Skip to main content

Novel Therapies to Overcome HER2 Therapy Resistance in Breast Cancer

  • Chapter
  • First Online:
Current Applications for Overcoming Resistance to Targeted Therapies

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 20))

Abstract

Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that is overexpressed in approximately 15–20% of breast cancers. Trastuzumab was the first HER2-targeted therapy to be approved for clinical use against HER2-overexpressing metastatic breast cancer. However, some patients fail to respond, and many eventually develop progressive disease despite receiving treatment, which may be attributed to the development of a resistant phenotype. New therapies have been developed and approved in combination with trastuzumab for newly diagnosed disease. However, this combinatory regimen also fails and leads to treatment resistance. In this chapter, we review currently used HER2-targeted therapies for breast cancer, available therapies for HER2 antibody therapy-resistant breast cancer, and molecular mechanisms that contribute to the development of resistance. The primary focus is on novel approaches to overcome HER2 therapy resistance in the treatment of breast cancer. We discuss approaches to target HER2 with antibodies, tyrosine kinase inhibitors, or antibody-drug conjugates, as well as targeting downstream signaling, immune pathways, cell cycle regulators, and estrogen receptor signaling. Ultimately, this chapter will provide a detailed overview of the mechanisms of resistance in HER2-positive breast cancers and therapeutic strategies for patients who have developed progressive disease while being treated with HER2 antibody therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

CDK:

Cyclin-dependent kinase

CNS:

Central nervous system

CTLA-4:

Cytotoxic T lymphocyte-associated protein-4

EMT:

Epithelial-mesenchymal transition

ER:

Estrogen receptor

FAK:

Focal adhesion kinase

FDA:

Food and Drug Administration

FoxM1:

Forkhead box M1

GDF15:

Growth differentiation factor 15

HER2:

Human epidermal growth factor receptor 2

HGF:

Hepatocyte growth factor

HR:

Hormone receptor

Hsp90:

Heat shock protein 90

IGF-1R:

Insulin-like growth factor-1 receptor

MAPK:

Mitogen-activated protein kinase

mTOR:

Mammalian target of rapamycin

MUC-4:

Mucin 4

NK:

Natural killer

OS:

Overall survival

pCR:

Pathological complete response

PD-L1:

Programmed death-ligand 1

PFS:

Progression-free survival

PI3K:

Phosphatidylinositol-3-kinase

PTEN:

Phosphatase and tensin homolog

RTK:

Receptor tyrosine kinase

T-DM1:

Trastuzumab emtansine

TIL:

Tumor-infiltrating lymphocyte

TKI:

Tyrosine kinase inhibitor

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  2. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274(2):113–26. https://doi.org/10.1111/joim.12084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16(7):1647–55. https://doi.org/10.1093/emboj/16.7.1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3(5):269–80. https://doi.org/10.1038/ncponc0509.

    Article  CAS  PubMed  Google Scholar 

  6. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res 2011;71(5):1871-82. https://doi.org/10.1158/0008-5472.CAN-10-1872 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eccles SA. The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia. 2001;6(4):393–406.

    Article  CAS  PubMed  Google Scholar 

  8. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  9. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci U S A. 1987;84(20):7159–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639–48.

    Article  CAS  PubMed  Google Scholar 

  11. Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L, et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(7):1800–8. https://doi.org/10.1200/JCO.2002.07.058.

    Article  CAS  PubMed  Google Scholar 

  12. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol. 1989;9(3):1165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol. 1996;14(3):737–44.

    Article  CAS  PubMed  Google Scholar 

  14. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    Article  CAS  PubMed  Google Scholar 

  15. Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, et al. Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol. 2001;19(10):2587–95. https://doi.org/10.1200/JCO.2001.19.10.2587.

    Article  CAS  PubMed  Google Scholar 

  16. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92. https://doi.org/10.1056/NEJM200103153441101.

    Article  CAS  PubMed  Google Scholar 

  17. Nahta R. Pharmacological strategies to overcome HER2 cross-talk and trastuzumab resistance. Curr Med Chem. 2012;19(7):1065–75. BSP/CMC/E-Pub/2012/086 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nahta R, Esteva FJ. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8(6):215. https://doi.org/10.1186/bcr1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nahta R, Esteva FJ. Herceptin: mechanisms of action and resistance. Cancer Lett. 2006;232(2):123–38. https://doi.org/10.1016/j.canlet.2005.01.041.

    Article  CAS  PubMed  Google Scholar 

  20. Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26(25):3637–43. https://doi.org/10.1038/sj.onc.1210379.

    Article  CAS  PubMed  Google Scholar 

  21. Nahta R, Shabaya S, Ozbay T, Rowe DL. Personalizing HER2-targeted therapy in metastatic breast cancer beyond HER2 status: what we have learned from clinical specimens. Curr Pharmacogenomics Person Med. 2009;7(4):263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH, Nau MM, et al. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res. 2001;61(12):4892–900.

    CAS  PubMed  Google Scholar 

  23. Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011;11(2):263–75. https://doi.org/10.1586/era.10.226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009;15(5):429–40. https://doi.org/10.1016/j.ccr.2009.03.020.

    Article  CAS  PubMed  Google Scholar 

  25. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61(12):4744–9.

    CAS  PubMed  Google Scholar 

  26. Lane HA, Motoyama AB, Beuvink I, Hynes NE. Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling. Ann Oncol. 2001;12(Suppl 1):S21–2.

    Article  PubMed  Google Scholar 

  27. Le XF, Claret FX, Lammayot A, Tian L, Deshpande D, LaPushin R, et al. The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. J Biol Chem. 2003;278(26):23441–50. https://doi.org/10.1074/jbc.M300848200. M300848200 [pii].

    Article  CAS  PubMed  Google Scholar 

  28. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002;416(6878):279–80. https://doi.org/10.1038/416279b.

