Skip to main content

Doers

  • Chapter
  • First Online:
Brain-Computer Interface Technologies
  • 921 Accesses

Abstract

This chapter focuses on what is happening now in the field of BCI development and on the perspectives for the foreseeable future. We will cover the promising new technologies which will lead to a drastic change in our way to provide solutions to human neurological problems. The current barriers to success will be analyzed in a perspective of finding clues to tackle them. Ongoing initiatives, at a scientific, technical, and development level, will be surveyed. Potential near-term projects in BCI applications will be described. This will allow us to anticipate future development trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://en.wikipedia.org/wiki/Big_data

  2. https://en.wikipedia.org/wiki/Artificial_intelligence

  3. https://en.wikipedia.org/wiki/Machine_learning

  4. https://en.wikipedia.org/wiki/Wireless

  5. https://en.wikipedia.org/wiki/Internet_of_things

  6. https://www.quora.com/What-is-the-difference-between-IoE-and-the-Internet-of-Things-IoT

  7. https://en.wikipedia.org/wiki/Machine_to_machine

  8. https://en.wikipedia.org/wiki/Wireless_power_transfer

  9. Agarwal K et al (2017) Wireless power transfer strategies for implantable bioelectronics: methodological review. IEEE Rev Biomed Eng 10:136–161

    Article  Google Scholar 

  10. https://en.wikipedia.org/wiki/Specific_absorption_rate

  11. https://en.wikipedia.org/wiki/Litz_wire

  12. https://en.wikipedia.org/wiki/Resonant_inductive_coupling

  13. Lee J et al (2016) A review on wireless powering schemes for implantable microsystems in neural engineering applications. Biomed Eng Lett 6:205–215

    Article  Google Scholar 

  14. Priya S, Inman DJ (eds) (2009) Energy harvesting technologies, Springer, ISBN 978-0-387-76463-4. http://preview.kingborn.net/942000/8fef646fa5ec49b58fb65a13fd39d404.pdf

  15. Hannan M et al (2014) Energy harvesting for the implantable biomedical devices: issues and challenges. Biomed Eng Online 13:79. https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-13-79

    Article  Google Scholar 

  16. Tsai J-Y et al (2011) Ultrasonic wireless power and data communication for neural stimulation, 2011 IEEE International Ultrasonics Symposium, Orlando, FL, USA, 18–21 Oct. 2011

    Google Scholar 

  17. https://en.wikipedia.org/wiki/Wire_bonding

  18. https://en.wikipedia.org/wiki/Flip_chip

  19. https://en.wikipedia.org/wiki/Ball_grid_array

  20. https://en.wikipedia.org/wiki/Three-dimensional_integrated_circuit

  21. https://en.wikipedia.org/wiki/FR-4

  22. https://en.wikipedia.org/wiki/Moore%27s_law

  23. https://www.mst.com/dyconex/

  24. https://www.mst.com/dyconex/products/lcp/index.html

  25. Bagen S et al (2015) Liquid crystal polymer substrates to enable advanced RF and medical applications, IMAPS, New England 42nd Symposium & Expo, http://www.imapsne.net/2015%20presentations/F/F3.pdf

  26. https://www.dictionary.com

  27. https://www.heraeus.com/en/hmc/heraeus_medical_components/home_medical_components.aspx

  28. https://www.heraeus.com/en/group/home/home.aspx

  29. https://www.heraeus.com/en/group/technology_report_online/articles/tr_2016/03_CerMet_Tech.aspx

  30. Bagen S et al (2016) Electronics packaging methods and material for implantable medical devices, IMAPS, New England 43nd Symposium & Expo, http://www.imapsne.org/virtualCDs/2016/2016%20Presentations/E/E5.pdf

  31. https://en.wikipedia.org/wiki/Co-fired_ceramic

  32. Formenko A et al (2018) Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications, Brain Stimulation, Volume 11, issue 6, November–December 2018, pp 1209–1217, Elsevier, https://www.sciencedirect.com/science/article/pii/S1935861X18302961

  33. Legon W et al (2018) Transcranial focused ultrasound neuromodulation of the human primary motor cortex, Scientific Reports 8, Article number: 10007 (2018), Nature, https://www.nature.com/articles/s41598-018-28320-1

