. Ernahrungs-Umschau 57(8):422–430

    Google Scholar 

  • Straßburg A, Eisinger-Watzl M, Krems C, Roth A, Hoffmann I (2019) Comparison of food consumption and nutrient intake assessed with three dietary assessment methods: results of the German National Nutrition Survey II. Eur J Nutr 58(1):193–210. https://doi.org/10.1007/s00394-017-1583-z

    Article  PubMed  Google Scholar 

  • Subar AF, Dodd KW, Guenther PM, Kipnis V, Midthune D, McDowell M, Tooze JA, Freedman LS, Krebs-Smith SM (2006) The food propensity questionnaire: concept, development, and validation for use as a covariate in a model to estimate usual food intake. J Am Diet Assoc 106(10):1556–1563

    PubMed  Google Scholar 

  • Subar AF, Kirkpatrick SI, Mittl B, Zimmerman TP, Thompson FE, Bingley C, Willis G, Islam NG, Baranowski T, McNutt S, Potischman N (2012) The automated self-administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians, and educators from the National Cancer Institute. J Acad Nutr Diet 112(8):1134–1137

    PubMed  PubMed Central  Google Scholar 

  • Sy MM, Feinberg M, Verger P, Tangui B, Clémençon S, Crépet A (2013) New approach for the assessment of cluster diets. Food Chem Toxicol 52:180–187. https://doi.org/10.1016/j.fct.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  • Tareke E, Ryberg P, Karlsson P, Eriksson S, Törnqvist M (2002) Analysis of acrylamide: a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    CAS  PubMed  Google Scholar 

  • Tennant DR (2008) Screening potential intakes of colour additives used in non-alcoholic beverages. Food Chem Toxicol 46(6):1985–1993

    CAS  PubMed  Google Scholar 

  • Tennant DR (2016) Comprehensive European dietary exposure model (CEDEM) for food additives. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33(5):772–781

    CAS  PubMed  Google Scholar 

  • Thompson FE, Byers T (1994) Dietary assessment resource manual. J Nutr 124(11):S2245–S2317

    Google Scholar 

  • Thompson FE, Subar AF (2013) Dietary assessment methodology. In: Coulston AM, Boushey CJ, Ferruzzi MG (eds) Nutrition in the prevention and treatment of disease, 3rd edn. Academic Press, San Diego, CA, pp 3–46

    Google Scholar 

  • Thompson FE, Kirkpatrick SI, Subar AF, Reedy J, Schap TE, Wilson MM, Krebs-Smith SM (2015) The National Cancer Institute’s Dietary Assessment Primer: a resource for diet research. J Acad Nutr Diet 115(12):1986–1995

    PubMed  PubMed Central  Google Scholar 

  • Tokudome Y, Imaeda N, Nagaya T, Ikeda M, Fujiwara N, Sato J, Kuriki K, Kikuchi S, Maki S, Tokudome S (2002) Daily, weekly, seasonal, within- and between-individual variation in nutrient intake according to four season consecutive 7 day weighed diet records in Japanese female dietitians. J Epidemiol 12(2):85–92

    PubMed  Google Scholar 

  • Tooze JA, Midthune D, Dodd KW, Freedman LS, Krebs-Smith SM, Subar AM, Guenther PM, Carroll RJ, Kipnis V (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106:1575–1587. https://doi.org/10.1016/j.jada.2006.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Tooze JA, Kipnis V, Buckman DW, Carroll RJ, Freedman LS, Guenther PM, Krebs-Smith SM, Subar AF, Dodd KW (2010) A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Stat Med 29(27):2857–2868

    PubMed  Google Scholar 

  • Touvier M, Kesse-Guyot E, Mejean C, Pollet C, Malon A, Castetbon K, Hercberg S (2011) Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br J Nutr 105(7):1055–1064