    Article  CAS  PubMed  Google Scholar 

  29. Klos KS, Zhou X, Lee S, Zhang L, Yang W, Nagata Y, et al. Combined trastuzumab and paclitaxel treatment better inhibits ErbB-2-mediated angiogenesis in breast carcinoma through a more effective inhibition of Akt than either treatment alone. Cancer. 2003;98(7):1377–85. https://doi.org/10.1002/cncr.11656.

    Article  CAS  PubMed  Google Scholar 

  30. Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer. 2006;94(2):259–67. https://doi.org/10.1038/sj.bjc.6602930. 6602930 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6. https://doi.org/10.1038/74704.

    Article  CAS  PubMed  Google Scholar 

  32. Herceptin FDA label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf.

  33. Price-Schiavi SA, Jepson S, Li P, Arango M, Rudland PS, Yee L, et al. Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer. 2002;99(6):783–91. https://doi.org/10.1002/ijc.10410.

    Article  CAS  PubMed  Google Scholar 

  34. Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65(2):473–82. 65/2/473 [pii].

    CAS  PubMed  Google Scholar 

  35. Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2002;2(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  36. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34. https://doi.org/10.1056/NEJMoa1413513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91. https://doi.org/10.1056/NEJMoa1209124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krop IE, Lin NU, Blackwell K, Guardino E, Huober J, Lu M, et al. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Ann Oncol. 2015;26(1):113–9. https://doi.org/10.1093/annonc/mdu486.

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz LJ, Hutchinson KE, Rexer BN, Estrada MV, Gonzalez Ericsson PI, Sanders ME, et al. An ERBB1-3 neutralizing antibody mixture with high activity against drug-resistant HER2+ breast cancers with ERBB ligand overexpression. J Natl Cancer Inst. 2017;109(11) https://doi.org/10.1093/jnci/djx065.

  40. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–43. https://doi.org/10.1056/NEJMoa064320.

    Article  CAS  PubMed  Google Scholar 

  41. Piccart-Gebhart M, Holmes E, Baselga J, de Azambuja E, Dueck AC, Viale G, et al. Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2-positive breast cancer: results from the randomized phase III adjuvant lapatinib and/or trastuzumab treatment optimization trial. J Clin Oncol. 2016;34(10):1034–42. https://doi.org/10.1200/JCO.2015.62.1797.

    Article  CAS  PubMed  Google Scholar 

  42. Baselga J, Bradbury I, Eidtmann H, Di Cosimo S, de Azambuja E, Aura C, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2012;379(9816):633–40. https://doi.org/10.1016/S0140-6736(11)61847-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deeks ED. Neratinib: first global approval. Drugs. 2017;77(15):1695–704. https://doi.org/10.1007/s40265-017-0811-4.

    Article  CAS  PubMed  Google Scholar 

  44. Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004;64(11):3958–65. https://doi.org/10.1158/0008-5472.CAN-03-2868. 64/11/3958 [pii].

    Article  CAS  PubMed  Google Scholar 

  45. Hegde PS, Rusnak D, Bertiaux M, Alligood K, Strum J, Gagnon R, et al. Delineation of molecular mechanisms of sensitivity to lapatinib in breast cancer cell lines using global gene expression profiles. Mol Cancer Ther. 2007;6(5):1629–40. https://doi.org/10.1158/1535-7163.MCT-05-0399. 6/5/1629 [pii].

    Article  CAS  PubMed  Google Scholar 

  46. Sanchez-Martin M, Pandiella A. Differential action of small molecule HER kinase inhibitors on receptor heterodimerization: therapeutic implications. Int J Cancer. 2012;131(1):244–52. https://doi.org/10.1002/ijc.26358.

    Article  CAS  PubMed  Google Scholar 

  47. Seyhan AA, Varadarajan U, Choe S, Liu Y, McGraw J, Woods M, et al. A genome-wide RNAi screen identifies novel targets of neratinib sensitivity leading to neratinib and paclitaxel combination drug treatments. Mol Biosyst. 2011;7(6):1974–89. https://doi.org/10.1039/c0mb00294a.

    Article  CAS  PubMed  Google Scholar 

  48. Martin M, Holmes FA, Ejlertsen B, Delaloge S, Moy B, Iwata H, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(12):1688–700. https://doi.org/10.1016/S1470-2045(17)30717-9.

    Article  CAS  PubMed  Google Scholar 

  49. Jerome L, Alami N, Belanger S, Page V, Yu Q, Paterson J, et al. Recombinant human insulin-like growth factor binding protein 3 inhibits growth of human epidermal growth factor receptor-2-overexpressing breast tumors and potentiates herceptin activity in vivo. Cancer Res. 2006;66(14):7245–52. https://doi.org/10.1158/0008-5472.CAN-05-3555.

    Article  CAS  PubMed  Google Scholar 

  50. Alexander PB, Chen R, Gong C, Yuan L, Jasper JS, Ding Y, et al. Distinct receptor tyrosine kinase subsets mediate anti-HER2 drug resistance in breast cancer. J Biol Chem. 2017;292(2):748–59. https://doi.org/10.1074/jbc.M116.754960.

    Article  CAS  PubMed  Google Scholar 

  51. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001;93(24):1852–7.

    Article  CAS  PubMed  Google Scholar 

  52. Oliveras-Ferraros C, Vazquez-Martin A, Martin-Castillo B, Perez-Martinez MC, Cufi S, Del Barco S, et al. Pathway-focused proteomic signatures in HER2-overexpressing breast cancer with a basal-like phenotype: new insights into de novo resistance to trastuzumab (Herceptin). Int J Oncol. 2010;37(3):669–78.

    CAS  PubMed  Google Scholar 

  53. Huang X, Gao L, Wang S, McManaman JL, Thor AD, Yang X, et al. Heterotrimerization of the growth factor receptors erbB2, erbB3, and insulin-like growth factor-i receptor in breast cancer cells resistant to herceptin. Cancer Res. 2010;70(3):1204–14. https://doi.org/10.1158/0008-5472.CAN-09-3321.