  34. Kubanek J (2018) Neuromodulation with transcranial focused ultrasound. Neurosurg Focus 44(2):E14

    Article  Google Scholar 

  35. Focused Ultrasound for Peripheral Neuromodulation, Research Newsletter, EPFL, STI, CNP, TNE, 2018, https://tne.epfl.ch/page-76740-en-html/page-154687-en-html/

  36. Laqua D et al (2014) Ultrasound communication for intelligent implants. Biomedizinische Technik/Biomed Eng 59(1):727–730, October 2014, https://www.researchgate.net/publication/267324432_Ultrasound_communication_for_intelligent_implants

  37. Wang M et al (2017) Exploiting Spatial Degrees of Freedom for High Data Rate Ultrasound Communication with Implantable Devices, https://arxiv.org/ftp/arxiv/papers/1702/1702.05154.pdf

  38. https://www.wysscenter.ch/

  39. https://blackrockmicro.com/wp-content/uploads/2016/08/LB-0805-1.00-CerePlex-W-IFU.pdf

  40. https://www.wysscenter.ch/project/thought-controlled-arm-to-help-people-with-paralysis-reach-and-grasp/

  41. http://en.eu.livanova.cyberonics.com/healthcare-professionals/vns-education

  42. https://livanova.com/en-US/Home/Products-Therapies/Neuromodulation/Healthcare-Professionals.aspx

  43. Baud M et al (2018) Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun 9, Article number:88

    Google Scholar 

  44. https://www.wysscenter.ch/project/epilepsy-monitoring-seizure-forecasts/

  45. http://www.bionicsinstitute.org/new-approach-epilepsy-diagnosis/

  46. https://en.wikipedia.org/wiki/Dyslexia

  47. https://neurocenter-unige.ch/research-groups/anne-lise-giraud/

  48. https://neurocenter-unige.ch/research-groups/#filters=&search=

  49. https://www.wysscenter.ch/project/brain-stimulation-to-help-people-with-dyslexia/

  50. https://en.wikipedia.org/wiki/Neurofeedback

  51. https://en.wikipedia.org/wiki/Tinnitus

  52. Haller S et al (2009) Real-time fMRI feedback training may improve chronic tinnitus. Eur Radiol 20(3):676–703

    Google Scholar 

  53. https://en.wikipedia.org/wiki/Haptics

  54. https://en.wikipedia.org/wiki/Prosthesis

  55. Wagner F et al (2018) Target neurotechnology restores walking in humans with spinal cord injury. Nature 563:65–71

    Article  CAS  Google Scholar 

  56. Formento E et al (2018) Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci 21:1728–1741

    Article  CAS  Google Scholar 

  57. https://www.gtxmedical.com/about-us/

  58. https://en.wikipedia.org/wiki/Jocelyne_Bloch

  59. https://www.synchronmed.com/

  60. Opie N et al (2018) Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat Biomed Eng 2:907–914

    Article  CAS  Google Scholar 

  61. Enescu D (2019) Thermoelectric energy harvesting: basic principles and applications, Open access peer-reviewed chapter, Published January 21st, 2019. https://doi.org/10.5772/interchopen.83495

  62. https://en.wikipedia.org/wiki/Thermoelectric_generator

  63. https://en.wikipedia.org/wiki/Proprioception

  64. Capogrosso M et al (2018) Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nature Protocols, Springer Nature Experiments 13(9)

    Google Scholar 

  65. https://en.wikipedia.org/wiki/Bioelectronics

  66. Lee J et al (2019) An implantable wireless network of distributed microscale sensors for neural applications. Accepted for IEEE EMBS Conference on Neural Engineering, March 20–23, 2019, pp. 871–874

    Google Scholar 

  67. Laiwalla F et al (2019) A Distributed Wireless Network of Implantable Sub-mm Cortical Microstimulators for Brain-Computer Interfaces, accepted for IEEE EMBS Conference on Neural Engineering, March 20–23, 2019

    Google Scholar 

  68. https://www.darpa.mil/news-events/2016-08-03

  69. https://news.brown.edu/articles/2017/07/neurograins

  70. Bafar VM, Schmid A (2013) Wireless cortical implantable systems. Springer Nature Switzerland. ISBN 978–1–4614-6701-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clément, C. (2019). Doers. In: Brain-Computer Interface Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-27852-6_7

Download citation

Publish with us

Policies and ethics