    CAS  PubMed  Google Scholar 

  • Tressou J (2006) Nonparametric modeling of the left censorship of analytical data in food risk assessment. J Am Stat Assoc 101(476):1377–1386

    CAS  Google Scholar 

  • Tressou J, Leblanc JCH, Feinberg M, Bertail P (2004) Statistical methodology to evaluate food exposure to a contaminant and influence of sanitary limits: application to Ochratoxin A. Regul Toxicol Pharmacol 40:252–263

    CAS  PubMed  Google Scholar 

  • UNECE (2012) Risk management in regulatory frameworks: towards a better management of risks United Nations. New York & Geneva, 2012. http://www.unece.org/fileadmin/DAM/trade/Publications/WP6_ECE_TRADE_390.pdf. Accessed 8 Mar 2018

  • USDA (United States Department of Agriculture) (2017) 5-step multiple-pass approach of the Automated Multiple-Pass-Method (AMPM). https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/ampm-features/. Accessed 28 April 2017

  • USDA-ARS (US-Department of Agriculture) (2016) AMPM features. http://www.ars.usda.gov/Services/docs.htm?docid=7711. August 2016

  • US-EPA (2000) Assigning values to non-detected/non-quantified pesticide residues in human health food exposure assessments. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, 33pp. https://archive.epa.gov/pesticides/trac/web/pdf/trac3b012.pdf. Accessed 8 Mar 2018

  • US-EPA (2002) Guidance on Cumulative Risk Assessment of Pesticide Chemicals that have a common mechanism of toxicity. U.S. Environmental Protection Agency (US-EPA). Washington, DC, 20460, USA. https://www.epa.gov/sites/production/files/2015-07/documents/guidance_on_common_mechanism.pdf. Accessed 8 Mar 2018

  • Valsta L, Ocke M, Lindtner O (2017) Towards a harmonised food consumption survey methodology for exposure assessment. Food Safety Assessment of Pesticide Residues. www.worldscientific.com. Accessed 8 Mar 2018

  • van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S et al (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54:1215–1247

    PubMed  Google Scholar 

  • van der Velde-Koerts T, Margerison S, Breysse N, Lutze J, Mahieu K, Reich H, Rietveld A, Sarda X, Sieke C, Vial G, Ossendorp BC (2018a) Impact of proposed changes in IESTI equations for short-term dietary exposure to pesticides from Australian and Codex perspective. J Environ Sci Health B 53(6):366–379. https://doi.org/10.1080/03601234.2018.1439812

    Article  CAS  PubMed  Google Scholar 

  • van der Velde-Koerts T, Breysse N, Pattingre L, Hamey PY, Lutze J, Mahieu K, Margerison S, Ossendorp BC, Reich H, Rietveld A, Sarda X, Vial G, Sieke C (2018b) Effect of individual parameter changes on the outcome of the estimated short-term dietary exposure to pesticides. J Environ Sci Health B 53(6):380–393. https://doi.org/10.1080/03601234.2018.1439814

    Article  CAS  PubMed  Google Scholar 

  • van der Voet H, Kruisselbrink J, de Boer WJ, Boon PE (2014) Model-Then-Add. Usual intake modelling of multimodal intake distributions. RIVM Letter report 090133001/2014. National Institute for Public Health and the Environment (RIVM), Bilthoven. http://rivm.openrepository.com/rivm/bitstream/10029/314361/3/090133001.pdf. Accessed 8 Mar 2018

  • van der Voet H, de Boer WJ, Kruisselbrink JW, Goedhart PW, van der Heijden GWAM, Kennedy MC, Boon PE, van Klaveren JD (2015) The MCRA model for probabilistic single-compound and cumulative risk assessment of pesticides. Food Chem Toxicol 79:5–12. https://doi.org/10.1016/j.fct.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  • van Kesteren PCE, Cubadda F, Bouwmeester H, van Eijkeren JCH, Dekkers S, de Jong WH, Oomen AG (2015) Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food. Nanotoxicology 9:442–452