    Article  CAS  PubMed  Google Scholar 

  54. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005;65(23):11118–28. https://doi.org/10.1158/0008-5472.CAN-04-3841.

    Article  CAS  PubMed  Google Scholar 

  55. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol. 1999;26(4 Suppl 12):60–70.

    CAS  PubMed  Google Scholar 

  56. Tseng PH, Wang YC, Weng SC, Weng JR, Chen CS, Brueggemeier RW, et al. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Mol Pharmacol. 2006;70(5):1534–41. https://doi.org/10.1124/mol.106.023911. mol.106.023911 [pii].

    Article  CAS  PubMed  Google Scholar 

  57. Cornelissen B, McLarty K, Kersemans V, Reilly RM. The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of (111)In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin). Nucl Med Biol. 2008;35(6):645–53. https://doi.org/10.1016/j.nucmedbio.2008.05.010.

    Article  CAS  PubMed  Google Scholar 

  58. Nahta R, Esteva FJ. In vitro effects of trastuzumab and vinorelbine in trastuzumab-resistant breast cancer cells. Cancer Chemother Pharmacol. 2004;53(2):186–90. https://doi.org/10.1007/s00280-003-0728-3.

    Article  CAS  PubMed  Google Scholar 

  59. Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ. P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res. 2004;64(11):3981–6. https://doi.org/10.1158/0008-5472.CAN-03-3900.

    Article  CAS  PubMed  Google Scholar 

  60. Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106(8):1367–73. https://doi.org/10.1038/bjc.2012.85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harris LN, You F, Schnitt SJ, Witkiewicz A, Lu X, Sgroi D, et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res. 2007;13(4):1198–207. https://doi.org/10.1158/1078-0432.CCR-06-1304.

    Article  CAS  PubMed  Google Scholar 

  62. Sonnenblick A, Agbor-Tarh D, Bradbury I, Di Cosimo S, Azim HA Jr, Fumagalli D, et al. Impact of diabetes, insulin, and metformin use on the outcome of patients with human epidermal growth factor receptor 2-positive primary breast cancer: analysis from the ALTTO phase III randomized trial. J Clin Oncol. 2017;35(13):1421–9. https://doi.org/10.1200/JCO.2016.69.7722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Browne BC, Eustace AJ, Kennedy S, O'Brien NA, Pedersen K, McDermott MS, et al. Evaluation of IGF1R and phosphorylated IGF1R as targets in HER2-positive breast cancer cell lines and tumours. Breast Cancer Res Treat. 2012;136(3):717–27. https://doi.org/10.1007/s10549-012-2260-9.

    Article  CAS  PubMed  Google Scholar 

  64. Kostler WJ, Hudelist G, Rabitsch W, Czerwenka K, Muller R, Singer CF, et al. Insulin-like growth factor-1 receptor (IGF-1R) expression does not predict for resistance to trastuzumab-based treatment in patients with Her-2/neu overexpressing metastatic breast cancer. J Cancer Res Clin Oncol. 2006;132(1):9–18. https://doi.org/10.1007/s00432-005-0038-8.

    Article  CAS  PubMed  Google Scholar 

  65. Reinholz MM, Chen B, Dueck AC, Tenner K, Ballman K, Riehle D, et al. IGF1R protein expression is not associated with differential benefit to concurrent trastuzumab in early-stage HER2(+) breast cancer from the North Central Cancer Treatment Group (Alliance) adjuvant trastuzumab trial N9831. Clin Cancer Res. 2017;23(15):4203–11. https://doi.org/10.1158/1078-0432.CCR-15-0574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith BL, Chin D, Maltzman W, Crosby K, Hortobagyi GN, Bacus SS. The efficacy of Herceptin therapies is influenced by the expression of other erbB receptors, their ligands and the activation of downstream signalling proteins. Br J Cancer. 2004;91(6):1190–4. https://doi.org/10.1038/sj.bjc.6602090. 6602090 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yerushalmi R, Gelmon KA, Leung S, Gao D, Cheang M, Pollak M, et al. Insulin-like growth factor receptor (IGF-1R) in breast cancer subtypes. Breast Cancer Res Treat. 2012;132(1):131–42. https://doi.org/10.1007/s10549-011-1529-8.

    Article  CAS  PubMed  Google Scholar 

  68. Browne BC, Crown J, Venkatesan N, Duffy MJ, Clynes M, Slamon D, et al. Inhibition of IGF1R activity enhances response to trastuzumab in HER-2-positive breast cancer cells. Ann Oncol. 2011;22(1):68–73. https://doi.org/10.1093/annonc/mdq349.

    Article  CAS  PubMed  Google Scholar 

  69. Chakraborty AK, Zerillo C, DiGiovanna MP. In vitro and in vivo studies of the combination of IGF1R inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib. Breast Cancer Res Treat. 2015;152(3):533–44. https://doi.org/10.1007/s10549-015-3504-2.

    Article  CAS  PubMed  Google Scholar 

  70. Esparis-Ogando A, Ocana A, Rodriguez-Barrueco R, Ferreira L, Borges J, Pandiella A. Synergic antitumoral effect of an IGF-IR inhibitor and trastuzumab on HER2-overexpressing breast cancer cells. Ann Oncol. 2008;19(11):1860–9. https://doi.org/10.1093/annonc/mdn406.

    Article  CAS  PubMed  Google Scholar 

  71. Sanabria-Figueroa E, Donnelly SM, Foy KC, Buss MC, Castellino RC, Paplomata E, et al. Insulin-like growth factor-1 receptor signaling increases the invasive potential of human epidermal growth factor receptor 2-overexpressing breast cancer cells via Src-focal adhesion kinase and forkhead box protein M1. Mol Pharmacol. 2015;87(2):150–61. https://doi.org/10.1124/mol.114.095380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gradishar WJ, Yardley DA, Layman R, Sparano JA, Chuang E, Northfelt DW, et al. Clinical and translational results of a phase II, randomized trial of an anti-IGF-1R (cixutumumab) in women with breast cancer that progressed on endocrine therapy. Clin Cancer Res. 2016;22(2):301–9. https://doi.org/10.1158/1078-0432.CCR-15-0588.

    Article  CAS  PubMed  Google Scholar 

  73. Rugo HS, Tredan O, Ro J, Morales SM, Campone M, Musolino A, et al. A randomized phase II trial of ridaforolimus, dalotuzumab, and exemestane compared with ridaforolimus and exemestane in patients with advanced breast cancer. Breast Cancer Res Treat. 2017;165(3):601–9. https://doi.org/10.1007/s10549-017-4375-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320–8. https://doi.org/10.1016/j.tibs.2011.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12(4):395–402. https://doi.org/10.1016/j.ccr.2007.08.030.

    Article  CAS  PubMed  Google Scholar 

  76. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–27. https://doi.org/10.1016/j.ccr.2004.06.022.

    Article  CAS  PubMed  Google Scholar 

  77. Wang L, Zhang Q, Zhang J, Sun S, Guo H, Jia Z, et al. PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Cancer. 2011;11:248. https://doi.org/10.1186/1471-2407-11-248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Andre F, O’Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G, et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15(6):580–91. https://doi.org/10.1016/S1470-2045(14)70138-X.

    Article  CAS  PubMed  Google Scholar 

  79. Andre F, Hurvitz S, Fasolo A, Tseng LM, Jerusalem G, Wilks S, et al. Molecular alterations and everolimus efficacy in human epidermal growth factor receptor 2-overexpressing metastatic breast cancers: combined exploratory biomarker analysis from BOLERO-1 and BOLERO-3. J Clin Oncol. 2016;34(18):2115–24. https://doi.org/10.1200/JCO.2015.63.9161.

    Article  PubMed  Google Scholar 

  80. O’Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, et al. Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther. 2010;9(6):1489–502. https://doi.org/10.1158/1535-7163.MCT-09-1171.

    Article  CAS  PubMed  Google Scholar 

  81. Xia W, Husain I, Liu L, Bacus S, Saini S, Spohn J, et al. Lapatinib antitumor activity is not dependent upon phosphatase and tensin homologue deleted on chromosome 10 in ErbB2-overexpressing breast cancers. Cancer Res. 2007;67(3):1170–5. https://doi.org/10.1158/0008-5472.CAN-06-2101.

    Article  CAS  PubMed  Google Scholar 

  82. Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W, et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 2008;68(22):9221–30. https://doi.org/10.1158/0008-5472.CAN-08-1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol. 2011;29(2):166–73. https://doi.org/10.1200/JCO.2009.27.7814.

    Article  CAS  PubMed  Google Scholar 

  84. Vazquez-Martin A, Oliveras-Ferraros C, Colomer R, Brunet J, Menendez JA. Low-scale phosphoproteome analyses identify the mTOR effector p70 S6 kinase 1 as a specific biomarker of the dual-HER1/HER2 tyrosine kinase inhibitor lapatinib (Tykerb) in human breast carcinoma cells. Ann Oncol. 2008;19(6):1097–109. https://doi.org/10.1093/annonc/mdm589.

    Article  CAS  PubMed  Google Scholar 

  85. Guerin M, Rezai K, Isambert N, Campone M, Autret A, Pakradouni J, et al. PIKHER2: a phase IB study evaluating buparlisib in combination with lapatinib in trastuzumab-resistant HER2-positive advanced breast cancer. Eur J Cancer. 2017;86:28–36. https://doi.org/10.1016/j.ejca.2017.08.025.

    Article  CAS  PubMed  Google Scholar 

  86. Baselga J, Lewis Phillips GD, Verma S, Ro J, Huober J, Guardino AE, et al. Relationship between tumor biomarkers and efficacy in EMILIA, a phase III study of trastuzumab emtansine in HER2-positive metastatic breast cancer. Clin Cancer Res. 2016;22(15):3755–63. https://doi.org/10.1158/1078-0432.CCR-15-2499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li G, Guo J, Shen BQ, Yadav DB, Sliwkowski MX, Crocker LM, et al. Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells. Mol Cancer Ther. 2018;17(7):1441–53. https://doi.org/10.1158/1535-7163.MCT-17-0296.

    Article  CAS  PubMed  Google Scholar 

  88. Jain S, Shah AN, Santa-Maria CA, Siziopikou K, Rademaker A, Helenowski I, et al. Phase I study of alpelisib (BYL-719) and trastuzumab emtansine (T-DM1) in HER2-positive metastatic breast cancer (MBC) after trastuzumab and taxane therapy. Breast Cancer Res Treat. 2018;171(2):371–81. https://doi.org/10.1007/s10549-018-4792-0.

    Article  CAS  PubMed  Google Scholar 

  89. Lu CH, Wyszomierski SL, Tseng LM, Sun MH, Lan KH, Neal CL, et al. Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res. 2007;13(19):5883–8. https://doi.org/10.1158/1078-0432.CCR-06-2837. 13/19/5883 [pii].

    Article  CAS  PubMed  Google Scholar 

  90. Ozbay T, Durden DL, Liu T, O’Regan RM, Nahta R. In vitro evaluation of pan-PI3-kinase inhibitor SF1126 in trastuzumab-sensitive and trastuzumab-resistant HER2-over-expressing breast cancer cells. Cancer Chemother Pharmacol. 2010;65(4):697–706. https://doi.org/10.1007/s00280-009-1075-9.