    PubMed  Google Scholar 

  • van Klaveren JD, Goedhart P, Wapperom D, van der Voet, H et al. (2012) A European tool for usual intake distribution estimation in relation to data collection by EFSA – External Scientific Report. QEFSA Supporting Publications 2012:EN-300:42. https://doi.org/10.2903/sp.efsa.2012.EN-300. http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2012.EN-300/abstract. Accessed 9 Mar 2018

  • van Klaveren JD, Kennedy MC, Moretto A, Verbeke W, van der Voet H, Boon PE (2015) The ACROPOLIS project: Its aims, achievements, and way forward. Food Chem Toxicol 79:1–4. https://doi.org/10.1016/j.fct.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  • van Liere MJ, Lucas F, Clavel F, Slimani N, Villeminot S (1997) Relative validity and reproducibility of a French dietary history questionnaire. Int J Epidemiol 26:S128–S136

    PubMed  Google Scholar 

  • Van Loco J, Vandevijvere S, Cimenci O, Vinkx C, Goscinny S (2015) Dietary exposure of the Belgian adult population to 70 food additives with numerical ADI. Food Control 54:86–94

    Google Scholar 

  • van Staveren WA, Ocké MC, de Vries JHM (2012) Estimation of dietary intake. In: Erdman JW, Macdonald IA, Zeisel SH (eds) Present knowledge in nutrition, 10th edn. Wiley-Blackwell, Ames, pp 1012–1026

    Google Scholar 

  • Vanden Bilcke C (2002) The Stockholm convention on persistent organic pollutants. Rev Eur Commun Int Environ Law 11(3):328–342

    Google Scholar 

  • Vapnek J, Spreij M (2005) Perspectives and guidelines on food legislation, with a new model food law. FAO legislative study 87. Food and Agriculture Organization of the United Nation, Rome (I) 2005 ISBN 92-5-105431-2. New York, Geneva 2012

    Google Scholar 

  • Verger P (1996) One example of utilization of the French approach. Food Addit Contam 13(4):417–419

    CAS  PubMed  Google Scholar 

  • Verger P, Garnier-Sagne I, Leblanc JC (1999) Identification of risk groups for intake of food chemicals. Regul Toxicol Pharmacol 30(2):S103–S108

    CAS  PubMed  Google Scholar 

  • Verkaik-Kloosterman J, Dodd KW, Dekkers AL, van’t Veer P, Ocké MC (2011) A three-part, mixed-effects model to estimate the habitual total vitamin D intake distribution from food and dietary supplements in Dutch young children. J Nutr 141:2055–2063. https://doi.org/10.3945/jn.111.142398

    Article  CAS  PubMed  Google Scholar 

  • Verleysen E, Van Doren E, Waegeneers N, De Temmerman PJ, Abi Daoud Francisco M, Mast J (2015) TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J Agric Food Chem 63:3570–3578

    CAS  PubMed  Google Scholar 

  • Verly E Jr, Fisberg RM, Marchioni DML (2012) Is the food frequency consumption essential as covariate to estimate usual intake of episodically consumed foods? Eur J Clin Nutr 66(11):1254–1258

    PubMed  Google Scholar 

  • Verly E Jr, Oliveira DCRS, Fisberg RM, Marchioni DML (2016) Performance of statistical methods to correct food intake distribution: comparison between observed and estimated usual intake. Br J Nutr 116(05):897–903

    PubMed  Google Scholar 

  • Vin K, Connolly A, McCaffrey T, McKevitt A, O’Mahony C, Prieto M, Tennant D, Hearty A, Volatier JL (2013) Estimation of the dietary intake of 13 priority additives in France, Italy, the UK and Ireland as part of the FACET project. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(12):2050–2080