    Article  CAS  PubMed  Google Scholar 

  91. Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, et al. PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol. 2010;177(4):1647–56. https://doi.org/10.2353/ajpath.2010.090885. S0002-9440(10)60218-0 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang C, Park CC, Hilsenbeck SG, Ward R, Rimawi MF, Wang YC, et al. beta1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Res. 2011;13(4):R84. https://doi.org/10.1186/bcr2936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ, et al. Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res. 2006;66(3):1526–35. https://doi.org/10.1158/0008-5472.CAN-05-3071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hanker AB, Estrada MV, Bianchini G, Moore PD, Zhao J, Cheng F, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER2 and PI3K in HER2(+) breast cancer. Cancer Res. 2017;77(12):3280–92. https://doi.org/10.1158/0008-5472.CAN-16-2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gardaneh M, Shojaei S, Kaviani A, Behnam B. GDNF induces RET-SRC-HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells. Breast Cancer Res Treat. 2017;162(2):231–41. https://doi.org/10.1007/s10549-016-4078-3.

    Article  CAS  PubMed  Google Scholar 

  96. Scaltriti M, Eichhorn PJ, Cortes J, Prudkin L, Aura C, Jimenez J, et al. Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc Natl Acad Sci U S A. 2011;108(9):3761–6. https://doi.org/10.1073/pnas.1014835108. 1014835108 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lu Y, Zi X, Pollak M. Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer. 2004;108(3):334–41. https://doi.org/10.1002/ijc.11445.

    Article  CAS  PubMed  Google Scholar 

  98. Nahta R, Iglehart JD, Kempkes B, Schmidt EV. Rate-limiting effects of cyclin D1 in transformation by ErbB2 predicts synergy between herceptin and flavopiridol. Cancer Res. 2002;62(8):2267–71.

    CAS  PubMed  Google Scholar 

  99. Nahta R, Trent S, Yang C, Schmidt EV. Epidermal growth factor receptor expression is a candidate target of the synergistic combination of trastuzumab and flavopiridol in breast cancer. Cancer Res. 2003;63(13):3626–31.

    CAS  PubMed  Google Scholar 

  100. Wu K, Wang C, D'Amico M, Lee RJ, Albanese C, Pestell RG, et al. Flavopiridol and trastuzumab synergistically inhibit proliferation of breast cancer cells: association with selective cooperative inhibition of cyclin D1-dependent kinase and Akt signaling pathways. Mol Cancer Ther. 2002;1(9):695–706.

    CAS  PubMed  Google Scholar 

  101. Goel S, Wang Q, Watt AC, Tolaney SM, Dillon DA, Li W, et al. Overcoming therapeutic resistance in HER2-positive breast cancers with CDK4/6 inhibitors. Cancer Cell. 2016;29(3):255–69. https://doi.org/10.1016/j.ccell.2016.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang YC, Morrison G, Gillihan R, Guo J, Ward RM, Fu X, et al. Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers--role of estrogen receptor and HER2 reactivation. Breast Cancer Res. 2011;13(6):R121. https://doi.org/10.1186/bcr3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gianni L, Bisagni G, Colleoni M, Del Mastro L, Zamagni C, Mansutti M, et al. Neoadjuvant treatment with trastuzumab and pertuzumab plus palbociclib and fulvestrant in HER2-positive, ER-positive breast cancer (NA-PHER2): an exploratory, open-label, phase 2 study. Lancet Oncol. 2018;19(2):249–56. https://doi.org/10.1016/S1470-2045(18)30001-9.

    Article  CAS  PubMed  Google Scholar 

  104. Kumar R, Mandal M, Lipton A, Harvey H, Thompson CB. Overexpression of HER2 modulates bcl-2, bcl-XL, and tamoxifen-induced apoptosis in human MCF-7 breast cancer cells. Clin Cancer Res. 1996;2(7):1215–9.

    CAS  PubMed  Google Scholar 

  105. Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 2000;60(20):5887–94.

    CAS  PubMed  Google Scholar 

  106. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96(12):926–35.

    Article  CAS  PubMed  Google Scholar 

  107. Xia W, Bacus S, Hegde P, Husain I, Strum J, Liu L, et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A. 2006;103(20):7795–800. https://doi.org/10.1073/pnas.0602468103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rimawi MF, Mayer IA, Forero A, Nanda R, Goetz MP, Rodriguez AA, et al. Multicenter phase II study of neoadjuvant lapatinib and trastuzumab with hormonal therapy and without chemotherapy in patients with human epidermal growth factor receptor 2-overexpressing breast cancer: TBCRC 006. J Clin Oncol. 2013;31(14):1726–31. https://doi.org/10.1200/JCO.2012.44.8027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sudhan DR, Schwarz LJ, Guerrero-Zotano A, Formisano L, Nixon MJ, Croessmann S, et al. Extended adjuvant therapy with neratinib plus fulvestrant blocks ER/HER2 crosstalk and maintains complete responses of ER+/HER2+ breast cancers: implications to the ExteNET trial. Clin Cancer Res. 2019;25(2):771–83. https://doi.org/10.1158/1078-0432.CCR-18-1131.

    Article  PubMed  Google Scholar 

  110. von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med. 2017;377(2):122–31. https://doi.org/10.1056/NEJMoa1703643.

    Article  Google Scholar 

  111. Paplomata E, Nahta R, O'Regan RM. Systemic therapy for early-stage HER2-positive breast cancers: time for a less-is-more approach? Cancer. 2015;121(4):517–26. https://doi.org/10.1002/cncr.29060.

    Article  CAS  PubMed  Google Scholar 

  112. Emde A, Mahlknecht G, Maslak K, Ribba B, Sela M, Possinger K, et al. Simultaneous inhibition of estrogen receptor and the HER2 pathway in breast cancer: Effects of HER2 abundance. Transl Oncol. 2011;4(5):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res. 2004;10(17):5650–5. https://doi.org/10.1158/1078-0432.CCR-04-0225.

    Article  CAS  PubMed  Google Scholar 

  114. Varchetta S, Gibelli N, Oliviero B, Nardini E, Gennari R, Gatti G, et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 2007;67(24):11991–9. https://doi.org/10.1158/0008-5472.CAN-07-2068.

    Article  CAS  PubMed  Google Scholar 

  115. Carson WE, Parihar R, Lindemann MJ, Personeni N, Dierksheide J, Meropol NJ, et al. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Eur J Immunol. 2001;31(10):3016–25. https://doi.org/10.1002/1521-4141(2001010)31:10<3016::AID-IMMU3016gt;3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  116. Repka T, Chiorean EG, Gay J, Herwig KE, Kohl VK, Yee D, et al. Trastuzumab and interleukin-2 in HER2-positive metastatic breast cancer: a pilot study. Clin Cancer Res. 2003;9(7):2440–6.

    CAS  PubMed  Google Scholar 

  117. Parihar R, Nadella P, Lewis A, Jensen R, De Hoff C, Dierksheide JE, et al. A phase I study of interleukin 12 with trastuzumab in patients with human epidermal growth factor receptor-2-overexpressing malignancies: analysis of sustained interferon gamma production in a subset of patients. Clin Cancer Res. 2004;10(15):5027–37. https://doi.org/10.1158/1078-0432.CCR-04-0265.

    Article  CAS  PubMed  Google Scholar 

  118. Kohrt HE, Houot R, Weiskopf K, Goldstein MJ, Scheeren F, Czerwinski D, et al. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest. 2012;122(3):1066–75. https://doi.org/10.1172/JCI61226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Spiridon CI, Ghetie MA, Uhr J, Marches R, Li JL, Shen GL, et al. Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo. Clin Cancer Res. 2002;8(6):1720–30.

    CAS  PubMed  Google Scholar 

  120. Solinas C, Ceppi M, Lambertini M, Scartozzi M, Buisseret L, Garaud S, et al. Tumor-infiltrating lymphocytes in patients with HER2-positive breast cancer treated with neoadjuvant chemotherapy plus trastuzumab, lapatinib or their combination: a meta-analysis of randomized controlled trials. Cancer Treat Rev. 2017;57:8–15. https://doi.org/10.1016/j.ctrv.2017.04.005.

    Article  CAS  PubMed  Google Scholar 

  121. Luen SJ, Salgado R, Fox S, Savas P, Eng-Wong J, Clark E, et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 2017;18(1):52–62. https://doi.org/10.1016/S1470-2045(16)30631-3.

    Article  CAS  PubMed  Google Scholar 

  122. Tsang JY, Au WL, Lo KY, Ni YB, Hlaing T, Hu J, et al. PD-L1 expression and tumor infiltrating PD-1+ lymphocytes associated with outcome in HER2+ breast cancer patients. Breast Cancer Res Treat. 2017;162(1):19–30. https://doi.org/10.1007/s10549-016-4095-2.

    Article  CAS  PubMed  Google Scholar 

  123. Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermime S. FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy. BMC Cancer. 2008;8:57. https://doi.org/10.1186/1471-2407-8-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Muenst S, Soysal SD, Gao F, Obermann EC, Oertli D, Gillanders WE. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2013;139(3):667–76. https://doi.org/10.1007/s10549-013-2581-3.

    Article  CAS  PubMed  Google Scholar 

  125. Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci U S A. 2011;108(17):7142–7. https://doi.org/10.1073/pnas.1016569108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315):315ra188. https://doi.org/10.1126/scitranslmed.aac4925.

    Article  CAS  PubMed  Google Scholar 

  127. Blackstone EA, Joseph PF. The economics of biosimilars. Am Health Drug Benefits. 2013;6(8):469–78.

    PubMed  PubMed Central  Google Scholar 

  128. Macdonald JC, Hartman H, Jacobs IA. Regulatory considerations in oncologic biosimilar drug development. MAbs. 2015;7(4):653–61. https://doi.org/10.1080/19420862.2015.1040973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nelson KM, Gallagher PC. Biosimilars lining up to compete with Herceptin--opportunity knocks. Expert Opin Ther Pat. 2014;24(11):1149–53. https://doi.org/10.1517/13543776.2014.964683.

    Article  CAS  PubMed  Google Scholar 

  130. Paplomata E, Nahta R. ABP 980: promising trastuzumab biosimilar for HER2-positive breast cancer. Expert Opin Biol Ther. 2018;18(3):335–41. https://doi.org/10.1080/14712598.2018.1430761.

    Article  CAS  PubMed  Google Scholar 

  131. Jhaveri K, Wang R, Teplinsky E, Chandarlapaty S, Solit D, Cadoo K, et al. A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer. Breast Cancer Res. 2017;19(1):89. https://doi.org/10.1186/s13058-017-0879-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lindemann K, Resau J, Nahrig J, Kort E, Leeser B, Annecke K, et al. Differential expression of c-Met, its ligand HGF/SF and HER2/neu in DCIS and adjacent normal breast tissue. Histopathology. 2007;51(1):54–62. https://doi.org/10.1111/j.1365-2559.2007.02732.x.

    Article  CAS  PubMed  Google Scholar 

  133. Khoury H, Naujokas MA, Zuo D, Sangwan V, Frigault MM, Petkiewicz S, et al. HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell. 2005;16(2):550–61. https://doi.org/10.1091/mbc.E04-07-0567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Minuti G, Cappuzzo F, Duchnowska R, Jassem J, Fabi A, O'Brien T, et al. Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br J Cancer. 2012;107(5):793–9. https://doi.org/10.1038/bjc.2012.335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shattuck DL, Miller JK, Carraway KL 3rd, Sweeney C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res. 2008;68(5):1471–7. https://doi.org/10.1158/0008-5472.CAN-07-5962. 68/5/1471 [pii].