    CAS  PubMed  Google Scholar 

  • Von Tungeln LS, Walker NJ, Olson GR, Mendoza MC, Felton RP, Thorn BT et al (2017) Low dose assessment of the carcinogenicity of furan in male F344/N Nctr rats in a 2-year gavage study. Food Chem Toxicol 99:170–181

    Google Scholar 

  • Wagstaffe PJ (1996) The assessment of food additive usage and consumption: the Commission perspective. Food Addit Contam 13(4):397–403

    CAS  PubMed  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (1957) General principles governing the use of food additives. First report of the Joint FAO/WHO Expert Committee on Food Additives. FAO Nutrition Meetings Report Series, No. 15, 1957. WHO Technical Report Series, No. 129. http://whqlibdoc.who.int/trs/WHO_TRS_129.pdf. Accessed 27 Oct 2019

  • WHO (1958) Procedures for the testing of intentional food additives to establish their safety for use (Second report of the Joint FAO/WHO Expert Committee on Food Additives). FAO Nutrition Meetings Report Series, No. 17, 1958. WHO Technical Report Series, No. 144, 1958. http://whqlibdoc.who.int/trs/WHO_TRS_144.pdf. Accessed 27 Oct 2019

  • WHO (1978) Evaluation of certain food additives. Twenty-first report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series, No. 617. World Health Organization, Geneva. http://whqlibdoc.who.int/trs/WHO_TRS_617.pdf. Accessed 27 Oct 2019

  • WHO (1985) Guidelines for the study of dietary intakes of chemical contaminants. Global Environmental Monitoring System (GEMS). World Health Organization, Geneva. WHO Offset Publication No. 87. http://apps.who.int/iris/handle/10665/39255. Accessed 27 Oct 2019

  • WHO (1987) Principles for the safety assessment of food additives and contaminants in food. International Programme on Chemical Safety. Environmental Health Criteria 70. World Health Organization, Geneva. http://www.inchem.org/documents/ehc/ehc/ehc70.htm. Accessed 27 Oct 2019

  • WHO (1989) Guidelines for predicting dietary intake of pesticides residues GEMS/Food (E, S, F), World Health Organization, Geneva. http://www.who.int/foodsafety/publications/chem/en/pesticide_en.pdf. Accessed 27 Oct 2019

  • WHO (1995) Reliable evaluation of low-level contamination of food. Report on a workshop in the frame of GEMS/Food-EURO 26–27 May 2005, Kulmbach, Germany. World Health Organization Regional Office for Europe, Geneva, 8 pp. http://toolbox.foodcomp.info/References/LOD/GEMS-Food-EURO%20%20-%20%20Reliable%20Evaluation%20of%20Low-Level%20Contamination%20of%20Food.pdf. Accessed 27 Oct 2019

  • WHO (1997a) Global Environment Monitoring System – Food Contamination Monitoring and Assessment Programme (GEMS/Food) Guidelines for predicting dietary intake of pesticide residues (revised). WHO/FSF/FOS/97.7: 41. www.who.int/iris/handle/10665/63787. Accessed 27 Oct 2019

  • WHO (1997b) Food consumption and exposure assessment of chemicals – Report of a FAO/WHO Consultation, Geneva, Switzerland 10–14 February 1997 (WHO/FSF/FOS/97.5). http://apps.who.int/iris/handle/10665/63988. Accessed 27 Oct 2019

  • WHO (2000) Human exposure assessment. Environmental Health Criteria 214, pp. 163. http://www.inchem.org/documents/ehc/ehc/ehc214.htm. Accessed 27 Oct 2019

  • WHO (2008) Dietary exposure assessment of chemicals in food. Report of a Joint FAO/WHO Consultation, 2–6 May 2005, Annapolis, Maryland, USA. WHO, Geneva. http://apps.who.int/iris/bitstream/10665/44027/1/9789241597470_eng.pdf. Accessed 22 Nov 2019

  • WHO (2012) GEMS Food consumption database. http://www.who.int/nutrition/landscape_analysis/nlis_gem_food/en/. Accessed 22 Nov 2019

  • WHO (2016) Joint FAO/WHO Expert Committee on Food Additives. Eighty fourth meeting, Food Additives. Rome, 6 to 15 June 2017. List of Substances scheduled for evaluation and request for data. Published 12 September 2016. http://www.who.int/foodsafety/JECFA84_Call_for_data.pdf?ua=1. Accessed 22 Nov 2019

  • WHO & FAO (2006) Updating the principles and methods of risk assessment: MRLs for pesticides and veterinary drugs. In: Pesticide residues in food 2006; Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues, Rome, Italy, 3–12 October 2006. FAO Plant Production and Protection Paper 187. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/JMPRrepor2006.pdf. Accessed 22 Nov 2019

  • WHO & FAO (2009) Principles and methods for the risk assessment of chemicals in food. Environmental Health Criteria; 240. World Health Organization, Geneva. http://www.who.int/foodsafety/publications/chemical-food/en/. Accessed 22 Nov 2019

  • WHO & FAO (2012) Joint FAO/WHO expert meeting on dietary exposure assessment methodologies for residues of veterinary drugs: ISBN 978 92 4 156449 6 (NLM classification: WA 701). http://www.fao.org/fileadmin/user_upload/agns/pdf/jecfa/Dietary_Exposure_AssessmentMethodologies_for_Residues_of_Veterinary_Drugs.pdf. Accessed 22 Nov 2019

  • WHO/FAO & CAC (2016) Procedural manual, 25th ed. Rome (I) 2016. http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FShared%20Documents%252FPublications%252FProcedural%20Manual%252FManual_25%252FManual_25e.pdf. Accessed 22 Nov 2019

  • Wientzek A, Vigl M, Steindorf K, Brühmann B, Bergmann MM, Harttig U, Katzke V, Kaaks R, Boeing H (2014) The improved physical activity index for measuring physical activity in EPIC Germany. PLoS One 9(3):e92005

    PubMed  PubMed Central  Google Scholar 

  • Willett WC (1998) Food-frequency method. In: Willett WC (ed) Nutritional epidemiology, 2nd edn. Oxford University Press, New York, pp 74–94

    Google Scholar 

  • Willett WC (2013) Nutritional epidemiology. Oxford University Press, Oxford

    Google Scholar 

  • Yan H, Xu D, Meng H, Shi L, Li L (2014) Food poisoning by clenbuterol in China. Qual Assur Saf Crops Foods 7:27–35

    Google Scholar 

  • Yang Y, Doudrick K, Bi X, Hristovski K, Herckes P, Wersterhoff P, Kaegi R (2014) Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ Sci Technol 48:6391–6400

    CAS  PubMed  Google Scholar 

  • Yang Y, Faust JJ, Schoepf J, Hristovski K, Capco DG, Herckes P, Westerhoff P (2016) Survey of food-grade silica dioxide nanomaterial occurrence, characterization, human gut impacts and fate across its lifecycle. Sci Total Environ 565:902–912

    CAS  PubMed  Google Scholar 

  • Yeh A-I (2017) Natural and processed food nanostructures. In: Nanotechnologies in Food, Edition 2, Editors: Qasim Chaudhry, Laurence Castle, Richard Watkins. RSC, pp. 81–96

    Google Scholar 

  • Zhang S, Midthune D, Guenther PM, Krebs-Smith SM, Kipnis V, Dodd KW, Buckman DW, Tooze JA, Freedman L, Carroll RJ (2011) A new multivariate measurementerror model with zero-inflated dietary data, and its application to dietary assessment. Ann Appl Stat 5(2B):1456–1487

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Heinemeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abraham, K. et al. (2019). Exposure to Substances via Food Consumption. In: Heinemeyer, G., Jantunen, M., Hakkinen, P. (eds) The Practice of Consumer Exposure Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-96148-4_4

Download citation

Publish with us

Policies and ethics