    Article  CAS  PubMed  Google Scholar 

  136. Joshi JP, Brown NE, Griner SE, Nahta R. Growth differentiation factor 15 (GDF15)-mediated HER2 phosphorylation reduces trastuzumab sensitivity of HER2-overexpressing breast cancer cells. Biochem Pharmacol. 2011;82(9):1090–9. https://doi.org/10.1016/j.bcp.2011.07.082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim KK, Lee JJ, Yang Y, You KH, Lee JH. Macrophage inhibitory cytokine-1 activates AKT and ERK-1/2 via the transactivation of ErbB2 in human breast and gastric cancer cells. Carcinogenesis. 2008;29(4):704–12. https://doi.org/10.1093/carcin/bgn031.

    Article  CAS  PubMed  Google Scholar 

  138. Park YJ, Lee H, Lee JH. Macrophage inhibitory cytokine-1 transactivates ErbB family receptors via the activation of Src in SK-BR-3 human breast cancer cells. BMB Rep. 2010;43(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  139. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017;23(10):1215–9. https://doi.org/10.1038/nm.4393.

    Article  CAS  PubMed  Google Scholar 

  140. Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med. 2017;23(10):1150–7. https://doi.org/10.1038/nm.4392.

    Article  CAS  PubMed  Google Scholar 

  141. Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjaer SB, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23(10):1158–66. https://doi.org/10.1038/nm.4394.

    Article  CAS  PubMed  Google Scholar 

  142. Li YL, Chang JT, Lee LY, Fan KH, Lu YC, Li YC, et al. GDF15 contributes to radioresistance and cancer stemness of head and neck cancer by regulating cellular reactive oxygen species via a SMAD-associated signaling pathway. Oncotarget. 2017;8(1):1508–28. https://doi.org/10.18632/oncotarget.13649.

    Article  PubMed  Google Scholar 

  143. Sasahara A, Tominaga K, Nishimura T, Yano M, Kiyokawa E, Noguchi M, et al. An autocrine/paracrine circuit of growth differentiation factor (GDF) 15 has a role for maintenance of breast cancer stem-like cells. Oncotarget. 2017;18(5):24869–81. https://doi.org/10.18632/oncotarget.15276.

    Article  Google Scholar 

  144. Xu J, Kimball TR, Lorenz JN, Brown DA, Bauskin AR, Klevitsky R, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006;98(3):342–50. https://doi.org/10.1161/01.RES.0000202804.84885.d0.

    Article  CAS  PubMed  Google Scholar 

  145. Griner SE, Joshi JP, Nahta R. Growth differentiation factor 15 stimulates rapamycin-sensitive ovarian cancer cell growth and invasion. Biochem Pharmacol. 2013;85(1):46–58. https://doi.org/10.1016/j.bcp.2012.10.007.

    Article  CAS  PubMed  Google Scholar 

  146. Li C, Wang J, Kong J, Tang J, Wu Y, Xu E, et al. GDF15 promotes EMT and metastasis in colorectal cancer. Oncotarget. 2016;7(1):860–72. https://doi.org/10.18632/oncotarget.6205.

    Article  PubMed  Google Scholar 

  147. Peake BF, Eze SM, Yang L, Castellino RC, Nahta R. Growth differentiation factor 15 mediates epithelial mesenchymal transition and invasion of breast cancers through IGF-1R-FoxM1 signaling. Oncotarget. 2017;8(55):94393–406. https://doi.org/10.18632/oncotarget.21765.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res. 2013;118:97–398. https://doi.org/10.1016/B978-0-12-407173-5.00004-2.

    Article  CAS  PubMed  Google Scholar 

  149. Bektas N, Haaf A, Veeck J, Wild PJ, Luscher-Firzlaff J, Hartmann A, et al. Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC Cancer. 2008;8:42. https://doi.org/10.1186/1471-2407-8-42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Carr JR, Park HJ, Wang Z, Kiefer MM, Raychaudhuri P. FoxM1 mediates resistance to herceptin and paclitaxel. Cancer Res. 2010;70(12):5054–63. https://doi.org/10.1158/0008-5472.CAN-10-0545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gayle SS, Castellino RC, Buss MC, Nahta R. MEK inhibition increases lapatinib sensitivity via modulation of FOXM1. Curr Med Chem. 2013;20(19):2486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Francis RE, Myatt SS, Krol J, Hartman J, Peck B, McGovern UB, et al. FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int J Oncol. 2009;35(1):57–68.

    CAS  PubMed  Google Scholar 

  153. Baselga J, Gelmon KA, Verma S, Wardley A, Conte P, Miles D, et al. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol. 2010;28(7):1138–44. https://doi.org/10.1200/JCO.2009.24.2024. JCO.2009.24.2024 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhao F, Lam EW. Role of the forkhead transcription factor FOXO-FOXM1 axis in cancer and drug resistance. Front Med. 2012;6(4):376–80. https://doi.org/10.1007/s11684-012-0228-0.

    Article  PubMed  Google Scholar 

  155. Millour J, de Olano N, Horimoto Y, Monteiro LJ, Langer JK, Aligue R, et al. ATM and p53 regulate FOXM1 expression via E2F in breast cancer epirubicin treatment and resistance. Mol Cancer Ther. 2011;10(6):1046–58. https://doi.org/10.1158/1535-7163.MCT-11-0024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Halasi M, Gartel AL. Suppression of FOXM1 sensitizes human cancer cells to cell death induced by DNA-damage. PLoS One. 2012;7(2):e31761. https://doi.org/10.1371/journal.pone.0031761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis. J Clin Invest. 2014;124(2):564–79. https://doi.org/10.1172/JCI71104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yang C, Chen H, Tan G, Gao W, Cheng L, Jiang X, et al. FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett. 2013;340(1):104–12. https://doi.org/10.1016/j.canlet.2013.07.004.

    Article  CAS  PubMed  Google Scholar 

  159. Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE. Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis. 2010;31(12):2049–57. https://doi.org/10.1093/carcin/bgq192. bgq192 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mitra D, Brumlik MJ, Okamgba SU, Zhu Y, Duplessis TT, Parvani JG, et al. An oncogenic isoform of HER2 associated with locally disseminated breast cancer and trastuzumab resistance. Mol Cancer Ther. 2009;8(8):2152–62. https://doi.org/10.1158/1535-7163.MCT-09-0295. 1535-7163.MCT-09-0295 [pii].

    Article  CAS  PubMed  Google Scholar 

  161. Siddiqa A, Long LM, Li L, Marciniak RA, Kazhdan I. Expression of HER-2 in MCF-7 breast cancer cells modulates anti-apoptotic proteins Survivin and Bcl-2 via the extracellular signal-related kinase (ERK) and phosphoinositide-3 kinase (PI3K) signalling pathways. BMC Cancer. 2008;8:129. https://doi.org/10.1186/1471-2407-8-129. 1471-2407-8-129 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Crawford A, Nahta R. Targeting Bcl-2 in herceptin-resistant breast cancer cell lines. Current Pharmacogenomics Person Med. 2011;9(3):184–90.

    Article  CAS  Google Scholar 

  163. Martin AP, Mitchell C, Rahmani M, Nephew KP, Grant S, Dent P. Inhibition of MCL-1 enhances lapatinib toxicity and overcomes lapatinib resistance via BAK-dependent autophagy. Cancer Biol Ther. 2009;8(21):2084–96. 9895 [pii].

    Article  CAS  PubMed  Google Scholar 

  164. Witters LM, Witkoski A, Planas-Silva MD, Berger M, Viallet J, Lipton A. Synergistic inhibition of breast cancer cell lines with a dual inhibitor of EGFR-HER-2/neu and a Bcl-2 inhibitor. Oncol Rep. 2007;17(2):465–9.

    CAS  PubMed  Google Scholar 

  165. Valabrega G, Capellero S, Cavalloni G, Zaccarello G, Petrelli A, Migliardi G, et al. HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib. Breast Cancer Res Treat. 2011;130(1):29–40. https://doi.org/10.1007/s10549-010-1281-5.

    Article  CAS  PubMed  Google Scholar 

  166. Gojo I, Zhang B, Fenton RG. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin Cancer Res. 2002;8(11):3527–38.

    CAS  PubMed  Google Scholar 

  167. Mitchell C, Yacoub A, Hossein H, Martin AP, Bareford MD, Eulitt P, et al. Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo. Cancer Biol Ther. 2010;10(9):903–17. https://doi.org/10.4161/cbt.10.9.13273. 13273 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99(8):628–38. https://doi.org/10.1093/jnci/djk134.

    Article  CAS  PubMed  Google Scholar 

  169. Anido J, Scaltriti M, Bech Serra JJ, Santiago Josefat B, Todo FR, Baselga J, et al. Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of translation. EMBO J. 2006;25(13):3234–44. https://doi.org/10.1038/sj.emboj.7601191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pupa SM, Menard S, Morelli D, Pozzi B, De Palo G, Colnaghi MI. The extracellular domain of the c-erbB-2 oncoprotein is released from tumor cells by proteolytic cleavage. Oncogene. 1993;8(11):2917–23.

    CAS  PubMed  Google Scholar 

  171. Xia W, Liu LH, Ho P, Spector NL. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW572016. Oncogene. 2004;23(3):646–53. https://doi.org/10.1038/sj.onc.1207166.

    Article  CAS  PubMed  Google Scholar 

  172. Scaltriti M, Chandarlapaty S, Prudkin L, Aura C, Jimenez J, Angelini PD, et al. Clinical benefit of lapatinib-based therapy in patients with human epidermal growth factor receptor 2-positive breast tumors coexpressing the truncated p95HER2 receptor. Clin Cancer Res. 2010;16(9):2688–95. https://doi.org/10.1158/1078-0432.CCR-09-3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sperinde J, Jin X, Banerjee J, Penuel E, Saha A, Diedrich G, et al. Quantitation of p95HER2 in paraffin sections by using a p95-specific antibody and correlation with outcome in a cohort of trastuzumab-treated breast cancer patients. Clin Cancer Res. 2010;16(16):4226–35. https://doi.org/10.1158/1078-0432.CCR-10-0410.

    Article  CAS  PubMed  Google Scholar 

  174. Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Del Barco S, Martin-Castillo B, Menendez JA. Lapatinib, a dual HER1/HER2 tyrosine kinase inhibitor, augments basal cleavage of HER2 extracellular domain (ECD) to inhibit HER2-driven cancer cell growth. J Cell Physiol. 2011;226(1):52–7. https://doi.org/10.1002/jcp.22333.

    Article  CAS  PubMed  Google Scholar 

  175. Wang T, Xu Y, Sheng S, Yuan H, Ouyang T, Li J, et al. HER2 somatic mutations are associated with poor survival in HER2-negative breast cancers. Cancer Sci. 2017;108(4):671–7. https://doi.org/10.1111/cas.13182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xu X, De Angelis C, Burke KA, Nardone A, Hu H, Qin L, et al. HER2 reactivation through acquisition of the HER2 L755S mutation as a mechanism of acquired resistance to HER2-targeted therapy in HER2(+) breast cancer. Clin Cancer Res. 2017;23(17):5123–34. https://doi.org/10.1158/1078-0432.CCR-16-2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Nahta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nahta, R. (2019). Novel Therapies to Overcome HER2 Therapy Resistance in Breast Cancer. In: Szewczuk, M., Qorri, B., Sambi, M. (eds) Current Applications for Overcoming Resistance to Targeted Therapies. Resistance to Targeted Anti-Cancer Therapeutics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-21477-7_7

Download citation

Publish with us

Policies and ethics